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It is shown that the Mayer—Montroll (MM) and Kirkwood-Salsburg (KS} hierarchies of equilibrium statistical
mechanics for a binary mixture under certain limits become equations for the n-point matrix probability
functions S, associated with two-phase random media. The MM representation proves to be identical to the
§, expression derived by us in a previous paper, whereas the KS representation is different and new. These
results are shown to illuminate our understanding of the S, from both a physical and quantitative point of
view. In particular rigorous upper and lower bounds on the S, are obtained for a two-phase medium formed
s0 as to be in a state of thermal equilibrium. For such a medium consisting of impenetrable-sphere inclusions
in a matrix, a new exact expression is also given for S, in terms of a two-body probability distribution function
p, as well as new expressions for S; in terms of p, and p ,, a three-body distribution function. Physical insight
into the nature of these results is given by extending some geometrical arguments originally put forth by
Boltzmann.
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f. INTRODUCTION

The resurgence of interest in the determination of
bulk properties of two-phase random media'’? has led
to the need to further develop the precise characteriza-
tion of the microstructure of such media. This series
of papers addresses this need. In the first of the series?
we showed for the first time the general relationship be-
tween so-called z-point matrix probabilify functions S,
and the n-body distribution functions p,. (The S, give
the probability of simultaneously finding » points in the
matrix phase.) It is the purpose of this paper to further
elucidate the nature of the S, by showing how the Mayer -
Montroll (MM)? and Kirkwood~Salsburg (KS) hierarchies®
of equilibrium statistical mechanics for a binary mixture
under certain limits, specified below, become equations
for the S,. The MM representation proves to be identi-
cal to the S, expression previously derived by us,?
whereas the KS representation is different and new. The
MM and KS representations of the S, are shown to il-
luminate our understanding of the S, from both a physi-
cal and quantitative point of view. In particular we show
that the nature of the expressions for the S, allows us to
rigorously bound them as well as to get closed-form
relations among the S, and p, for impenetrable-sphere
inclusions in a homogeneous matrix. We illustrate our
results with a new expression for S, in terms of p, and
new expressions for S; involving p, and p;, as well as
some rigorcus bounds on the S, and S; that can be ex-
actly evaluated.

1. THE MM AND KS HIERARCHIES FOR MIXTURES

We have shown in Ref. 3 that the probability of simul-
taneously finding » points with position vectors ry,
ry, ..., T, in the matrix phase of a statistically homo-
geneous two-phase medium composed of spheres of ra-
dius R and number density p embedded in the matrix is
given by
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where

1, ifr<R

m(r):{
0, ifr>R’

Y= [rf}'l =r;-r;.

Here g(‘] is the s-body distribution function defined be-
low. We proceed now to state certain known results and
definitions which we shall use to demonstrate that the
MM equations reduce to Eq. (1) for certain binary mix-
tures, while the KS eguations reduce to an equivalent
but different set of equations.

Consider a macroscopic system of particles which
constitute a mixture with w species at the respective
fugacities z, (6=1,2,...,w) in the absence of external
fields. If is assumed that the particles interact with
pairwise potentials ¢q'.,j(rf ;) between every two particles
of species o; and o, which are at position r; and r,, re-
spectively. Working in the canonical ensemble’ Mayer
and Montroll* and Mayer® were able to obtain general
sets of equations for n-body distribution funetions p™’
for the multicomponent system. Baer and Lebowitz®
subsequently extended that work somewhat, using the
grand ensemble.® The quantity

(n}

Porroge.sonT1s Toy - o oy BT, dTy, ..., drF,

gives the probability of simultaneously finding the center
of exactly one (unspecified) particle of species ¢ in the

volume dr,, the center of exactly one other (unspecified)
particle of species ¢ in the volume dr,, .. .. and the cen-
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ter of exactly one other (unspecified) particle of species
¢ in the volume dr,. For brevity we shall at times de-
note ry, I, ..., T, by r". Setting #=0 in Eq. (3.10) of
Ref. 7 gives, in our notation,

{n)
Po1,024022100(F")
[m7. za,] Ao "’"(r")

(s)
n+s n
x H{n[l +fmj(r,,r,)]-1}dr,, @)
jmsl \ §=

which is the MM hierarchy* of equations. Setting s=1
in Eq. (3.10) gives instead the KS hierarchy, °

(n)
001,02,000 von(r )
2o, Mg €31%(py, 1)

s=0 S!f ff (;:f:fian,s 21 s rnqs)
n+s
x ]I Jogo (P1, T )dr, (3)
j=n+l
Here
fd;aj(rh rj) Efa‘aj(ri J) = exp[— B‘bu,oj(’ri j)] -1, (4)

This is the Mayer-f function. We have also introduced

<4
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wherefl( )dr, stands for ) f( )dr, .

It is convenient to define the n-body distribution func-
tions g, .. .. .., Which are related to the p;,.... q, SuCh
that

(n)

Po1,095.. ..on(r ) (5)

H"=1 po‘ (ri)

For a statistically homogeneous system p(r) is inde-
pendent of position and is simply equal to the number
density of species o or p,. We shall use the definitions

p g¥=1, (6)

which are consistent with our equations.

A ¢ E

(0).__1
=1,

1. RELATION BETWEEN THE MM EQUATIONS AND
THE S,

Consider a statistically homogeneous and isotropic
binary mixture of species U and species V. Setting n=1
in Eq. (3) and using Eqs. (5) and (6) gives

(1) od 1+s

S o T

01 s=0 s'
14s
TS S H Foo friar, . (D)
j:
Letting oy = U, the series in Eq. (7) up to the term s =2

is equal to

1
zﬂl: =1+ 0, fue,(r1ddrs +2 D él—ffpazpua Z1205(723) Fny (T10) o, (713) ATy dTg + ¢+«
) o o3

=1+ Puffuu(”iz)drz + pvffw(rtz)drz Zpu_[fgm(723)fUU(712)fUU(713)dr2 drs

+20yPy ffgg;(rzs)fuu(ﬁz)fw(Tts)drz drg + épvpvffgﬂ/(?’zs)fw (r12) fyu(r13)dry dry

Pf'ffg;('z‘z(st)fw(”iz)fw(”is)drz drg+---

So far in this section the solute and solvent particles
could be defined by an arbitrary interparticle potential.
Let us now consider the special case of a mixture of
hard-sphere particles characterized by the radii R, and
Ry. As the size of U particles goes to zero (R,~ 0) and
the density of U particles goes to zero (infinite dilution
limit; p,~0), Eq. (8) becomes

Zﬂg =1+ p,,ffw('rn)drz

+ glzffgé'zv)(7’23)fw(7'12)fw(7‘13)dr2 drs + 0(p3)

e
=1+<I5+ \U' +0(p}) , 9)
1 1

(8)

—

since terms on the right-hand side involving p, are
identically zero and since fy,{r) =0 as a result of

¢ yo{712) being zero for all 7y,. The second line of Eq.
(9) is the diagrammatic equivalent of the first line.?
Here ---- is an fy, bond and is a gi% bond.
Associated with each black circle is a factor in the num-
ber density of the solvent species py and associated with
each point particle is a factor of unity. Comparison of
the general term of Eq. (9) with that of Eq. (1) with

n =1 reveals that the former is precisely the expression
for the 1-point matrix function, S;, since fgy(7)=-m(r).
Thus

im [22l_g, =
jim [24]-s,=0. 1o
Ry=0
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where ¢ is the volume fraction of the matrix phase.
The result given by Eq. (10) is interesting from the
standpoint that it relates a purely thermodynamic quan-
tity on the left-hand side to a geometric quantity on the
right-hand side. This equality is consistent with the
interpretation of the fugacity as an “effective density”
for a hard-sphere system.
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(11)
Let us now consider Eq. (5) when n=2, which gives Setting 0y = U and 0, =U, the series given by Eq. (11) up
for a homogeneous and isotropic system through terms for s =2 is equal to
J
{m(y
s eFU(ryy) =1 +Z fpu3 fUu3("’13) +fw3(’”23) +fvo3(7’13)fw3("’23)]dr3 +Z Z ffpas Pa4g;§;4(734)[fw3(7’13)
2 12 o3 04
+fva3(7’23) +fUa3(7’13)fUa3(7’23)][fUa4(7’14) +fUu4(”24) +on4(714)fUa4 790))dry dry + (12)
Expanding Eq. (12) and taking the limits py—~ 0 and R~ 0 gives
[ g(Z)(Y _1 (2)
W =1+ Pvf Fov(r13) + fov (ra5) + v (r15) frw (ras) ldws + BY [fg v (730 fov (r13)
+fov(ras) + v (1) fov raa) L fow (r10) + Fuw(r2) + Fow (1) fon () Ndry dry + O(g5)
AL AR s
=14+ 0V 4+ 04+ 7 N+ N+ N 40 P+, o+t s+ LNty
d 6'd b ¥ ¥ b 6 s %y T
1 2 1 2 1 2 1 2 1 2 1 2 1 2
Going on to arbitrary order in p, we find that Eq. (13) So (12 Tizs -+ oy V1n) = 0" ™ (49, 713y « o oy 71,) (16a)
is precisely the expression for the 2-point matrix func-
tion given by Eq. (1); i.e.,
& v ) Sn(”n,”w’ ---’Tin)zzo: ’sgsl_f"'fg“)(rn+11rn¢2; ---:rms)
2 ) =
lim [;—’f%"zlg,(i:ﬂ)l] =8S,(ryy) . (14) .
UO n n
Ry=0 X II1 {q [1+flr, )] - 1} ar,, (16b)
jan+ i=
More generally, for any »n, one finds - .
if it is kept in mind that the labelings 1,2,...,n are
pn g sy, 7)) associated with the point particles of infinite dilution
i _LL_u_.Il__lz__.la____L_u_ . : . “
iny [ 2y e’ °°”(r’,2 .,.. Vin) ] while n+1,n+2, ... are associated with the “full-
Ry~0 v " blown” solvent particles of radius R. Apart from the
constant factor ¢" the binary-mixture n~body correlation
f f 28 (e, . r.) function for point particles of infinite dilution is the »n-
Vorviinel s point matrix probability function S,. It is instructive to
es recast Eq. (16a) as
o {1+f,0r )]—l}dr Sylrig, 713 12
n it ]
jgi {H i ! g, vy - i) = e S; . ) an
=Sn(712’ LSETRREP 'rhl) y (15)

i.e., there is a one-to-one mapping between the n-point
matrix-function equations and the MM binary-mixture
equations in the limit of infinite dilution of the point-
particle species (the solute species). Note that in this
limit ¢?""" %9y, ..., 7, is always unity. In addition, it
is seen that the solute particles are always associated
with the labelings 1, 2, ..., n while the solvent particles
of radius Ry =R are associated with the labelings n+1,
n+2,.... Consequently, every g(“) in the MM equations
is a pure solvent quantity and every f is a solute—solvent
f. We can therefore suppress the I’s and V’s and write
the MM relations, without misunderstanding, as

We note that as the mutual distances between the » points
increase, the S, (assuming no long range order) may be
written in terms of a product of n 1-point matrix func-
tions; that is

Hm S (75, 713, -« + 5 71,) =Sy(ry) « » - S(x,)
vy
1§iJ<j§n
=87 . (18)

Under these conditions Eq. (17) becomes
g(")(ﬁz,?’w, cey 1) =1

for all n, which is the correct normalization for g""
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IV. RELATION BETWEEN THE KS EQUATIONS AND
THE S,

Let us again consider a statistically homogeneous and
isotropic binary mixture of solute species U and solvent
species V. Setting n=1 in the KS hierarchy, Eq. (6),
gives

© 14+s
p 1 fl fl
- E =1 ... I l (s)
& st a2 p"kg’z""’m(r?’ cees Tra)

201

14s
xI1 fupo Jrdr, (19)
322

This equation is exactly equivalent to the corresponding
MM binary mixture equation for n=1, Eq. (7). Let us
again consider the special case of a mixture of hard-
sphere particles characterized by the radii R, and R,.
It is clear that if we set oy equal to U and take the limits
py—~0and Ry~ 0, in Eq. (19), we have

Py guidr)

zge]¥(ry,)

=1+ Pvfgngu(rzs)fvu(”is)drs + Pvfgm(fzs)fw(”is)drs +

Bﬂffggz}v(rzs, 720 fuo{713) fuv (719)dry dry +
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lim [5‘3‘] =1+ Pvffw(riz)drz

ey~
Ry~ 0

+ g:tffgvv(rza)fw(ftz)fw (713)dr, dry + O(p})
:81 = d) y (20)

which is the result already obtained from the MM repre-
sentation, Eq. (9). The case n=1, however, is the only
instance for which these two hierarchies reduce to pre-
cisely the same functional form.

Letting =2 in Eq. (6) gives for a homogeneous sys-
tem

(¢4 hd
Poy Poy Bosay(T12) f f
oy Fog So40 _ (1 43)
PufoostnE 5] % Hp‘,kgc,2

24, €3172(71,)

X (1, ---,rZQ)Hfaia,(”u)drj . (21)
423
Setting 0, = U and 0, =U, the series given by Eq. (21)

up through terms for s =2 is equal to

=pyt), fPu Pog &ty (723) f oy (713)dT +2 Z 21 _[Pv Pog Poy Etogoy (7235 Y20 Fuing(713) Fuo (r1a)dls dby + - -
a3 g3 04

%f‘ f f &ovu723, 720 Fu713) fyolri)dry dry

ELP“[_/‘gffs‘Z K723, 720 fuv(r13) fy (1) drs dry

Pz 3
+ #[fngvv(f’zaa 700 fov(r13) fyy(rigddrs dey + - L (22)
Equation (22) in the limits p,~ 0 and R ;~ 0 becomes
(2)(1' @ P @) 3
lim [ i ] 1+ Pvfguv(”zs)fuv(”ts)dra fng(fza, 720) fuv (r13) Fyw (r1)drs dr g + 0(py)
syp=0 Lzy ey "(r1y) 21
Ry~0
+ A+N+ (), (23)

where ——— is now a gf,z‘l bond and é isa
counterpart Eq. (13).

v bond. Note the difference between Eq. (23) and the MM
The graphs are topolog1ca11y dlfferent in these two instances.

All of the correlation functions

on the right-hand side of Eq. (13) involve only “full blown” solvent particles while those of Eq. (23) involve, in addi-

tion to the solvent particles, a point particle.

For example, the two-body distribution function appearing in the MM

version is a “solvent-solvent” g% (r) while the two-body function appearing in the KS counterpart is a “solute—

solvent” g)(r). Multiplying Eq. (24) by

¢=lim [B-”]

oy~ 02y
Ry=0
gives
2 2 2
. lp (713) P
plt}{l}, [E%:’] [ + Pvfgm (r23) fuw (r15)dry + E!foggtlv("’zs’ 720 f v (713) Fuw (71 )dry dry + O(Pi)] . (24)
Ry-0
On comparing the left-hand side of Eq. (24) to Eq. (14) we find that
2
Sylry)=1¢ [1 + Pvfgm (73) fuw (r13)dry + %ffg{?v’v(rm, 720) Fuv (713) Fo (71 )drs drg + O(Pf')] . (25)

In general, for any n we have
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(") n+s
o P" s 0w (r Y .-.’V) -1 f (n-14s)

all;{% [ uf [[zuun';jzz,eg]”a(’r“) s Mn " por sl [ UU-:fUVV---V(VZ, Y33 0003 Vneg jg fw(’)’“ dr, . (26)

Ry=0
We then have, on comparing Eq. (26) to the left-hand side of Eq. (15),

n+s
¢gg'(;-uu(712’ <oy ‘rln) Z ff fgg'[;}:f;,vv--.v(rz, LLTEER) n*s) II fUV('rl,)drj
=Sn(712’ ceey 71.71)/(1)"-1 . (27)

Note that the correlation function g"**’ on the right-
hand side of Eq. (27) contains »n — 1 subscripted U’s and
s subscripted V’s. Since the point particles are asso-
ciated with the labels 1,2, ..., and the solvent particles
of radius R are associated with the labels » +1,
n+2,..., we may suppress the U’s and V’s without loss
of information and write

oy ’Vl")

__(bn-i - slf fg(n 1+.s)(r2’ r3’ ceu, T n#s)
s=

X H f(rlj)drj ’

Jm+1

sn(712’ 7139 .

(28)

which is the KS representation of the S,. Although in
the context of the statistical mechanics of mixtures,
both the KS and MM representations have been consid-
ered, the KS representation of the matrix functions S,
has not heretofore been given.

V. DISCUSSION OF EQS. (15) AND (16)

We have shown in Secs. III and IV the mathematical
correspondence between the n-point matrix functions S,
and the n-point solute functions in the case of point-
particle solute molecules in the limit of infinite solute
dilution. The question remains: In physical terms why
ig there this remarkable correspondence? The solute
functions are (except for normalization) probability
densities that give the probability that solute particle 1
will be centered at ry, solute particle 2 at r,,..., and
solute particle » at r,, in the presence of solvent par-
ticles as well as the other solute particles. When we
take the limit of infinite solute dilution there are no
“other” solute particles; only the n solute particles di-
rectly described by the g™ are retained in the equations.
When the n solute particles are point particles of zero
radius, it is clear that for hard-sphere solvent particles
that are impenetrable to the solute particles (whether or
not they are penetrable to each other) the solute par-
ticles will only be found in the matrix. Thus the proba-
bility that point solute particle 1 will be centered at ry,
point solute particle 2 at r,, etc., is strictly proportional
to the probability that point 1 is in the matrix at r;, point
2 is in the matrix at r,, etc. Thus, g"" is proportional
toS,. Since g is normalized to go to 1 for 7; all
widely separated and S, defined so that it goes to a prod-
uct of n Sy’s, we have finally

=S"(r1, ooy r,,)/Sl(rl), Sl(rz), ‘s ,Si(r") .

(29)
The left-hand sides of the MM equations [Eq. (15)]

gty ...,1,)

[

are the full S (ry,...,7,). Itis equally easy to charac-
terize the left-hand sides of the KS equations Eq. (27);
they are the conditional probabilities S,(r;/ry, r5, ..., T,)
of finding point 1 in the matrix at r;, given that point 2
is in the matrix at r,, point 3 is in the matrix at ry,
etc. We have

Sy(ry/15) Sy(r,)

S3(ry, Tp, 13) =S5(ry /Ty, r5) Sylr,y) Sylrs)

Sy(ry, 1) =

etc.

We note that if the solvent particles are wholly or
partially penetrable to each other, none of the previous
considerations of this paper are changed, as long as they
remain impenetrable to the point particles that repre-
sent the solute.

Clearly, if the solute particles do not become point
particles, but remain hard-sphere particles of finite
diameter o then the KS and MM representations of the
2™ still have a well-defined meaning as solute proba-
bility distribution functions and p,/z, as a solute den-
sity/fugacity ratio. We note that the S,(py/z)"g™ /e,
also continue to have meaning as matrix functions; they
give the probability that spheres of diameter o centered
at r, 1y, ...,r,, respectively, will all be found to be

wholly in the matrix.

From the KS equations it easily follows that for a
single-species hard-sphere system

g™y, ... 1)/ 6= (2/p) (30)

asr;;~0for i=2,...,n. [Hoover and Poirier’ proved
Eq. (30) for n=2 by different means.| We note that the
analogous statement for S, is

S,(ry, vy, vy, 1) =S4(ry)

which is wholly obvious—essentially by definition—in
the language of the matrix functions.

We wish to point out that there is nothing that limits
the medium under consideration to a fluid of hard
spheres. In the g‘"’ language both the solute and solvent
can have arbitrary interparticle potentials as is clear
from the development of Secs. I and II. Matrix func-
tions, on the other hand, only make sense (as they are
usually defined, at least) for media consisting of par-
ticles that are wholly impenetrable to the points r; that
give the arguments of the S, (although not necessarily to
each other), so that there is no ambiguity in what con-
stitutes matrix and particle phases. But even within
the context of this restriction, the media particles need
not be taken to be hard spheres with respect to the argu-
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ments of the S,; they can be hard particles of any sort.
For example, they can be parallel cubes impenetrable to
each other. For such particles the coefficients of the
density expansions of the g™ and S, can be analytically
determined to any order!® if the g™ are assumed to be
those of the grand canonical ensemble.

An interesting conceptual point is brought out by the
following observation. Equation (1) was derived in our
previous work® under the very general assumption that
the g™ are those of a distribution of included spheres
that is statistically homogeneous and isotropic but other-
wise arbitrary. In particular, they need not be the g(")
associated with a system in thermal equilibrium. On
the other hand, our rederivation here starting with the
MM or KS equations and using Eqs. (15) or (16a) is in
the context of the g* that characterize thermal equilib-
rium. It appears that for hard-sphere systems, Eq.
(16), which expresses the zero-density “point solute”
gZ’.’..U (or equivalently, the S,) in terms of the pure-
solvent g™, ,, has a far wider domain of validity than
that of thermal equilibrium. It is only when one takes

the full set of MM equations for a particular system
(Whlch include the equations expressing the g "" .y and
gy ey as well as the g, in terms of sums of in-
tegrals involving these same functions) that one can
solve for the g, i.e. , the equations become a closed
set. One then finds that the g are those of thermal
equilibrium. In contrast, the partial set of MM equa-
tions we work with here simply give the set of S, that
are compatible with a prescribed set of p, and g“,’, v
without prescribing the latter. The status of the KS
Eqgs. (28) in the nonequilibrium case is less clear; here
we have established the equivalence of Eqs. (16) and (28)
only in the case of thermal equilibrium. We hope to re-

turn to this fascinating question in subsequent work.

In the case of a system of hard spheres all of equal
diameter, Boltzmann'! considered the first two members
of the KS hierarchy (in the context of a canonical en-
semble) long before the work of Mayer or Kirkwood and
Salsburg. He recognized that Vp/z is the average space
available to the center of a sphere inserted into a sys-
tem of N spheres (except for boundary effects that be-
come negligible in the thermodynamic limit, N— =,
V-, N/V finite) and gave a means of constructing this
average; it is the hard-sphere KS equation for n=1 for
a homogeneous, isotropic system. He also demon-
strated a similar geometric significance for the hard-
sphere KS equation for =2 and 7y, =0. We use Boltz-
mann’s language in Sec. IX.

VI. BOUNDING PROPERTY OF SUCCESSIVE PARTIAL
SUMS OF THE MM AND KS SERIES

In this section we note an important bounding property
enjoyed by the partial sums of both the MM and KS
series for the S,. In Sec. VI we further note that in the
case of impenetrable-sphere inclusions in thermal
equilibrium both series consist of only a finite number
of terms, thus yielding closed-form expressions for the
S, in terms of the g, In Sec. VII we show explicitly
how these results of Secs. VI and VII yield a new ex-
pression for S, as a function of g and new expressions
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for S, as a function of g and g®’, as well as various
rigorous bounds on the S, and S, that can be exactly
evaluated.

We begin with the MM and KS equations for a statisti-
cally homogeneous and isotropic mixture with w species
at the respective fugacities z, (0=1,2,...,w) written
in a form that explicitly exhibits remainder terms

o (m
(7.1 Po;” 1go1u090eeion(®™

[H‘qzai]eohaz.. “Tn(pm) MMID | pMM(D) (31)
e n et _qre (52)
where
M) _ 2 s!f ff L: [ pf'c] B oena g Fnsts « o o5 Trag)
xg{n[uf” r,,r,)]—l}dr,, (33)
o0 3 e TH ]t
x H falm(r,,r,)dr, . (34)

jan+l

Here R¥ and R,* " are the MM and KS remainder
terms, respectively. (Their explicit form can be found
in Ref. 7 and will not be needed by us in what follows. )

The first observation to make about these hierarchies
is that they are alternating series for a positive interac-
tion potential, i.e., ¢,, (r;;)>0. This is true by virtue
of the fact that for such a potential we have —13f,, (7;,)
£0 and g7),.... ., (r") > 0 for all ", Baer and Lebowitz'
have noted that the remainder terms given in Eqs. (31)
and (32) satisfy the following bounds:

20 for ! odd
m
R, Z0 for ! even’ (35)
which implies that
(n) 2 for 7 odd
CH:=1BUj]g0:'U2,...,Gn(rn) QMM(” (36)
U za’]e‘,’,l"’%"'"n(r") < " for I even ,
(n) 2 for I odd
H‘nq E‘ |go"1 Iaz,...,an(rn) st(]) (3 7)
Zoy Mg ¥4 (ry, 1) ™ for I even

which are successive rigorous upper and lower bounds
on the left-hand sides of Eqs. (31) and (32), respectively.
Since the left-hand sides of Eqs. (36) and (37) become
equations for the MM and KS representations of the n-
point matrix probability functions S, (apart from trivial
constants) we also have successive upper and lower
bounds on the S,. To our knowledge such rigorous
bounds on the S, have never been demonstrated before.

In the case of a binary mixture in which one of the two
species, the solute species, U consists of point particles
of infinite dilution of the point-particle species while
the other species, the solvent V, consists of particles
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of radius R, we have, from the inequalities of Eqs. (36)
and (37) and Eqs. (16b) and (28) :

2 for ] odd
S, @uM” : (38)
b for 1 even
where
S,=2_ (- 1) sume (39)
s20
i
Quu® =§(_ 1)s gumts) (40)
MM(S) f fg(-’)(r"’l’ eeey rn‘s)
H1 {1 II 1- mu,,)]}dr, (a1)
jane
SUM(O0 =1
which is the MM result. Similarly,
2 for 1 odd
Sn s@n , (42)
< for I even
where
s,,=):0:(-1)~‘s,',‘s‘*’ , (43)
s
i
QU =D (~1pskew (44)
s=0
K3 (s) 1 (nes=1)
Sno =0 slf fg LIYPPRE )
X H mlry,)dr, (45)
jmn+l
$= ¢ g (ry, .00y, (46)

which is the KS result. Since the point particles are
associated with the labels 1, 2, ..., n and the solvent
particles of radius R are associated with the labels
n+l,n+2,..., we suppress the U’s and the V’s. Here
we have made use of the relationship between the
“solute—solvent” Mayer-f function and the indicator
function m, namely,

-1 <R

fuv(’r)': ~-m(r)=
0 >R

We now make the observation that the product ¢™! g™*
of Eq. (46) is equal to S,.;, according to Eq. (16a).
Thus

S,fo’ =S".1(7’23, Vogyooos 7’2,,) . (47)

That is, the first term of the KS representation of the
n-point function is precisely the (n - 1)-point function.
This important result will prove to be quite useful in
obtaining specific bounds on S,,.

Vil. TRUNCATION OF THE MM AND KS SERIES FOR
MUTUALLY IMPENETRABLE SPHERES

We first consider a pure system of hard spheres with
radius R and then discuss a binary system of hard
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spheres where one species is made up of infinitely dilute
point particles while the other is composed of solvent
particles of radius R.

To begin with, let us consider the MM and KS equa-
tions when z=1 for a pure and isotropic system of hard
spheres. From Eqs. (31) and (32) we see that these
representations are identical (where, since we are deal-
ing with a pure solvent, all quantities are pure-solvent
quantities):

P
5 =1+ f(rp)dr, + %‘fgm(723)f(7'12)f(7’13)d1'2 dr,

3
+ %)ng(a)(rzs, 720) fr1y) fry3) flryg)dr, dry dry + O(p*)

* 9 | % i
+('5 + \Ul + \\t'y/l +0(pY , (48)
1 1 1
where ---- is an f bond (f= -1 for » <2R and f=0
otherwise), is a g® bond and repre-
sents g, For a system of mutually impenetrable
spheres, g*(r)=0 for 7;,<2R for any i and j such that
15i<jSs whereas f(r,;;) =0 for any »;,;> 2R and thus the
terms in the series of Eq. (48) are identically zero for
s>12, In other words, these series are finite series
and hence no question of convergence can arise.

Now let the particles labeled 1,2, ..., n be solute
species and those labeled n+1,72+2, ..., be the solvent
species. If the particles of the solute species are
allowed to become infinitely dilute and infinitesimally
small, Eq. (48) becomes the 1-point matrix function or
the volume fraction of the matrix phase®:

o V)

5=1+u+ o+ s 0y, 49
1 S 5 \ﬁ + (P) ( )
1 1 2

(where now f=—1 for » <R and f=0 otherwise). Since

g2 (r*) =0 for 7,, <2R if i and j represent solvent spe-

cies, and f(r;,) =0, and r;,> R, any term containing the
subgraph (where represents either a g bond
or an edge of a g* polyhedron, s>2)

=

will be identically zero. It is clear that all terms be-
yond the second contain such graphs. Note that this is
consistent with our geometrical interpretation of the S,
given elsewhere.® In this case, S, is seen to be the
probability that no sphere centers are inside a region
QY the volume of a sphere. The region @ is large
enough to accommodate one sphere center but not large
enough to accommodate two or more centers of impene-
trable spheres; any integral including correlations be-
tween two or more particles must be zero. We have
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L 4
o
1

47 o V-=N-(4n/3)R?

=1- 3 R'p= v ’
which states the simple result that the volume fraction
of matrix ¢ is the volume not occupied by spheres
divided by the total volume of the system V.

(50)

Consider the MM and KS equations when =2 for a
pure and isotropic system of hard spheres. By letting
the particles labeled 1,2, ...,n be solute species and
those labeled n+1,n+2, ... be solvent species and
allowing the particles of the solute species to become
infinitely dilute and infinitesimally small, we have from
Eqs. (31) and (32), respectively,

. ® e ” «e—p @—9
P_ng&'nl_s(r)_1+l+:+/\\+\/+\”,
2ley(ry) CRWTT TS TS T b o] o}
1 2 1 2 1 2
] ' 1 /7 N\ ] \N7 |
+dl> (:J+Cl>’/ (':)+C:) \6+é’/\$+0(p3),
1 2 1 2 1 2 1 2
(51)

peiry) _Sirg) '\3 ! §
zeolry) St =1 +d +d +0(p% . (52)
1 2 1 2

Equation (51) is the MM representation of S, and Eq.
(52) is the corresponding KS representation. Here

represents g and represents g®®'.
Black and white circles are associated with solvent and
solute, respectively. As in the previous case (when
n=1), any term containing the graph is identically
zero for impenetrable spheres and therefore gives

1 ] 2

1
52(7’12)=1+6 +é>+dl ‘b+6
1 2 1 2 1

Sylr) =91 +d’l\ )

1 2

(53)

8O-~

(54)

which are the exact expressions for the S, in the MM
and KS representations, respectively.

In general, for an isotropic system of hard spheres
and infinitely dilute point particles, the MM representa-
tion of S, requires knowledge of the spatial correlations
between »n solvent particles and all lower order correla-
tions and is, therefore, a finite series containing n +1
terms. The KS representation of S,, on the other hand
requires knowledge of the spatial correlation between
one solvent particle and point particles, and proves to
be a finite series containing only two terms. [It is to
be noted that for spheres which are penetrable by one
another, all terms in Eqs. (31) and (32) will, in gen-
eral, be nonzero. ]
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VIll. EXACT EXPRESSIONS FOR S, AND S; AND
SOME SPECIFIC RIGOROUS BOUNDS THAT FOLLOW

As a result of Eqs. (38) and (42) there exists a variety
of upper and lower bounds on S,:

S,s88 (55a)
$,2580 -s® | (55b)
S, 580 s+ (55¢)
s"-z_s’fo) _Sr(ll) +S:2) _Sy(,:”

. (55d)

where the ${*’ are given by Eqs. (41) and (45), the MM
and KS representations of S,, respectively. We shall
examine the above inequalities for lower order z-point
matrix functions in both the MM and KS forms for a
particle phase consisting of hard spheres. In what fol-
lows, it will be convenient to replace f(») with the func-
tion —m(7).

Letting n=1, we have in either representation that
Sy21, (56)
Si=¢=1—pV1. (57)

The inequality in Eq. (56) states that S;, the volume
fraction of the matrix phase ¢ must be less than or equal
to one; a result applicable to penetrable spheres as well.
The result of Eq. (57) is an exact result for hard spheres
only. As aforementioned, for n>1 the MM and KS rep-
resentations of S, are different. To avoid ambiguity,
therefore, in the following discussion, we shall denote
the MM and KS representations of S, ag S and SF8,
respectively. We shall also use the subscripts U and V
on the g*’ to distinguish pure-solvent distributions from
mixed solute-solvent distributions.

Letting »=2 in the inequalities of Eqs. (38) and (42)
gives, in the MM and KS representations, respectively,
for impenetrable spheres,

S;’{M(rn)é 1 s
S¥™(r1a)2 1 = pVy(ryy)

S¥M(rip) =1 - pVylryy)

(58)
(59)

+p2ffg‘(,2;(’r34)m(1’13)m(‘r“)dra dry, (60)

where

V2(7'12) =2fm(r)dr —fm(‘rﬂ) m(723)dr3

4n oqf, , 3(7 1_<13]
3R[1+4(R>"16 R) , 7<2R

g R? , 7>2R
and
Sgs(ﬁz) s ¢ (61)
SPOw=0[1=p feBrmlrgar,) . (62)

Here V,(r) is the union volume of two spheres of radius
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R whose centers are separated by distance . Note
that the KS inequality of Eq. (61) is a better upper bound
on S, than the corresponding MM inequality of Eq. (58).
(We have shown elsewhere that the maximum value of S,
is simply the matrix volume fraction. %) The inequalities
of Eqs. (58), (59), and (61) are applicable to penetrable
spheres, while the equalities of Eqs. (60) and (62) are
exact expressions for the two-point function for hard
spheres as discussed in the previous section. (More
generally, it will be true throughout the rest of this sec-
tion that all inequalities for the S, hold for both pene-
trable and impenetrable spheres whereas the equalities
hold only for impenetrable spheres.)

We obtain better bounds on S, than provided by the
inequalities of Eqs. (59) and (61) by bounding the g®?’s
appearing in Eqs. (60) and (62). Recall that the g¥ ap-
pearing in Egs. (60) and (62) are the solvent~solvent
and solute—solvent two-body functions, respectively.
The solvent—solvent g%’ may be bounded using the in-
equality of Eq. (37) for a pure and isotropic hard-sphere
system:

g5 (ryp) £ %ez(ﬁz) , (63)

g2 %ez(ﬂz) [1 - Pfgv('z‘}(fzs) m("is)dra] . (64)
We also have from Eq. (37) that

g <1, (65)

S 21-pV,(2R) , (66)

where

V,(2R) = f m(r)dr = %(23)3 .

The quantity V; is simply the volume of a sphere of ra-
dius 2R. Combining Eqs. (63) and (66) with Eq. (60)
gives the upper bound

S;‘M('rﬂ) é 1- pVZ(le)

+2p [ [eylry) mrig) mlrdry ar, (67)
and the weaker upper bound
2
MM <1 P
SZ (712) = 1 PV2(1’12) + 1= pV1(2R)
X f/€2(7’34)m(713)m(724)dr3 dr4 , (68)
1

S¥™(ryp, r12) 1,
S¥M(ryy, 713) 21 = pV3lryp, 713)

)

2
S¥M(r1p, 713) S1 = pV3lryy, 713) + '2‘11‘ fgvv(hs) m (v, 7oy, 73 m S (715, 745, 735)drg drs
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where it is to be recalled that in the impenetrable-
sphere case

0, 744<2R
ey(ry) = ’
(1, 734>2R

since particles labeled 3, 4, ... are solvent particles.
In a similar manner we may obtain a lower bound on
S¥™ by substituting Eq. (64) into Eq. (60).

A rigorous bound on the solute-solvent g‘,,zv’ may be

obtained from the inequality of Eq. (37) by allowing the
particle labeled 1 to be a point particle. We find

1 1
g8 (r1y) S Teqlryy) = —eylry,) -
54 ¢

Inserting the right-hand side of Eq. (69) into Eq. (62)
yields the lower bound

(69)

SPB(ryp) 2 ¢[1 - % ez(Tzs)M("'is)drs] ) (70)

where here e¢,(7) is a solute—solvent quantity

§0 , Y<R

eZ(T):il r>R

for both penetrable and impenetrable sphere~-solvent
particles. Since e, =1 -m we also have

S¥(rp) 2 ¢{1 - %[VI(R) - V'z(”tz;R)]} ) (11)

where

Vi(R) = %ER“ ,

Vi(r1; R) =fm(1’13) m(rys)dry

317_3[ 3 v 1_(1)3]
:S3R1‘4R+1GR » T2<2R

?0 , 7> 2R

N

Here Vi{r; R) is the intersection volume of two spheres
of radius R whose centers are separated by distance 7.
This lower bound on S,(r) goes to Sy = ¢ for small » just
as the exact S, does.

Setting 7 =3 in the inequalities of Eqs. (38) and (42)
gives, in the MM and KS representations, respectively,
for impenetrable spheres,

(72)
(73)

(74)

2
S5™M(ryy, ri3) =1 = pVslryy, 713) + g']‘ffgﬁ (r45) m' P (ryy, 734, 730) M (745, 735, 735)dr dr;

3
P (3) (3) 3) [&))

- 3T v (745, Tag) M2 (114, 724, 730 m P (w5, 725, 735) m ™ (746, 726, 736)dT dT5 AT
31!

(75)
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and

S5 (ry9, 713) SSy(7ag) (76)
S3° (713, 713} =S(r23) = ‘bzpfg(l?l)lv(r%a ry) mlryddry.  (77)

The m‘™ are the generalized indicator functions defined
in Ref. 3. Again we note that the K8 inequality of Eq.
(76) is a better upper bound on S; than the corresponding
MM inequality of Eq. (72). In fact, because of the sym-
metry among 1, 2, and 3 we can write

S3(71g, 713) S min(Sy(715), S3(713), Salras)] (78)
and more generally

S, Smin(S,.,] (under all permutations of its arguments),
(79)

where min denotes the minimum value of a quantity. In
addition, Eqs. (75) and (77) are seen to be exact equa-
tions for S;, the latter possessing the simpler functional
form of the two. The solute~solute—solvent gg"’,v ap-
pearing in Eq. (77) may be bounded using the MM in-
equality of Eq. (36) and the KS inequality Eq. (37) and
taking particles 1 and 2 to be point particles; we have,
respectively,

gt (r1a, 713) S %¢'z ex(713) ex(ry3) (80)

and
250w (ria, 715) S 07 ey(r1s) g1 (rs) (81)
But from Eq. (69) for the “solute-solvent” g% we have
o™ g (ray) ea(r15) S 072 en(ry) 3(723) (82)

which from Eq. (81) gives

gty (112, 713) S 977 ea(r13) ey(r9y) . (83)

We now make the observation that Eq. (80), the MM
bound, is weaker than the KS bound given by Eq. (83)
by a factor of z/p (which is in general 21 and for large
p is very large). Upon substitution of Eq. (83) into Eq.
(77) one has

S3>(r13, 713) 28,(ry3) - Pfez("’u) ey(7r3y) m(ry)dry

zsz(m)-d--" é\'b , (84)
1 2 3

where - - - -+ here represents m, and -. -« -- - represents
e;. This lower bound for S;, for small arguments, goes
to ¢ just as the exact S; does. We can symmetrize Eq.
(84) by writing

-
S
53(”12;”13);max 52(7’41)‘0:" (:) \'b )
i 7k

(under all permutations of i, j, k) (85)
where max denotes the maximum value of a quantity.

It is seen that the nature of the S, series allows us to
rigorously bound them whether they are written in the
language of MM or KS. However, the KS representation
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is seen to represent a means of approximating and
bounding S, that is more powerful than that provided by
the MM representation. It must be noted however that
even the KS bounds given here are sharp only for small
arguments of the S, and S;. For r,;,~ > the bounds do
not approach the exact large r,; values of the S, and S;
except in the low sphere-density limit, ¢~ 1. In the
evaluation of transport coefficients of two-phase media
one typically!? integrates integrands involving S, and
multipolar terms over all values of the r;, and it is not
clear that the KS bounds given here will be of any use in
this connection.

Equation (60) is already known,!? Equations (62) and
(77) are new. The first two terms of the right-hand
side of Eq. (75) have been used'? to evaluate S; through
O(p), but we have not encountered the full expression in
the literature. In contrast to our bounds, Eqs. (60),
(62), (75), and (77) will be of much use in general (and
in particular for computing transport coefficients) since
a variety of computer-simulation estimates and approxi-
mations for spheres in thermal equilibrium are now
available for the g% and g3, appearing in Eqs. (60) and
(75). The g8y of Eq. (77) has not been exhaustively
studied, but its evaluation can be accomplished through

the same techniques used successfully for g{f’v’v.

IX. DISCUSSION

Some physical insight into the nature of our results
can be had by following an analysis first developed by
one of us (G.S.)" using the language of Boltzmann!! to
describe the KS hierarchy. We first consider the case
where all particles concerned are impenetrable spheres
of radius R and then extend the argument to the case
when some of the particles are point particles.

Consider a pure system of N hard spheres of radius
R. Boltzmann begins by considering the “space avail-
able for the center of a specified molecule.” Let us call
this space A and suppose that the specified molecule is
the (N +1)st molecule that we contemplate putting into
a vessel in which N molecules are already present. Let
m be the step function

1 for r<2R
mr)= (88)

0 for r>2R

The volume of the interaction sphere (or covering
sphere) that is unavailable to the center of a specified
particle because of the impenetrability of any other par-
ticle is

4
[mar=8- &, @817)
which is eight times the volume of a sphere. Neglecting
wall effects, A will be V minus at most the volume taken
up by the covering spheres of the other N molecules,
which is

me(r)dr=8 *N- %R3 ; (88)

However, there is expected overlapping of the covering
spheres that must be considered. That is, we must sub-
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tract the expected overlap volume between all indistin-
guishable pairs of covering spheres:

NN -1
_(—2““')“/'"(7’12)7"(7’13)131(\12)(1'2: r3)dry dry ,

(89)
where PP (r,, r;) is the probability of finding particle 2
in volume dr; about r, and particle 3 in volume dr,

about ry;. But now we have overestimated this overlap-
ping since we have overcounted the overlap whenever
three or more covering spheres happen to simultaneously
overlap. This line of reasoning can be continued until
we obtain an expression for A/V, denoted by W:

W=1-w+w® _w® ... (90)

where

” n
W(")'—'%f{gdr‘m(ru)}gg‘)(rz, N A (91)

WOE]‘ ’

and where we have taken the thermodynamic limit.
Equation (90) is precisely the MM or KS equation when
n=1. That is, A/V is equal to p/z. It should be geo-
metrically clear from the way in which the series for W
is built up that in the limit as V-, W=1 is an upper
bound to W and that W =1 - W*? is a lower bound.
Moreover, when we add W, we are clearly adding on too
much, so that 1 -W® + w® ig again an upper bound.
To summarize, we can say that the remainder

1
W - [Z (-1)! w}
$>0
alternates in sign, and thus we have a succession of
upper and lower bounds. From these arguments, how-
ever, it is not immediately clear that W, uniformly de~
creases in absolute value as ! increases, i.e., that the
bounds are successively better and better, although, as
we have seen, there are instances in which the series
will be truncated [i.e., for certain interparticle poten-
tials there exists some [>k >0 such that W'’ =0 for all
I>k]. Using the same reasoning, we may use similar
geometrical arguments to show that the higher order
MM and KS equations (i.e., »n>1) are alternating series
that satisfy the conditions of Eqs. (36) and (37) and thus
may be expressed as successive lower and upper bounds.
The arguments given here for the pure-system case may
be easily extended to the multicomponent case.

We may apply the above geometrical arguments to the
case where some of the particles are infinitesimally

small, We may regard the 1-point function,
Sy = lim [Rﬂ]
pU-O 2y
Ry~

as the space available for a point in a system of spheres
of radius R divided by the total volume of the system V.
It is clear that this is simply the matrix volume fraction.
The space available, again denoted by A, will be V
minus at most the volume taken up by the interaction
spheres of the N molecules, which in this case is

me(r)drzzve %ER?' , (92)

where m equals 1 for <R and equals zero otherwise.
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However, there is expected overlapping of the covering
spheres that must be considered when the spheres are
not totally impenetrable. We must subtract the expected
overlap volume between all indistinguishable pairs of
covering spheres:

N

—Ll\lz——U/]m(r12)m(T13)P§2)(rz, ry)dr, dr; . (93)

But, as before, we have overestimated this overlapping
since we have overcounted the overlap whenever three
or more covering spheres happen to simultaneously
overlap. This line of reasoning can be continued until
we obtain an expression for A/V =S§;:

Sy=1-51 +8& g +... | (94)

where

S = %.f ’°fg(")(!'2’ e, rn+1){gdr1m(r“)} . {95)

It is again geometrically clear that we have a succession
of upper and lower bounds on S;. We may apply similar
reasoning to higher order »n-point matrix functions to
give similar physical insight to the bounds given by Eqgs.
(36) and (37).
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