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Disordered jammed packings under confinement have received considerably less attention than their bulk
counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings
that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear
programming algorithm [Phys. Rev. E 82, 061302 (2010)] to obtain putative maximally random jammed (MRJ)
packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to
large sphere radius ratio α, and small sphere relative concentration x. We find that packing characteristics can be
substantially different from their bulk analogs, which is due to what we term “confinement frustration.” Rattlers
in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing
fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions
exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due
to associated discontinuous transitions between different jammed states. When the plane separation distance is
on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when
the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional
bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due
to what we call “size-disparity” frustration. We find that at intermediate α and when x is about 0.5 (50-50
mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number
density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction
variance σ 2

τ (R) to characterize confined packings and find that these packings possess essentially the same level
of hyperuniformity as their bulk counterparts. Our findings are generally relevant to confined packings that arise
in biology (e.g., structural color in birds and insects) and may have implications for the creation of high-density
powders and improved battery designs.
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I. INTRODUCTION

Frictionless hard-sphere packings in three-dimensional Eu-
clidean spaceR3 has a venerable history because this idealized
model captures the salient structural features of many complex
systems such as liquids [1–3], crystals [4], glasses [2–5],
colloids [6], granular media [6,7], heterogeneous materials
[6,8–10], and powders [11–13]. A packing in d-dimensional
Euclidean space Rd is defined as a large collection of
nonoverlapping solid objects (particles). The packing fraction
φ is the fraction of space Rd covered by the particles.
During the last decade, the well-known Kepler conjecture
that the densest way to pack equal-sized spheres in R3 is
the face-centered-cubic (fcc) lattice (or its stacking variants)
was finally proven [14]. Equal-sized hard-sphere systems in
thermodynamic equilibrium exhibit a first-order liquid-solid
phase transition [1,15] at the freezing point. Upon a very rapid
compression of a hard-sphere liquid beyond the freezing point,
the system falls out of equilibrium and follows a metastable
branch, whose end state is presumably the maximally random
jammed (MRJ) state in the infinite-volume limit [2,3,16–20].

Roughly speaking, MRJ packings [16,17] are mechanically
stable packings with maximal disorder. Specifically, they
contain a subset of strictly jammed (i.e., mechanically stable)
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particles (backbone) that allow no simultaneous collective
motion of the particles and nonvolume-increasing strains of
the system boundary, with the unjammed remainder (rattlers)
imprisoned by the backbone and possess minimal order,
as measured by a variety of order metrics [16,17,20–23].
MRJ packings can be considered to be prototypical glasses
[17,24,25] because they are maximally disordered nonequi-
librium structures and perfectly rigid with unbounded elastic
moduli [26]. Three-dimensional MRJ packings of equal-sized
spheres have a packing fraction φMRJ ≈ 0.639 [16,19,20,27]
and an isostatic backbone [20,23], implying that the backbone
possesses the minimum number of particle contacts required
for strict jamming. It is important to note that the MRJ state
is a mathematically well-defined state that is distinguishable
from the more ambiguous random close packing state [17,20],
especially in two dimensions [28].

Sphere packings with a polydispersity in size have a richer
phase diagram than their monodisperse counterparts and en-
able a greater control of their structural characteristics, such as
density and degree of order. Polydisperse sphere packings have
served as structural models for a variety of solid states matter
including high temperature and pressure phases of various
binary intermetallic and rare-gas compounds [29,30], alloys
[31], solid propellants [32], concrete [33], and ceramics [34]. It
has been recently suggested that the packing fraction at which
the viscosity of hard-sphere suspensions diverges is closely
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related to the MRJ density [35]. Also, confined MRJ binary
packings are relevant in the evolution of particle segregation
in dense granular flow [36]. Using the Torquato-Jiao (TJ)
packing algorithm [19], Hopkins et al. [23] have shown that
MRJ packings of binary spheres can achieve anomalously large
packing fractions with a range of rattler concentrations. This
structural tunability capability has implications for the design
of novel granular low-porosity powders [32–34].

Finite disordered jammed packings have received consid-
erably less attention than their bulk counterparts, whether
confined or not. Recent studies have investigated finite
densest local sphere packings without boundaries in both two
and three dimensions [37,38]. Moreover, other studies have
shown that boundaries modify local and large-scale packing
arrangements, affecting the associated macroscopic properties
of the materials as well [39–43]. Our focus in this work is
confined disordered packings since they provide many open
fundamental questions (as detailed subsequently below) and
arise in practice. In planar fuel cell electrode materials, the
particle packings are confined in one direction and in the
vicinity of MRJ states [44]. Spatial constraints also arise
in many packing problems in biology, including packings
of organelles within cells [45,46], packings of living cells
that comprise a variety of tissues [6,47–49], natural photonic
structures consisting of dense disordered arrangements of
chitin nanoparticles [50], and the spatial distribution of cancer
cells among healthy cells [51–54].

Quasi-two-dimensional hard-sphere packings [55] are
packings that are confined in one direction with a length
scale on the order of a few to tens of particle sizes. Much
of the previous work on confinement focused on the study of
equal-sized hard spheres in equilibrium trapped between two
parallel hard planes with plane separation distances up to five
sphere diameters [40–42]. These equilibrium studies have shed
light on many fundamental questions such as freezing, glass
formation, and the transition of systems between two and three
dimensions [39–42]. Various exotic phases not observed in
their bulk counterparts were shown to arise, including buckled
monolayer, rhombic bilayer, adaptive prism phases, etc.

Desmond and Weeks [56] have investigated confined
“random close” packings of a 50-50 binary mixture of spheres
with a small to large sphere radius ratio of 5/7 in both two
and three dimensions. Their findings qualitatively demonstrate
that the presence of confining walls significantly alters packing
characteristics, including substantially lowering packing frac-
tions and inducing layered structures in the vicinity of the hard
walls. However, as the authors pointed out themselves, it is not
clear if their algorithm produced mathematically well-defined
MRJ states that are mechanically stable; more specifically,
the packings generated by their algorithm could be at most
collectively jammed, i.e., no collective motion of any subset
of particles exists that can lead to unjamming of the packing
in a non-deforming container [26,57].

In this work, we focus on the generation and analysis of
high-fidelity isostatic MRJ binary hard-sphere packings that
are confined between two parallel hard planes separated by a
distance H [58]. We consider binary packings since almost all
real systems possess some degree of particle size disparity.
The packing characteristics depend on H , small to large
sphere radius ratio α, and small sphere relative concentration x

[23,59]. In the bulk case, the TJ sequential linear programming
algorithm [19] has been shown to produce high-fidelity MRJ
packings that are strictly jammed and isostatic [19,20]. Here
we generalize the TJ algorithm [19] to obtain for the first time
putative MRJ packings that are exactly isostatic over a large
range of plane separation distances H , sphere size ratios, and
compositions. Note that isostatic packings confined between
two parallel hard planes possess 3NB + 1 particle-particle and
particle-plane contact pairs, which we will discuss in more
detail in Sec. II. Some open fundamental questions that we
wish to address in the present study are the following:

(1) How do confined MRJ binary sphere packings differ
structurally from their bulk counterparts? For example, are
they isostatic as in the bulk case [23], or are they hyperstatic?
Are rattlers more prevalent when MRJ packings are confined
relative to their bulk counterparts?

(2) What are good order metrics and structural descriptors
to identify and characterize true MRJ states for confined binary
sphere packings?

(3) How do packing fractions, rattler fractions and order
metrics vary as functions of H for binary sphere packings at
different α and x?

(4) How do confined MRJ packings transition between two
and three dimensions?

Our findings shed light on aspects of these open questions.
Specifically we find that the rattler fractions of confined
packings are generally higher than those of their bulk
counterparts. We introduce an order metric ψ (defined in
Sec. III), which is based on the number of density fluctuations
in the direction perpendicular to the hard walls, to quantify the
order of packings. We observe that packing fraction, rattler
fraction, and disorder of MRJ packings generally increase
with H , though exceptions exist. We also observe that when
H is on the order of two large-sphere diameters or less, the
packings exhibit salient two-dimensional (2D) features; when
H exceeds about 30 large-sphere diameters, the packings
approach three-dimensional (3D) bulk packings. We find
that at intermediate α and x, the disorder of packings is
maximized for a given H , as measured by the aforementioned
order metric ψ . In addition, the confined systems tend to have
more backbone spheres with fewer contacts relative to their
bulk counterparts, which decrease with H and exhibit smaller
density fluctuations compared to corresponding Poisson point
processes. We also determine to what extent the confined
packings retain the large-scale hyperuniformity property
of their bulk counterparts. A hyperuniform many-particle
system is one that is characterized by an anomalously large
suppression of long-wavelength density fluctuations [60]. Our
findings in general are relevant to confined packings that arise
in biology (e.g., structural color in birds [61] and insects [50])
and may have implications for the creation of high-density
powders [32–34] and improved battery designs [44].

The rest of the paper is organized as follows: In Sec. II we
discuss the generalized TJ algorithm employed to generate
confined packings and the relation to determine isostaticity
for these packings. In Sec. III we employ various statistics and
structural descriptors to characterize confined MRJ binary
hard-sphere packings. In Sec. IV we offer concluding remarks
and propose directions in which our work might be related
and extended.
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II. SIMULATION PROCEDURE

In this section we first discuss the generalized TJ se-
quential linear programming algorithm [19] that we will
employ to generate confined packings. In our previous work
[19,20,23,62,63], the task of generating dense packings of
hard particles was formulated as an optimization problem
called the adaptive shrinking cell (ASC) scheme. The objective
function is taken to be the negative of the packing fraction
φ. The positions and orientations of the particles of fixed
sizes as well as the deformation and compression/expansion
of the periodic simulation box are the optimization design
variables. The ASC optimization problem can be solved
using various techniques, depending on the shapes of the
particles [19,20,62,63]. In the case of sphere packings in
the vicinity of a jamming basin [27], the objective function
and impenetrability constraints can be exactly linearized.
This enables one to exploit the efficient TJ sequential linear
programming algorithm that enables one, in principle, to
generate strictly jammed bulk sphere packings that are ordered
as well as disordered, including such isostatic MRJ packings
[19,20,23,64]. Here we generalize the TJ algorithm to take into
account confinement and apply to produce MRJ packings of
binary spheres at different H , α, and x. It is noteworthy that
although in this work the generalized TJ algorithm is employed
to generate disordered jammed packings, it can be readily
applied to produce confined hyperstatic ordered packings by
tuning key parameters, such as the use of small number of
particles and increasing the influence sphere radius [19,59].
Periodic boundary conditions are applied to a fundamental cell
containing N spheres in directions parallel to the fixed hard
walls, allowing the simulation box to deform and shrink on
average in these directions, as shown schematically in Fig. 1.

The number of independent components for the strain
tensor ε applied to the fundamental cell is reduced due to
the confinement and ε possesses the following form:

ε =
⎡
⎣ε11 ε12 0

ε12 ε22 0
0 0 0

⎤
⎦. (1)

Also, in the direction perpendicular to the planes, additional
constraints are applied such that the spheres do not move
beyond the impenetrable planes. Specifically, the following

FIG. 1. (Color online) Schematic illustration of the generalized
TJ algorithm to generate confined MRJ binary hard-sphere packings.
Periodic boundary conditions are applied to a fundamental cell in
directions parallel to the fixed hard walls separated by H , allowing
simulation box to deform and shrink on average in these directions.

objective function is employed for the linear program:

min Tr(ε) = ε11 + ε22, (2)

where ε is a strain tensor that deforms and shrinks on average
the fundamental cell in directions parallel to the confining
planes. The adaptive fundamental cell is described by a
generating matrix �:

� =
⎡
⎣λ11 λ21 0

λ12 λ22 0
0 0 λ33

⎤
⎦. (3)

The quadratic nonoverlap constraints between spheres are
linearized locally to give

� · rλ
j i · ε · � · rλ

j i + 	xλ
i · G · rλ

j i + 	xλ
j · G · rλ

i j

� 1
2 [(σi + σj )/2 − rλ

j i · G · rλ
j i ], (4)

where σi , xλ
i , and 	xλ

i are the diameter, local coordinate (in
the lattice coordinate system) and local displacement of sphere
i, rλ

i j = (xλ
j +	xλ

j ) − (xλ
i +	xλ

i ) is the relative displacement
from sphere i to sphere j , and G = �T · � is the Gram matrix
of the lattice �. The constraints that spheres cannot move
beyond the fixed hard walls can be expressed as

σi

2λ33
�

(
xλ

i

)
3 + (

	xλ
i

)
3 � 1.0 − σi

2λ33
. (5)

A. Isostatic conditions for confinement

We establish the relation to determine isostaticity for
packing of hard spheres confined between two parallel hard
planes separated by a distance H . For confined packings
of frictionless spheres in R3, there are 3(NB − 1) + 1 =
3NB − 2 degrees of freedom associated with translating the
spheres (up to uniform translations of the whole packing
under periodic boundary conditions in parallel directions),
where NB is the number of (jammed) backbone spheres. The
simulation box is allowed to deform for strict jamming in
parallel directions, and thus there are three additional degrees
of freedom associated with straining the fundamental cell,
totaling Fs = 3NB − 2 + 3 = 3NB + 1 degrees of freedom
that must be constrained. Since the nonoverlap constraints are
inequality constraints, Fs + 1 of them are required to satisfy
isostaticity. Since the system volume cannot increase, the
first constraint is Tr(ε) � 0. Therefore, the number of other
constraints provided by particle-particle and particle-plane
contact pairs should be equal to the number of degrees of
freedom; i.e., the number of particle-particle and particle-plane
contact pairs M should be

M = 3NB + 1. (6)

Note that this number is different from the bulk case, where
isostatic strictly jammed sphere packings should possess
3NB + 3 particle-particle contact pairs [20].

III. RESULTS

We first provide some general remarks about jammed
particle states in the confined space between two parallel
planes separated by H . Not surprisingly, confined jammed
packings are generally structurally distinctly different from
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FIG. 2. (Color online) Schematic illustration of the structural
changes of the jammed states in the confined space between two
parallel hard planes separated by H as H varies. For certain
ranges of H , jammed packings remain jammed through small local
rearrangements of the particles as H varies, as shown in the upper
panel. However, in the vicinity of certain values of H , a jammed
packing can undergo a discontinuous transition to reach a dramatically
different jammed state upon small changes in H , as shown in the lower
panel.

their bulk counterparts, especially when H is not much larger
than the characteristic particle size σ , which is defined as the
average sphere diameter. This is because certain local particle
configurations found in bulk packings are inconsistent with
local configurations near hard walls due to the impenetrability
conditions imposed by walls. We will henceforth refer to this
phenomenon as “confinement frustration.”

Moreover, confined packings present additional subtleties
because the nature of the jammed states depend on H in a
nontrivial way. For example, a jammed state for a fixed value of
H does not necessarily remain jammed upon an infinitesimal
change in H via infinitesimal local particle rearrangements;
the packing can undergo discontinuous transitions between
jammed states as H varies across these critical values of H ,
which involve dramatic, finite global rearrangements of the
particles, as schematically shown in Fig. 2. These transitions
lead to discontinuities in packing characteristics of the jammed
states, as we will see later.

For each combination of H , α, and x, at least 10 MRJ
binary sphere packings are obtained from random sequential
addition (RSA) initial conditions [6] at low initial packing
fractions 0.1 � φinit � 0.3. The number of spheres N in the
fundamental cell is chosen such that the length scale of the
generated MRJ packing in directions parallel with the hard
walls is at least of the order of 10 large sphere diameters.
This criterion is used to suppress finite-size effects in the
directions where periodic boundary conditions are applied
[56]. Specifically, at small H , N is chosen to be 1000, while
at large H , N is chosen to be 4000. The great majority of
packings that we produce using the generalized TJ algorithm
are exactly isostatic according to formula (6), although a small
percentage at certain values of H , α, and x include one or
two more particle-particle and particle-plane contacts than the
number corresponding to isostaticity, presumably because the
numerical tolerance of the simulations were not sufficient to

FIG. 3. (Color online) Boundaries modify local and large-scale
packing arrangements, for example, inducing layered structures in
their vicinity and leading to packing inefficiency. Here we present
two such examples. (a) Representative MRJ binary packing of 1000
hard spheres at α = 2/3 and x = 0.5 confined between two parallel
hard planes at H/σ = 5.0. (b) Representative MRJ binary packing
of 4000 hard spheres at α = 0.2 and x = 0.97 confined between two
parallel hard planes at H/σ = 20.0.

distinguish between proximity and contact. Figure 3 shows
two representative packings obtained in our simulations: a
1000-sphere packing at H/σ = 5.0, α = 2/3, x = 0.5 close
to the equal-sized sphere case and a 4000-sphere packing at
H/σ = 20.0, α = 0.2, x = 0.97 with a large size contrast.
It can be clearly seen that both configurations are disordered
and densely packed, distinct from those confined crystalline
phases reported previously [40–42]. Moreover, in both cases
the hard walls induce contacting layered structures that locally
pack inefficiently.

For packings at different H , α, and x, we compute their
averaged packing fractions φMRJ(H ; α,x) and rattler fractions
NR/N (H ; α,x), where NR is the number of rattlers in a packing
with N spheres. In Fig. 4 we plot φMRJ and NR/N as functions
of H at (α,x) = (1.0,−),(2/3,0.5),(0.2,0.95),(0.2,0.97), re-
spectively. We find that generally φMRJ increases with H in
terms of the overall trend and approaches the bulk value when
H is of the order of 30 large-sphere diameters as finite-size
and boundary effects become negligible. Note that the bulk
value of φMRJ is 0.639 [19,20] for the monodisperse case and
0.785 [23] for α = 0.2 and x = 0.97. We find that rattlers
in confined packings are generally more prevalent than in
their bulk counterparts [19,20,22,23,65], which is induced
by hard boundaries. As H increases, the rattler fraction
gradually decreases to the bulk value, e.g., roughly 1.5% in
the monodisperse MRJ case [20] and 14.4% in the binary case
of α = 0.97, x = 0.20 [23].
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FIG. 4. (Color online) Plot of the average packing fraction φMRJ
and rattler fraction NR/N as functions of H/σ obtained at various α

and x, where σ is the average sphere diameter. Each data point in the
plot is obtained by averaging over 10 packings (vertical bars represent
one standard deviation). (a) α = 1.0 (equal-sized spheres). (b) α =
2/3, x = 0.5. (c) α = 0.2, x = 0.95. There is a sudden drop of NR/N

at H/σ = 15.0, which is due to a discontinuous transition between
two jammed states upon small changes in H in the vicinity of this
dimensionless height. (d) α = 0.2, x = 0.97. There is a sudden drop
of NR/N at H/σ = 20.0, which is due to a discontinuous transition
between two jammed states upon small changes in H in the vicinity
of this dimensionless height.

It is noteworthy that at certain combinations of α and x

there are local maxima and minima in φMRJ and NR/N as H

varies, for example, the local maxima for φMRJ and minima
for NR/N at H/σ = 15.0,α = 0.95,x = 0.20 and H/σ =
20.0,α = 0.97,x = 0.20. This is due to the aforementioned
discontinuous transitions. Note also that the fluctuations of
φMRJ are less significant at x = 0.97 compared to x = 0.95.
This is because when the size contrast is large, H/σS is much
larger than H/σL (σS and σL are the diameters of the small and
large spheres, respectively), and the hard walls affect the large
spheres substantially more than the small spheres. As a result,
as the number of small spheres increases, i.e., x increases, the
effects of the hard walls on the packing structures become less
significant, and φMRJ depends relatively less sensitively on H .

In addition, as the size contrast increases, the rattler
fraction dramatically increases. This is due to “size-disparity”
frustration; i.e., in this binary system, it is not possible for a
subset of spheres with the same size, surrounded by spheres
with another size, to be arranged into an inherent structure
(mechanically stable configurations at the local maxima in
the density landscape) of the corresponding single-component
system. This size-disparity frustration induces more rattlers
relative to the monodisperse case, e.g., an increase as high as
about 91% in the rattler fraction at H/σ = 15.0,α = 0.2,x =
0.97 compared to the corresponding monodisperse case. To
sum up, one can see that φMRJ and NR depend sensitively on
H , α and x for H comparable to sphere sizes.
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FIG. 5. (Color online) Density profiles of confined equal-sized
hard-sphere packings at various H/σ , where σ is the average sphere
diameter. (a) H/σ = 2.0. (b) H/σ = 4.5. (c) H/σ = 5.0. (d) H/σ =
30.0.

In order to further characterize the packings, we compute
the number density profiles ρ(z) [39,56] as a function of the
height z for different values of H , α, and x. Specifically, we
divide the space available to the sphere centers into Nz vertical
bins (i.e., in the z direction that is perpendicular to the planes)
and count the number of sphere centers that fall into each bin
at different height z, respectively. Here we choose Nz to be 50
such that the results do not vary sensitively upon perturbing the
thickness of the bins and do not lose local information as well.
In Fig. 5 we plot the density profiles ρ(z) of monodisperse (i.e.,
equal-sized) hard-sphere packings at various H as examples.
For all values of H shown in Fig. 5, there are two major
peaks adjacent to the two hard walls corresponding to the two
contacting layers and a few smaller peaks in the interior of the
packings, whose intensities decrease with increasing H . This
indicates increasing disorder as H increases, which is due to
decreasing confinement frustration.

In Fig. 6 we plot the density profiles ρ(z) of binary hard-
sphere packings at α = 2/3 and x = 0.5 for certain values
of H . Similar behaviors could be observed in these binary
systems as in their monodisperse counterparts. Interestingly,
we can observe two split peaks of contacting large and small
spheres adjacent to the hard walls. We note that at the same
H the density profiles of the binary systems appear to be
flatter than those of the monodisperse systems, implying
increasing disorder due to the aforementioned size-disparity
frustration. We will be able to quantify the order of the
system in more details as we introduce an order metric later.
It is noteworthy that from Figs. 5 and 6, we can see that
when the plane separation distance is of the order of two
large-sphere diameters or less, the packings possess layered
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FIG. 6. (Color online) Density profiles of confined binary hard-
sphere packings at various H/σ at α = 2/3 and x = 0.5, where
σ is the average sphere diameter. (a) H/σ = 2.0. (b) H/σ = 5.0.
(c) H/σ = 30.0.

structures, which are salient 2D features; when the plane
separation distance exceeds about 30 large-sphere diameters,
the packings approach 3D bulk packings and exhibit relatively
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FIG. 7. (Color online) Plot of the order metric ψ as a function
of H/σ obtained at various α and x, where σ is the average sphere
diameter. Each data point in the plot is obtained by averaging over 10
packings (vertical bars represent one standard deviation). (a) α = 1.0
(equal-sized spheres). (b) α = 2/3,x = 0.5. (c) α = 0.2,x = 0.95.
(d) α = 0.2,x = 0.97.

flat density profiles, which is due to the decreasing confinement
frustration.

Based on density fluctuations in the direction perpendicular
to the hard walls, we define an order metric ψ to quantify the
order of packings:

ψ = 1

H − σL − 2δ

∫ H−σL/2−δ

σL/2+δ

(ρ(z) − ρ̄)2

ρ̄2
dz, (7)

where σL is the diameter of the large sphere, δ is chosen as a
small quantity (relative to σL) to exclude the layers in contact
with the two hard walls, ρ(z) is the particle density at height
z, and ρ̄ is the particle density averaged over different heights
z excluding the layers in contact with the hard walls. In Fig. 7
we plot the computed ψ as a function of H at different α

and x. As one can see, the packings generally become more
disordered, as H increases due to decreasing confinement
frustration. There are local maxima and minima in ψ as H

varies across certain critical values at certain values of α and
x, which is due to aforementioned discontinuous transitions.

After looking at various statistics as H varies at different
α and x, we investigate the effects of size contrast and
composition on the packings at given H in details. In Fig. 8(a)
we plot φMRJ and rattler fraction NR/N as functions of α

at H/σ = 5.0 and x = 0.5. We find that φMRJ reaches a
maximum at about α = 0.4, which is related to the fact that at
such α, most small spheres participate in the backbone and fill
the interstices between the large spheres, leading to efficient
packings. However, NR/N decreases monotonically with α

as size-disparity frustration decreases. This trends are similar
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FIG. 8. (Color online) (a) Plot of the average packing fraction
φMRJ and rattler fraction NR/N as functions of α obtained at H/σ =
5.0 and x = 0.5, where σ is the average sphere diameter. Each data
point in the plot is obtained by averaging over 10 packings (vertical
bars represent one standard deviation). (b) Plot of the average packing
fraction φMRJ and rattler fraction NR/N as functions of x obtained
at H/σ = 5.0 and α = 2/3, where σ is the average sphere diameter.
Each data point in the plot is obtained by averaging over 10 packings
(vertical bars represent one standard deviation).

to those observed in bulk counterparts [23]. In Fig. 8(b), we
plot φMRJ and NR/N as functions of x at H/σ = 5.0 and
α = 2/3. We find that in the range of x studied, φMRJ increases
monotonically as x increases since more small spheres are
available to fill the small “voids” left by the large spheres, and
NR/N reaches a maximum near x = 0.5 due to maximized
size-disparity frustration, as mentioned earlier. Note that if x

were to increase beyond the range currently investigated, we
would expect φMRJ to eventually reach a maximum, similar
to the behaviors reported in previous studies of other binary
systems [59,66,67], though this remains to be verified by future
simulations.

Furthermore, we compute and plot in Fig. 9(a) the order
metric ψ defined in Eq. (7) as a function of α at H/σ = 5.0
and x = 0.5. We find that in this case the minimum of ψ

occurs at about α = 2/3 as α varies. This is because at small α,
large spheres possess relatively large exclusion volumes empty
of other sphere centers, leading to large fluctuations in ρ(z);

0.2 0.4 0.6 0.8 1
α

0

0.2

0.4

0.6

0.8

1

ψ

0.2 0.4 0.6 0.8
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0.5

ψ

(a)

(b)

FIG. 9. (Color online) (a) Plot of the order metric ψ as a function
of α obtained at H/σ = 5.0 and x = 0.5, where σ is the average
sphere diameter. Each data point in the plot is obtained by averaging
over 10 packings (vertical bars represent one standard deviation).
(b) Plot of the order metric ψ as a function of x obtained at H/σ = 5.0
and α = 2/3, where σ is the average sphere diameter. Each data point
in the plot is obtained by averaging over 10 packings (vertical bars
represent one standard deviation).

while at large α, layered structures are favored, which possess
large density fluctuations in the direction perpendicular to the
planes as well. In Fig. 9(b) we plot ψ as a function of x

at H/σ = 5.0 and α = 2/3. We find that the minimum of
ψ occurs at about x = 0.5 as x varies, implying maximized
disorder due to favorable mixing entropy.

Subsequently, we employ more structural descriptors to
further characterize the packings. In Fig. 10 we plot the
detailed contact distributions of backbone spheres for two
representative cases: H/σ = 5.0, α = 2/3, and x = 0.5, and
H/σ = 20.0, α = 0.2 and x = 0.97. We find that in both cases
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FIG. 10. (Color online) Histograms depicting the average frac-
tions of jammed spheres with specified numbers of contacts for
H/σ = 5.0, α = 2/3, and x = 0.5 [(a) and (c)] and H/σ = 20.0,
α = 0.2, and x = 0.97 [(b) and (d)], where σ is the average sphere
diameter. Plots (a) and (b) each represent the average over 10 packings
of the fractions of jammed small spheres with specified contact
numbers, and plots (c) and (d) each represent average fraction for
the jammed large spheres.

most jammed small spheres have four particle-particle and
particle-plane contacts, similar to the corresponding bulk cases
[23]. However, a small percentage of small spheres possess
more than six contacts, and there are two separate peaks in the
contact distribution of jammed large spheres at H/σ = 20.0,
α = 2/3, and x = 0.5, which are different from the bulk
cases [23]. Also, the percentages of jammed small and large
spheres that possess few contacts in these confined packings
are higher than their bulk counterparts [23], which decrease
with H . These phenomena are caused by the aforementioned
confinement frustration, which modify the local arrangements
near the hard walls.

The local volume-fraction variance σ 2
τ (R) [68,69] in a

spherical observation window has been employed in our
previous work to characterize bulk packings [68–73]. Here we
extend the application of this descriptor to confined packings,
with the constraint that the radius of the window R should not
exceed half of the plane separation distance H , i.e., R � H/2.
The volume-fraction variance is sampled by randomly placing
observation windows in the system under the constraint that
the windows should be entirely within the confining space.
We also compute σ 2

τ (R) for the bulk counterparts of these
confined packings for comparison. Note that if a system
is hyperuniform, its local volume-fraction variance σ 2

τ (R)
should decay faster than R−d (where d is the Euclidean
space dimension); i.e., in three dimensions the scaled local
volume-fraction variance R3σ 2

τ (R) should tend to zero as
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FIG. 11. (Color online) Scaled local volume-fraction variance
103(R3ρ)σ 2

τ (R) as function of the window radius R for confined
hard-sphere packings in (a) monodisperse case and (b) binary case of
α = 2/3, and x = 0.5 at H/σ = 5.0,20.0 and their bulk counterparts.
Note that 103(R3ρ)σ 2

τ (R) tends to zero as R increases without bound,
i.e., σ 2

τ (R) decays faster than R−3, implying hyperuniformity [69–71].
Moreover, these confined packings possess essentially the same local
volume-fraction variance σ 2

τ (R) as their bulk counterparts, which
reflect essentially the same level of hyperuniformity.

R approaches infinity [69–71]. We find that these packings
possess essentially the same local volume-fraction variance
σ 2

τ (R) as a function of R as that of their bulk counterparts,
which reflect effectively the same level of hyperuniformity, as
shown in Fig. 11 [74]. Note that a disordered hyperuniform
system is an exotic amorphous state of matter whose local
volume-fraction fluctuations asymptotically decay faster than
the reciprocal of the volume of the observation window,
which the decay associated with typical disordered systems.
The hyperuniform decay rate implies that the local volume
fraction approaches the global value φMRJ anomalously fast
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[69–73]. Nonetheless, these results for σ 2
τ (R) demonstrate that

hyperuniformity appears to be a signature of MRJ packings,
whether they exist in the bulk or under confinement.

IV. CONCLUSIONS

In this paper, we generalized the TJ sequential linear
algorithm to generate exactly isostatic putative MRJ binary
hard-sphere packings confined between two parallel hard
planes over a large range of plane separation distances H ,
small to large sphere radius ratio α and small sphere relative
concentration x. We observe that these confined packings
generally possess structural characteristics that are distinctly
different from their bulk counterparts, including lower packing
fractions and higher rattler fractions, as well as varying degrees
of disorder and particle contacts. This is due to what we call
confinement frustration. We find that an order metric ψ , which
is based on the number density fluctuations in the direction
perpendicular to the hard walls, is a useful measure of the
degree of order (disorder). By employing the local volume-
fraction variance σ 2

τ (R), we find that these packings possess
essentially the same level of hyperuniformity as their bulk
counterparts. We also observe that the packing characteristics
depend sensitively on H , α, and x for H smaller than 30 large
sphere diameters due to the effects of confinement frustration,
size-disparity frustration, and discontinuous transitions. We
have also observed that the packings gradually transition from
ones with 2D-like layered structures to 3D bulk systems as H

increases from two to 30 large sphere diameters.
The dependence of packing density on the confinement

size has important practical implications in various powder
technologies, where density is crucial to material properties
and fabrication cost [32–34]. By looking at how the packing
fraction changes with plane separation distance H in our
simulation, we acquire knowledge about how the thickness of
depositing layers affect the density and associated mechanical
and transport properties of the resulting structures given
the starting materials in powder technologies. In particular,
we find that small-sized particles are favored to suppress
the packing inefficiency caused by boundary and finite-size

effects and they should be used to guarantee high density and
superior material performances. When producing structures
that have a dimension comparable to particle sizes, extremely
large percentage of small particles should be mixed with
a tiny percentage of large particles to suppress the density
variance of individual samples caused by small errors in the
thickness of depositing layers. Also, our findings could be
potentially useful in battery applications, e.g., solid oxide fuel
cell electrode materials. When the length scale of the shortest
dimension is less than about 30 particle diameters, boundary,
and finite-size effects should be taken into account when
we evaluate and tailor the macroscopic properties and per-
formance of the electrode materials. In future work, we
will investigate the optimal thickness, particle size ratio, and
composition that optimize the electrochemical properties of
electrode materials such as maximizing reaction rate and
ionic and electronic conductivities. In addition, we might
be able to design novel photonic structures and devices
by tailoring the size distribution of nanoparticles in finite
particle packings [50] according to information acquired in our
simulations.

Besides the packings of binary hard spheres confined
between two parallel hard planes we have studied in this
work, there are many other interesting packing problems in
confined space that remain to be investigated [75–77]. For
example, while bulk MRJ packings of nonspherical particles
that span a wide range of shapes, including ellipsoids [78–80],
superballs [81,82], and polyhedra [24,25,72,83] have been
studied in detail, nothing is known about confined MRJ
packings of nonspherical particles. Understanding how con-
fined MRJ packings of nonspherical particles differ from
their bulk counterparts and confined MRJ sphere packings
are outstanding questions. Extensions of this work to DNA
packaging is an interesting avenue for future research [77].
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