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We evaluate the effective diffusion coefficient Deff in random packings of polydisperse hard

spheres with an analytical formula involving the three-point microstructural parameter f2. Bulk

packings with solid volume fraction between /¼ 0.54 and /¼ 0.634 were computer-generated

using experimentally determined particle size distributions characterized by different mean particle

diameter and associated standard deviation. The parameter f2 was calculated from two- and

three-point correlation functions S2 and S3, respectively, via an approach based on sampling

templates. Results of the asymptotic analysis for S2 and S3 compare favorably with theoretical

predictions. Effective diffusivities calculated by the approximate analytical formula are close to

those obtained from simulations using a random-walk particle-tracking technique. The values of

Deff are affected by the packings’ solid volume fraction, the spatial positions of the spheres, and to

a far lesser extent by the particles’ polydispersity. The proposed numerical approach can be applied

to evaluate effective diffusive transport properties of general two-phase materials just from the

geometrical information embodied in / and f2. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4931153]

I. INTRODUCTION

Direct determination of the effective transport properties

of a disordered multiphase medium from its microstructure

is an outstanding scientific problem.1–6 A wide class of natu-

rally occurring and synthetic two-phase media are composed

of discrete particles with different size. Typical examples of

these media include soil, packed columns for catalytic reac-

tions or chromatographic separations, battery electrodes, etc.

In view of the random, complex geometry of real composite

materials, an exact analytical prediction of the effective

properties cannot be made even for the simplest class

of transport processes, such as diffusion or electrical and

thermal conduction, governed by a steady-state diffusion

equation because, in principle, an infinite amount of micro-

structural information in the form of n-point correlation

functions is required.1 A conventional approach to determine

the effective parameters characterizing transport phenomena

in heterogeneous media is numerical solution of the govern-

ing equations with appropriate boundary conditions at the

phase interface. An alternative approach for predicting effec-

tive physical properties of heterogeneous media is based on

statistical continuum theories.7–12 They concern the effective

physical characteristics of heterogeneous media, the local

properties of which can be regarded as random functions of

position. Thus, the key quantities in statistical continuum

theories are probability functions, which correlate the geo-

metrical microstructure of the materials to their effective

physical characteristics.

Brown13 first proposed to use n-point probability func-

tions in order to correlate the geometrical microstructure of a

heterogeneous material to its effective physical characteris-

tics. Because the infinite set of correlation functions that

characterize the microstructure of a heterogeneous me-

dium1,13 is never known exactly, an important approach is to

devise bounds or approximations on the effective property

that utilize lower-order correlation functions to capture

salient features of the microstructure. Hashin and

Shtrikman14 derived the best possible two-point bounds (i.e.,

involving two-point probability functions) on the effective

magnetic permeability for isotropic two-phase materials,

given just volume-fraction information. For reasons of math-

ematical analogy, the same bounds can be applied to electri-

cal or heat conductivity and diffusivity. Later, Beran15

derived bounds for two-phase isotropic composites, which

involve sixfold integrals of certain three-point correlation

functions and improve the Hashin-Shtrikman bounds.

Torquato16 and Milton17 independently simplified the three-

point Beran bounds and showed that they can be expressed

in terms of the volume fractions and the single three-point

microstructural parameter f2, which is a multidimensional

integral involving the three-point probability function. The

same microstructural parameter is involved in expressions

approximating the effective conductivity and diffusion

coefficient.11,18,19 Thovert et al.20 derived analytically
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expressions to compute the three-point microstructural

parameters exactly through the first order in the volume frac-

tion for equilibrium random packings of polydisperse hard

spheres. The authors utilized the expressions to derive rigor-

ous bounds on the effective conductivity and elastic modu-

lus. Recently, Gillman and Matou�s21 and Gillman et al.22

employed the three-point microstructural parameters to

predict the effective thermal conductivity and thermo-

mechanical properties of random packs of spheres, ellipsoids,

and Platonic solids. The authors proposed new adaptive meth-

ods to evaluate accurately the three-point microstructural

parameters using a Monte Carlo-based statistical sampling

algorithm.21,22

In a previous paper23 we analyzed the impact of pack-

ing microstructure on the effective diffusivity in random

packings of monosized hard spheres. The effective diffu-

sion coefficient Deff was evaluated by the approximate ana-

lytical formula developed by Torquato,18,19 involving the

three-point microstructural parameter f2. In general, the cal-

culation of f2 requires knowledge of the three-point correla-

tion function S3, which determines the probability of

finding three points that define the vertices of a triangle in

the interstitial void space of a packing for all side lengths of

the triangle. The determination of S3 in random heterogene-

ous media is a nontrivial computational task, and in that

study we used a numerical approach developed by Miller

and Torquato24 to sample f2 without need to directly point-

wise evaluate the three-point probability function. Here, we

utilize an alternative approach to compute f2. It comprises

the adaptation of a Monte Carlo statistical sampling algo-

rithm of Smith and Torquato25,26 for the numerical determi-

nation of the two- and three-point correlation functions S2

and S3. We apply this approach to evaluate the effective dif-

fusion coefficient in random packings of polydisperse

spherical particles, which more realistically model suspen-

sions and granular media that arise in industrial and natural

situations.

In this work, we generated random bulk packings of pol-

ydisperse spheres with solid volume fraction / from 0.54 up

to 0.634 based on experimentally measured particle size dis-

tributions (PSDs) of microparticles used for the preparation

of chromatographic columns. The two before-mentioned val-

ues of / reflect the density of, respectively, random loose

and maximally random jammed packings of monosized

spheres. Our knowledge about the latter value for packings

of polydisperse particles is still limited.1,27,28 It was demon-

strated that disordered strictly jammed binary sphere pack-

ings can be produced with solid volume fraction well above

0.634.29 However, the determination of the maximally ran-

dom jammed state for polydisperse hard-sphere systems is

an unresolved problem. Generally, the highest achievable

packing density depends on the PSD and packing preparation

protocol (algorithmic or experimental). The range of solid

volume fractions analyzed in this study (0.54�/� 0.634)

reflects the experimental one observed for the bulk bed

region in chromatographic columns slurry-packed with

microparticles having the same PSDs that we employed here

for the computer-generated packings. The three-point param-

eter f2 was determined for each generated packing, following

numerical evaluation of the two-point and three-point proba-

bility functions. Calculated values of f2 were used to

estimate effective diffusion coefficients via Torquato’s ap-

proximate formula.18,19 The Deff-values were then compared

with those obtained from the simulation of diffusion in the

packings using a random-walk particle-tracking (RWPT)

technique. In Sec. II, we provide the details of the numerical

approaches used for the generation of the random packings

of polydisperse hard spheres, the simulation of diffusion

with the RWPT approach, and the calculation of the three-

point microstructural parameter f2. Results are presented and

discussed in Sec. III.

II. NUMERICAL METHODS

A. Generation of random polydisperse sphere
packings

The investigated polydisperse sphere packings are

unconfined, bulk packings that mimic infinitely wide pack-

ings without walls. The size distributions of the spheres in

the generated narrow-PSD and wide-PSD packings were

modeled after the experimentally determined PSDs of

sub-3 lm core-shell and sub-2 lm fully porous particles,

respectively, which by their mean size and size distribution

represent modern adsorbents used as packing materials in

liquid chromatography. All packings were generated over a

range of solid volume fractions between /¼ 0.54 and

/¼ 0.634 to cover the same range as in our previous work

with monodisperse packings.23 A fixed packing protocol was

followed with all packing types (monodisperse, narrow-PSD,

and wide-PSD packings). This approach eliminates the

influence of the experimental packing process in chromato-

graphic practice as well as of all particle properties other

than the size distribution and enables the comparison of the

monodisperse, narrow-PSD, and wide-PSD packings at equal

solid volume fraction.

Bulk, isotropic, random packings of hard, impermeable

spheres were generated based on the PSDs of sub-3 lm

Kinetex particles (Phenomenex, Torrance, CA) and sub-

2 lm Acquity particles (Waters, Milford, MA) as determined

by scanning electron microscopy.30 A JSM-7500F scanning

electron microscope (JEOL, Eching, Germany) was used to

acquire 44 and 93 images of sets of individual particles,

from which 976 and 2608 diameters, respectively, of

Kinetex and Acquity particles were manually measured.

Afterwards, the experimental data (histograms) were con-

verted into continuous probability density functions (PDFs)

using the kernel density estimation method with Gaussian

kernel and restriction to positive values.31 The experimental

histograms for the PSDs and the resulting PDFs are shown in

Fig. 1. These two types of particles are characterized by

different values of their number-mean diameter dp¼ 2.60

and 1.64 lm and standard deviation r¼ 0.088 and 0.415 lm

for Kinetex and Acquity particles, respectively. Hereinafter,

the PSDs corresponding to Kinetex and Acquity particles are

referred to as narrow and wide PSD, respectively. The statis-

tical properties of the experimentally determined PSDs and

the corresponding PDFs are summarized in Table I.

124901-2 Hlushkou et al. J. Appl. Phys. 118, 124901 (2015)
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Next, arrays of random numbers to represent sphere

diameters with the narrow and wide PSDs were generated

from the PDFs with a Monte Carlo acceptance-rejection

method.32 Based on the experimental PSDs, two sets of

packings at six solid volume fractions (/¼ 0.54, 0.56, 0.58,

0.60, 0.634) were generated with periodic boundary condi-

tions in all directions by a Jodrey–Tory (JT) algorithm33

adopted to the simulation of polydisperse sphere pack-

ings.34,35 Briefly, the modified JT-packing algorithm starts

from the generation of a population of spheres with diame-

ters governed by a given PSD. Then, the n centers of the

spheres from that population are randomly distributed in a

simulation container with volume V, where sphere overlap is

typical in the initial configuration. In our case, the container

was a rectangular box with dimensions of 10dp� 10dp

� 70dp. These packing dimensions were chosen originally

for the analysis of hydrodynamic dispersion, where long

packings (�70dp) are required to observe asymptotic behav-

ior of the longitudinal dispersion coefficient in fluid flow

through a packing at P�eclet numbers up to �500.30,36

Although shorter packings would suffice to observe asymp-

totic diffusion behavior (without flow), we used the long

packings to extend the sample size, i.e., the long packings

count as several realizations of shorter packings. The value

of n is defined from the targeted (final) solid volume fraction

/, the container volume V, and the individual sphere diame-

ters di according to

/ ¼ p
6V

Xn

i¼1

d3
i (1)

and varied from 5872 up to 8459, which is sufficiently large

to minimize finite-size effects.36 Then, the iterative packing

procedure starts. Each iteration consists of two sequential

steps: (i) the search of two sphere centers Ci and Cj with min-

imum relative pairwise distance dij,min

dij;min ¼
di;min þ dj;minð Þ2

2 di þ djð Þ
; (2)

FIG. 1. (a) Wide and narrow particle

size distributions (PSDs) as experi-

mentally determined by scanning elec-

tron microscopy. Histograms were

converted into probability density

functions for the computer-generation

of polydisperse random hard-sphere

packings. (b) Front and side views on a

computer-generated wide-PSD packing

(left) and narrow-PSD packing (right)

at a solid volume fraction /¼ 0.634.

TABLE I. Statistical properties of the experimentally determined particle size distributions (PSDs) and the corresponding probability density functions

(PDFs).

Narrow PSD (Kinetex) Wide PSD (Acquity)

Experimental data PDF Experimental data PDF

Number of measured particle diameters 976 – 2608 –

Number-mean diameter (dp), lm 2.60 2.60 1.64 1.64

Standard deviation (r), lm 0.088 0.088 0.415 0.425

Min. diameter, lm 2.27 2.24 0.30 0.27

Max. diameter, lm 2.90 2.93 2.79 3.01

124901-3 Hlushkou et al. J. Appl. Phys. 118, 124901 (2015)
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where di,min and dj,min correspond to the largest sphere diam-

eters at which no overlap occurs between ith and jth spheres;

and (ii) asymmetrical spreading apart of these two sphere-

center positions along a line CiCj up to a new distance

(dij,max) according to the equation

dij;max ¼ dij;min þ Di;max þ Dj;max; (3)

where Di,max and Dj,max are determined with Eqs. (4) and (5),

respectively,

Di;max ¼ dij;minX log10

di

2di;min

; (4)

Dj;max ¼ dij;minX log10

dj

2dj;min

: (5)

The relative spreading of the two sphere centers Di,max/Dj,max

is proportional to the ratio of their final diameters di/dj. As

di,min and dj,min asymptotically approach di and dj, the current

solid volume fraction approaches /. The scaling factor X
defines the magnitude of the sphere-center displacements in

Eqs. (4) and (5). It also determines the number of iterations

required to achieve a targeted solid volume fraction. Though

a larger value of X increases the convergence rate of the

packing algorithm at low targeted solid volume fractions, it

can slow down the algorithm at higher values of /. We used

X¼ 10�3 to generate all packings analyzed in this study.

The periodic boundary conditions employed for the

packing generation allow to approximate infinite systems.

Realization of periodic boundaries assumes that the sphere

position on one side of a packing (within the rectangular

box) influences the position of spheres at the opposite side.

As a result, the space is filled regularly while reproducing

the representative domain (the rectangular box), but random-

ness prevails locally within this domain.

B. Simulation of diffusion

Similar to our previous paper,23 diffusion in the gener-

ated packings was simulated using a RWPT technique,37

where a large number N¼ 5� 106 of point-like tracers was

distributed randomly and uniformly throughout the packing

void space. Then, each tracer was iteratively displaced due

to random (Brownian) motion calculated from a Gaussian

distribution with a mean of zero and a standard deviation of

(2Dmdt)1/2 around each spatial coordinate (Dm¼ 1.0� 10�9

m2 s�1). The value of the time step dt was defined such that

the maximum tracer displacement at each iteration did not

exceed a distance of dp/60. A multiple-rejection boundary

condition was realized at the spheres surface.38 The position

of all tracers was monitored at each time step dt. Diffusion

coefficients D(t) in a given direction were calculated from

the tracer displacements39 as

Dx tð Þ ¼ 1

2N

d

dt

XN

i¼1

Drxi � hDrxið Þ2; (6)

where Drxi and hDrxi denote the corresponding Cartesian

components of the displacement of the ith tracer and the

average displacement of the tracer ensemble after time t,
respectively, in x-direction. The effective diffusion coeffi-

cients Deff were determined from the asymptotes of the D(t)-
curves.23 Isotropic diffusion behavior was observed for all

sphere packings. The above modeling approach was previ-

ously validated23 by a comparison of the Deff-values simu-

lated in simple cubic and face-centered cubic sphere

packings with those determined from the analytical approach

after Blees and Leyte.40 The program realization of the

RWPT-algorithm was implemented as parallel code in C lan-

guage using the Message Passing Interface (MPI) standard.41

The total simulation time for all sphere packings was �8 h

on 512 BlueGene/P processor cores.

C. Sampling of f2

Based on the approximate formula developed by

Torquato for the effective conductivity of particle disper-

sions,18 the effective diffusion coefficient in the void space

of a packing of hard and impermeable spheres can be eval-

uated as follows:19,23

Deff �
Dm

1� /
1� /� 0:5 1� /ð Þf2

1þ 0:5/� 0:5 1� /ð Þf2

; (7)

where f2 is the three-point microstructural parameter defined

by1

f2 ¼ 1� 9

2/ 1� /ð Þ

ð1

0

dr

r

ð1

0

ds

s

ð1

�1

d cos hð ÞP2 cos hð Þ

� S3 r; s; hð Þ � S2 rð ÞS2 sð Þ
S1

� �
: (8)

The quantities S1, S2(r), and S3(r, s, h) are, respectively, the

probabilities of finding in the interparticle void space (i) a

single point, (ii) the end points of a line segment of length r,

and (iii) the vertices of a triangle with two sides of length r
and s and angle h between them. P2 is the Legendre polyno-

mial of order two. S1, S2, and S3 are sometimes also referred

to as the one-, two-, and three-point probability (or correla-

tion) functions, respectively.42 Although mathematical

formulations of the diffusion and conduction problems are

equivalent, there is a relevant distinction between the effec-

tive conductivity of a hard sphere packing and the effective

diffusion coefficient in the void space of the packing. For the

conduction problem, the effective conductivity reff charac-

terizes transport properties of the whole medium, i.e., contri-

butions from both phases to the overall transport process are

accounted for. By contrast, Deff characterizing transport in

the void space of the packing has to be attributed to an effec-

tive property of only one phase (the void space). As a conse-

quence, Eq. (7) contains the additional factor 1/(1�/) as

compared to an expression for reff.

The one-point probability function S1 in Eq. (8) is

merely the volume fraction of the interparticle void space,

1�/. It can be also evaluated numerically by randomly

“tossing” many points and recording the fraction that fall in

the interparticle void space. To determine S2 and S3, we

124901-4 Hlushkou et al. J. Appl. Phys. 118, 124901 (2015)
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adopted an approach proposed by Smith and Torquato,25,26

which is based on a Monte Carlo statistical sampling.

Initially, a large number Np of primary points was distributed

randomly and uniformly throughout the packing space. In

this study, we used Np¼ 105. Subsequently, each primary

point was designated as the center of a sampling template. A

sampling template involves Nu equally spaced radial rays

originating in the primary point and Nq concentric circles of

radii qk (k¼ 0,…, Nq� 1) with centers in the primary point.

In Fig. 2(a), a section of the sampling template is shown.

Intersections of the radial rays with the circles define the

positions of secondary points. Thus, each sampling template

consists of the primary point and NqNu secondary points

equiangularly spaced at the discrete distances qk (k¼ 0,…,

Nq� 1) from the primary point. Further, the orientation of

each template was randomized in three-dimensional space

by setting random values of the Euler angles (see Fig. 2(b)).

The primary point and the secondary points of a given sam-

pling template form a set {A} of NqNu line segments (origi-

nating in the primary point) with a range of discrete lengths,

qk. The value of S2(qk) was determined as the probability

that the end points of the line segments with length qk reside

in the interparticle void space, averaged over {A} and the

template ensemble. A similar approach was employed to

evaluate the values of S3. For this purpose, a set of triangles

(see Fig. 2(a)) formed by all possible combinations of two

line segments from {A} for each template was constructed.

Thus, every triangle was defined by three discrete values cor-

responding to the lengths of its two sides (qk and ql, with k,

l¼ 0,…, Nq� 1) and the angle between them (hm, with

m¼ 0,…, Nu� 1). The value of S3(qk, ql, hm) was deter-

mined as the probability to find the vertices of the triangle

defined by qk, ql, and hm in the interparticle void space, aver-

aged over {A} and the template ensemble. The one-point

probability function S1 was determined as the probability to

find the primary and secondary points of the sampling tem-

plates in the interparticle void space.

The calculation of f2 by Eq. (8) was carried out by nu-

merical integration using the discrete values of S2 and S3,

determined as described in the above paragraph. First,

Simpson’s rule was employed for numerical integration over

h with the substitution x¼ cosh, resulting in a function of

two variables, f2(r, s). Then, a two-dimensional trapezoidal

rule was used for the r-s integration. Because Eq. (8)

includes factors proportional to r�1 and s�1, the region of

integration near r¼ 0 and s¼ 0 makes a substantial contribu-

tion to the integral. This requires using a fine spatial grid

to get an accurate value of the integral. On the other hand,

Eq. (8) involves the integration over r and s in the range

from zero to infinity, and the use of a fine grid results in a

very large number of discrete values for S2 and S3. In order

to meet these conflicting requirements, we employed a non-

uniform spatial grid for the construction of the sampling tem-

plate. With this approach, the radius of the concentric circles

increases nonuniformly according to a power law as

qk ¼ a0dpAk; (9)

where qk is the radius of the kth circle in the sampling tem-

plate (k¼ 0,…, Nq� 1), a0 is a constant determining the ra-

dius of the smallest circle (q0), and A is a constant larger

than unity.

All calculations in this study were performed with sam-

pling templates constructed with Nu¼ 64, a0¼ 10�4,

A¼ 1.21, and Nq¼ 64, resulting in q0¼ 10�4dp (smallest

circle radius) and q63� 16.42dp (largest circle radius).

Figure 3 shows the normalized circle radius in the sampling

template, determined by Eq. (9) with the above set of the pa-

rameters a0, A, and Nq as a function of the circle index k.

More than 76% of the circles in the template have a radius

less than dp, providing a fine spatial grid resolution for the

region of integration near r¼ 0 and s¼ 0. Asymptotic analy-

sis of the calculated two-point and three-point probability

functions, presented in Sec. III, shows that the values of

FIG. 2. (a) Section of a sampling tem-

plate used to evaluate the two-point

and three-point probability functions

S2(r) and S3(r, s, h). The primary point

is located in the template center.

Positions of secondary points are deter-

mined by the intersections of the radial

rays and concentric circles. The pri-

mary point and each secondary point

define a line segment characterized by

its length r. Two line segments form a

triangle characterized by the lengths of

its two sides (r and s) and the angle h.

For the present study, 105 sampling

templates containing 64 circles and 64

equally spaced radial rays were used.

(b) The orientation of each template

was randomized in three-dimensional

space by setting random values of the

Euler angles (a, b, and c) relative to

the principal axes of the packing.
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S2(r) and S3(r, s, h), determined for r¼ q0 and r¼ s¼ q63,

are very close to the theoretical ones for r! 0 and r, s!1,

respectively.

III. RESULTS AND DISCUSSION

The accuracy of calculation of the microstructural

parameter f2 by Eq. (8) depends on the precision of the

numerical integration procedure and determination of the

two-point and three-point probability functions. The general

properties of the n-point probability functions have been

studied by Frisch and Stillinger43 and Torquato and

Stell.42,44 In particular, S2 and S3 in a statistically homogene-

ous and isotropic two-phase random medium without long-

range order exhibit the following asymptotic properties

lim
r!0

S2ðrÞ ¼ 1� /; (10)

lim
r!1

S2ðrÞ ¼ ð1� /Þ2; (11)

lim
r ! 0

s! 0

S3ðr; s; hÞ ¼ 1� /; (12)

lim
r!1
s!1
t!1

S3ðr;s;hÞ ¼ ð1�/Þ3 with t¼ ðr2þ s2� 2rscoshÞ1=2;

(13)

where S2 and S3 are determined for the phase with volume

fraction /.

Figures 4 and 5 show the two-point probability functions

S2(r) for the packings with wide PSD (left panels) and nar-

row PSD (right panels) at /¼ 0.54 and 0.634, determined by

the sampling template approach. According to Eq. (10), S2(r)

takes on the value 1�/, if the distance between the points

approaches zero (r ! 0). Figure 4 indicates excellent agree-

ment between the calculated two-point probability functions

and the theoretical asymptotic values equal to 0.46 and 0.366

at /¼ 0.54 and 0.634, respectively, which are shown in the

figure as the dashed lines. The same perfect coincidence of

calculated and theoretical asymptotic values was observed

also at all other solid volume fractions (data not shown):

The relative difference between the theoretical values of

S2(r! 0) and their values calculated at r/dp< 10�3 does not

exceed 0.3%. If the distance between two points becomes

very large (i.e., r ! 1), S2(r) approaches (1�/)2 (see

Eq. (11)). In Fig. 5, we present the calculated values of S2(r)

along with their theoretical values for r ! 1 equal to

0.2116 and 0.1340 at /¼ 0.54 and 0.634, respectively,

according to Eq. (11). Already for r� 10dp, the numerically

determined S2 is very close to the corresponding theoretical

value S2(r ! 1) for all four packings presented in the

figure. Very good agreements were also observed at all other

values of / (data not shown): The relative difference

between the theoretical values of S2(r!1) and their values

calculated at r/dp> 10 does not exceed 0.5%. The main

conclusion which can be drawn from the data presented

in Figs. 4 and 5 is that the use of the finite range

(10�4dp� r� 16.42dp) for the distance between two points

allows to reproduce very accurately the asymptotic behavior

of the two-point probability function S2(r) at r! 0 and

r!1 in the packings we analyzed in this study.

A similar asymptotic analysis was carried out for the

three-point probability function S3(r, s, h). In Figs. 6(a) and

6(b), we compare the numerically determined S3(r¼ 10�4dp,

s¼ 10�4dp, h) with the theoretical values defined by Eq. (12).

According to Eq. (12), if two pairwise distances between

three points approach zero, the three-point probability func-

tion approaches (1�/). We again observe a very good

agreement between the numerical and theoretical values (the

relative difference is less than 0.35%). If all pairwise distan-

ces between three points approach infinity, then S3¼ (1�/)3

according to Eq. (13). In Figs. 7(a) and 7(b), we compare the

FIG. 3. Normalized radius of the circles (q/dp) in the sampling template,

determined by Eq. (9) with a0¼ 10�4, A¼ 1.21, and Nq¼ 64, as a function

of the circle index. The smallest (k¼ 0) and the largest (k¼ 63) circle radius

are 10�4dp and �16.42dp, respectively.

FIG. 4. Two-point probability function

S2(r), calculated using the sampling

templates, for polydisperse packings

with (a) wide PSD and (b) narrow PSD

at two solid volume fractions, /¼ 0.54

and 0.634. The smallest value of r in

both panels is 10�4dp. The dashed lines

indicate the corresponding theoretical

values for S2(r ! 0) defined by Eq.

(10). The value of r is normalized by

the corresponding mean particle diam-

eter dp (cf. Table I).
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values of S3 determined for r¼ 16.42dp and s¼ 16.42dp as a

function of h. Independent from h, the calculated three-point

probability functions satisfy very well the theoretical limit

given by Eq. (13).

We estimated the overall accuracy of the determination

of the two-point and three-point probability functions S2 and

S3 as well as the numerical integration procedure, which was

used to calculate the three-point microstructural parameter f2

with Eq. (8). For this purpose, we compared f2 calculated for

regular arrays of hard spheres following the presented

approach with theoretical values. McPhedran and Milton45

computed f2 analytically for cubic lattices of spheres as a

function of /. In Figs. 8(a) and 8(b), we compare the f2-

values for face-centered cubic (FCC) and body-centered

cubic (BCC) sphere arrays calculated by the numerical

approach described in Sec. II C (open red circles) with the

values obtained analytically by McPhedran and Milton (solid

circles). The data in Fig. 8 indicate that the numerical

approach we used allows to determine f2 with high accuracy

over a wide range of solid volume fractions, including the

close packing limit, / � 0.68 and 0.74 for BCC and FCC,

respectively.

Subsequently, we employed the proposed numerical

approach to calculate f2 in the generated random packings of

polydisperse particles. Figure 9 shows f2-values computed

by Eq. (8) for narrow-PSD packings (green circles) and

wide-PSD packings (blue circles) as a function of /. These

values were obtained for 10 different random realizations

(i.e., for different random positions of the primary points and

random values of the Euler angles) of 105 sampling tem-

plates for each packing. Thus, the total amount of the pri-

mary and secondary points used to determine the probability

functions in each packing was greater than 4� 109. The sym-

bols in Fig. 9 denote the average values of f2 and the error

FIG. 5. Two-point probability function

S2(r), calculated using the sampling

templates, for polydisperse packings

with (a) wide PSD and (b) narrow PSD

at two solid volume fractions, /¼ 0.54

and 0.634. The dashed lines indicate

the corresponding theoretical values

for S2(r ! 1) defined by Eq. (11).

The value of r is normalized by the

corresponding mean particle diameter

dp (cf. Table I).

FIG. 6. Three-point probability func-

tion S3(r¼ 10�4dp, s¼ 10�4dp, h) vs.

the normalized angle h/p (cf. Fig.

2(a)), calculated using the sampling

templates, for polydisperse packings

with (a) wide PSD and (b) narrow PSD

at two solid volume fractions, /¼ 0.54

and 0.634. The dashed lines indicate

the corresponding theoretical values

defined by Eq. (12).

FIG. 7. Three-point probability func-

tion S3(r¼ 16.42dp, s¼ 16.42dp, h) vs.

the normalized angle h/p (cf. Fig.

2(a)), calculated using the sampling

templates, for polydisperse packings

with (a) wide PSD and (b) narrow PSD

at two solid volume fractions, /¼ 0.54

and 0.634. The dashed lines indicate

the corresponding theoretical values

defined by Eq. (13).
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bars indicate 95% confidence intervals calculated using the

standard error of the mean. The small error bars (their height

does not exceed 0.6% of the corresponding f2-value) allow

to conclude that the set of 105 sampling templates is statisti-

cally representative to evaluate f2 with high accuracy.

Additionally, we carried out sampling calculations of f2 (for

a wide-PSD packing with /¼ 0.634) using a larger number

of templates (Np¼ 2� 105 and 5� 105) and higher values of

the template parameters N/¼ 128 and Nq¼ 128 to analyze

the influence on computational accuracy. With these tem-

plate parameters, the calculated mean values of f2 differed

from the corresponding value in Fig. 9 by less than 0.15%.

For Np¼ 2� 105 and 5� 105, the confidence interval was,

respectively, 81% and 67% relative to that for Np¼ 105,

Nu¼ 64, and Nq¼ 64. These results indicate that the chosen

values of the sampling template parameters allow to deter-

mine f2 with high accuracy. The results in Fig. 9 indicate

that both packing density and the particles’ polydispersity

affect f2. The f2-values increase with the solid volume

fraction for both types of polydisperse packings. At a given

/, the narrow-PSD packings (green circles) have a larger

f2-value than the wide-PSD packings (blue circles), but this

difference decreases with increasing packing density.

The obtained values of the three-point microstructural

parameter were used to calculate the effective diffusion coef-

ficient by Eq. (7). Figure 10 shows the normalized Deff (open

circles) as a function of the solid volume fraction, deter-

mined for monodisperse, the wide-PSD, and the narrow-PSD

packings. The effective diffusion coefficients in all three

packing types demonstrate the same trend and decrease with

increasing solid volume fraction. This can be easily under-

stood from the decrease of the interstitial void space between

particles, which obstructs diffusive transport. In contrast to

the results for f2, the effective diffusion coefficient is hardly

sensitive to the PSDs. At a given /, the relative difference

between Deff-values in the analyzed packing types does not

exceed 0.5%. The monodisperse packings are always charac-

terized by the smallest Deff/Dm-values, whereas the wide-

PSD packings have the largest values. Compared with the

results from our RWPT simulations, the presented approach

slightly overestimates the effective diffusion coefficients.

However, the relative difference between Deff-values

obtained by the two approaches does not exceed 4% at a

given / and PSD. Thus, the proposed approach allows to get

a good estimate for the effective diffusion coefficient in

polydisperse packings, using only information on packing

geometry. In future work, it will be interesting to carry out

analogous diffusion studies for disordered jammed

FIG. 8. Comparison of the three-point

microstructural parameter f2 obtained

by the numerical approach using the

sampling templates (open circles) and

calculated with the analytical

approach45 (solid circles) for (a) face-

centered cubic and (b) body-centered

cubic sphere arrays as a function of the

solid volume fraction /.

FIG. 9. Three-point microstructural parameter f2 calculated with Eq. (8) as a

function of the solid volume fraction / of the polydisperse packings with

narrow and wide PSDs (cf. Table I). Each value of f2 corresponds to the av-

erage from 10 different realizations of 105 sampling templates. The error

bars indicate 95% confidence intervals calculated using the standard error of

the mean.

FIG. 10. Normalized effective diffusion coefficients Deff/Dm in monodis-

perse, narrow-PSD, and wide-PSD random hard-sphere packings as a func-

tion of the solid volume fraction /, calculated by Eq. (7) (open circles) and

obtained from the RWPT simulations (solid circles).
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polydisperse packings produced by the recent Torquato-Jiao

algorithm, which can yield anomalously high packing den-

sities.29 But the presented approach to determine S2 and S3

(and estimate Deff) goes beyond computer-generated pack-

ings. It can be applied to analyze structure-transport relation-

ships in real material structures obtained from a three-

dimensional reconstruction of particulate, monolithic, or

consolidated porous media based on, e.g., advanced electron

microscopy,46–51 X-ray tomography,52–55 or confocal laser

scanning microscopy.56–60

IV. CONCLUSIONS

This work reports on results obtained for the effective

diffusion coefficient Deff in random packings of polydisperse

hard spheres. Packings with solid volume fraction from 0.54

up to 0.634 were computer-generated at a fixed generation

protocol based on experimentally measured PSDs of micro-

particles used for the preparation of chromatographic col-

umns. The combination of a computer-generation protocol

with real PSDs allowed us to study industrially relevant pack-

ings without influence of the experimental packing procedure

as well as of all particle properties other than the PSD. In

general, this enables the comparison of monodisperse,

narrow-PSD, and wide-PSD packings at equal solid volume

fraction and was used here to generate the sets of packings

with systematically varied packing density suitable for the

validation of the numerical approach presented in Sec. II C.

The calculation of Deff was carried out using Torquato’s

approximate formula (Eq. (7)). It involves the three-point

microstructural parameter f2, which depends on the two-point

and three-point probability functions S2 and S3. Our results

demonstrate that the value of the effective diffusion coeffi-

cient in the investigated packings is determined by their solid

volume fraction /, the spatial positions of the spheres, and to

a lesser degree by the particles’ polydispersity. At a given /,

the relative difference between Deff-values in monodisperse,

narrow-PSD, and wide-PSD packings does not exceed 0.5%.

The effective diffusion coefficients computed by Torquato’s

approximate formula were compared with Deff-values derived

from RWPT simulations in the packings. The relative differ-

ence between Deff-values obtained by these fundamentally

different approaches does not exceed a few percents.

However, the use of the approximate formula allows to deter-

mine the effective diffusion coefficient directly from informa-

tion on the geometrical structure of a packing. This

information can be also obtained from three-dimensional

physical reconstruction of real heterogeneous materials.

Moreover, the proposed approach is extendable to any two-

phase composite material, depending neither on the physical

properties of the phases, nor on the geometry of the interface

between the phases. Thus, the presented approach provides a

straightforward route to evaluate the effective transport char-

acteristics of heterogeneous media and to analyze structure-

transport relationships in general. We note in passing that the

three-point parameter f2 also arises in accurate estimates for

the effective conductivity and effective bulk modulus for

two-phase composites,61,62 and hence our results here can im-

mediately yield these effective property estimates for the

disordered polydisperse sphere packings studied in the pres-

ent paper.
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