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Characterization of maximally random jammed sphere packings: Voronoi correlation functions
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We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the
Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi
cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are
qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point
process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the
Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global
structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information
via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain
cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well
as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and
density functions contain visibly more information than the corresponding standard pair-correlation functions.
We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with
previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)], indicating that
large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice
versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells
qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the
Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any
perfect icosahedra (the locally densest possible structure in which a central sphere contacts 12 neighbors) in the
MRJ packings, a preliminary Voronoi topology analysis indicates the presence of strongly distorted icosahedra.
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I. INTRODUCTION

Packings of frictionless monodisperse hard spheres in three
dimensions serve as a simple, yet effective tool for modeling
the complex behavior of such diverse many-particle systems
as crystals, colloids, liquids, glasses, heterogeneous materials,
foams, and biological systems [1–10]. Among the rich multi-
tude of states they are known to exhibit, considerable interest
has been given towards sphere packings that are jammed (i.e.,
mechanically stable), including maximally dense packings,
low-density crystals, and amorphous packings [11–20].

In order to characterize the properties of sphere packings,
one may employ a geometric-structure approach in which
configurations are considered independently of both their
frequency of occurrence and the algorithm by which they are
created [19]. For example, the simplest characteristic of a
sphere packing is its packing fraction φ, i.e., the
fraction of space occupied by the spheres. Other useful
characteristics of the structure include its pair-correlation
function [14,21–28], the pore-size distribution [4,29], and
structure factor [3,24,30–32].

It is also valuable to quantify the degree of ordering in
a packing, especially those that are jammed (defined more
precisely below). To this end, a variety of scalar order metrics
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ψ have been suggested [19,33] in which ψ = 0 is defined as
the most disordered state (i.e., the Poisson point process) and
ψ = 1 is the most ordered state. Using the geometric-structure
approach, one may therefore construct an “order map” in
the φ–ψ plane [19], where the jammed packings form a
subset in this map. The boundaries of the jammed region are
optimal in some sense, including, for example, the densest
packings (the face-centered-cubic crystal and its stacking
variants with φmax = π/

√
18 ≈ 0.74 [13]) and the least dense

jammed packings (conjectured to be the “tunneled crystals”
with φmin = 2φmax/3 [16]).

Among the set of all isotropic and statistically homo-
geneous jammed sphere packings, the maximally random
jammed (MRJ) state is that which minimizes some order
metric ψ . This definition makes mathematically precise the
familiar notion of random closed packing (RCP) in that it
can be unambiguously identified for a particular choice of
order metric. A variety of sensible, positively correlated order
metrics produce an MRJ state with the same packing fraction
0.64 [34,35], which agrees roughly with the commonly
suggested packing fraction of RCP in three dimensions [19].
However, we stress that density alone is not sufficient to
characterize a packing; in fact, packings with a large range
of ψ may be observed at this packing fraction [27,34].

In order to study the MRJ state, a precise definition of
jamming is needed. Therefore, rigorous hierarchical jamming
categories have been defined [36,37]: A packing is locally
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jammed if no particle can move while the positions of the
other particles are fixed; it is collectively jammed if no subset
of particles can move without deforming the system boundary;
and if also a deformation of the system boundary is not possible
without increasing its volume, the packing is strictly jammed,
i.e., it is stable against both uniform compression and shear
deformations [38]. Strictly jammed MRJ sphere packings often
contain a small fraction of rattlers (unjammed particles), but
the remainder of the packing, i.e., the mechanically rigid
backbone, is strictly jammed [39].

Determining the contact network of a packing is a subtle
problem requiring high numerical fidelity. The Torquato-Jiao
(TJ) sphere packing algorithm [25] meets this challenge
by efficiently producing highly disordered, strictly jammed
packings with unsurpassed numerical fidelity as well as
ordered packings [25,40]. The algorithm achieves this by
solving a sequence of linear programs which iteratively densify
a collection of spheres in a deformable periodic cell subject
to locally linearized nonoverlap constraints. The resulting
packings are, by definition, strictly jammed and they are
with high probability exactly isostatic (meaning that they
possess the minimum number of contacts required for jam-
ming) [39,41]. The TJ packing protocol is intrinsically capable
of producing MRJ states with very high fidelity [25,39]. The
MRJ state can be regarded as a prototypical glass because
it is maximally disordered (according to a variety of order
metrics) while having infinite elastic moduli [19]. Atkinson
et al. [39] recently carried out a detailed characterization of the
rattler population in these MRJ sphere packings. They found a
rattler fraction of 1.5% (substantially lower than other packing
protocols, such as the well-known Lubachevsky-Stillinger
packing algorithm [42]) and that the rattlers were highly
spatially correlated, implying that they have a significant
influence on the structure of the packing [29]. Moreover, as in
previous studies [41], it was shown [39] that the backbone of
the MRJ state is isostatic. We include rattlers in our analysis
unless stated otherwise.

MRJ packings have been characterized using a variety
of statistical descriptors, including the radial pair-correlation
function g2(r) (ρ2g2 is the probability density for find-
ing two sphere centers separated by a radial distance r ,
where ρ is the number density, i.e., the number of par-
ticles per unit volume) [25], the bond-orientational order
metric Q6 and the translational order metric T ∗ [34,39],
the cumulative pore-size distribution F (δ) [29], and the
statistics of rattlers [39]. In addition, MRJ sphere packings
exhibit disordered hyperuniformity [29], meaning that they
are locally disordered, but possess a hidden order on large
length scales such that infinite-wavelength density fluctu-
ations of MRJ packings vanish, i.e., the structure factor
vanishes at the origin: limk→0 S(k) = 0 [43,44]. Disordered
hyperuniformity can be seen as an “inverted critical phe-
nomenon” with a direct correlation function c(r) that is long
ranged [43,45].

In this paper, we characterize the MRJ sphere packings gen-
erated in Ref. [39] using Voronoi statistics, including certain
types of correlation functions. We compare these computations
to corresponding calculations for both a Poisson distribution
of points and equilibrium hard-sphere liquids. In the second
paper of this series, we will investigate density fluctuations,

FIG. 1. (Color online) Maximally random jammed (MRJ) sphere
packing and its Voronoi diagram. Among all jammed sphere packings
(roughly speaking, the mechanically stable packings), the MRJ state
is the most disordered one.

the pore-size distribution, and two-point probability functions
of MRJ packings.

Many studies for disordered sphere packings have been
devoted to computing the volume distribution of the Voronoi
cells [e.g., 15,17,20,46–52]; see Fig. 1 for a MRJ sphere
packing and its Voronoi diagram [53]. However, such statistics
are incomplete in that they only quantify local structural infor-
mation. For example, with appropriately rescaled variables,
we will show that the distributions of the Voronoi volumes,
surface areas, and integrated mean curvatures for the MRJ
sphere packings are qualitatively similar to the distributions
for an equilibrium hard-sphere liquid and partly even for the
spatially uncorrelated Poisson point process.

To quantify nonlocal structural information, we formulate
and compute correlation functions of the volume of Voronoi
cells at a given distance and cell-cell probability density func-
tions of finding a given sized Voronoi cell at a given distance of
a sphere with another sized Voronoi cell. Because the volume
is only one of a large class of versatile shape measures,
namely, the Minkowski functionals [54–57], we devise and
compute the correlation functions of all of the Minkowski
functionals [58]. Besides characterizing MRJ packings in
this way, we also carry out analogous calculations for the
Poisson point process and the equilibrium hard-sphere liquid
for purposes of comparison. We show that these Minkowski
correlation functions contain visibly more information than
the corresponding standard pair-correlation functions, even in
the case of the Poisson point process.

In Sec. II, we analyze the distributions of the Minkowski
functionals of the single Voronoi cells for the Poisson point
process, equilibrium hard-sphere liquid configurations, and
MRJ packings. In Sec. III, we define the aforementioned
two different types of correlation functions. In Sec. IV,
we determine the volume-volume correlation function nu-
merically for the three-dimensional Poisson point process,
equilibrium hard-sphere systems, and the MRJ state; we also
calculate the correlation functions for the surface area, and the
integrated mean curvature. For a further investigation of the
nonlocal structure features, we calculate in Sec. V the cell-cell
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probability density functions mentioned above. In Sec. VI, we
make concluding remarks.

II. MINKOWSKI FUNCTIONAL DISTRIBUTIONS
OF A SINGLE VORONOI CELL

While there are many detailed studies of the volume distri-
bution in disordered sphere packings [e.g., 15,17,20,46–52],
here we analyze in a logarithmic plot the volume distributions
of true MRJ packings as describe above and extend the
analysis to all three (nontrivial) Minkowski functionals: the
volume, the surface area, and the integrated mean curvature.
They are robust and versatile shape descriptors which are
widely used in statistical physics [55–57,59] and in pattern
analysis [60–62]. We use VORO++ [63,64] to construct
the Voronoi diagram of Poisson point patterns (about 1000
patterns, each with 2000 points), equilibrium hard-sphere
packings [3,4] at a packing fraction φ = 0.48, which is
slightly below the freezing transition (100 packings, each with
10000 spheres), and MRJ sphere packings produced by the
TJ algorithm [25,39] (about 1000 packings, each with 2000
spheres). The program KARAMBOLA [65,66] then computes
the Minkowski functionals of each cell.

We first determine the distributions of the three Minkowski
functionals (W0, volume; W1, surface area; and W2, integrated
mean curvature) of the single Voronoi cells. Table I provides
the mean, the standard deviation, and the correlation coeffi-
cients ρμ,ν = 〈WμWν 〉−〈Wμ〉〈Wν 〉

σWμσWν
of the three different Minkowski

functionals. As a unit of length, we use λ = 1/ρ1/3 with ρ the
number density, i.e., we compare the Poisson point process, the
equilibrium hard-sphere liquid, and the MRJ state at the same
number density ρ = 1 (the unit volume contains one particle
on average) [67].

Because the number density is set to unity, the mean cell
volume is also one. The average surface area and integrated
mean curvature of a Voronoi cell in the MRJ state or in
the equilibrium ensemble are slightly larger than those of a
Poisson Voronoi cell because the latter is less regular, i.e.,
more aspherical. The Voronoi volume fluctuations and the
standard deviations of the other Minkowski functionals are
much stronger in the irregular Poisson point process than in the

hard-sphere packings, where the MRJ state has significantly
smaller Voronoi volume fluctuations than the equilibrium
hard-sphere liquid. The Minkowski functionals of a single
Voronoi cell, e.g., its volume and its surface area, are strongly
correlated, i.e., the correlation coefficients ρμ,ν are at least 0.9.
The numerical estimates for the Poisson Voronoi tessellation
are in agreement with the analytic values and numerical
estimates in Ref. [68] and references therein.

The high fidelity of the MRJ sphere packings produced by
the TJ algorithm allows one to study the relation between
the number of contacts of a sphere and the Minkowski
functionals of its Voronoi cell. As expected, small cells
have a higher number of contacts on average because a
high local packing fraction [69] implies that there are many
close neighbors. In units of λ, the mean Voronoi volume of
a rattler, i.e., an unjammed particle, is 1.04 and that of a
particle with 11 contacts is 0.88. The mean surface area of
the Voronoi cells of rattlers and of backbone spheres with
up to 11 contacts varies from 5.50 to 4.92, respectively, and
the average integrated mean curvature varies from 8.65 to
8.17, respectively. However, because of the small difference
between near contacts and true contacts, the distributions of
the Minkowski functionals for rattlers are only slightly shifted
compared to the distributions of a typical cell. There are,
for example, very small cells containing rattlers, which is
consistent with previous findings [39].

Starr et al. [47] and, similarly, Aste et al. [15] showed
that by shifting the volume distribution by its mean and
rescaling with its standard deviation, the volume distributions
of many different sphere packings collapse. Figure 2 shows
the rescaled distributions of the Minkowski functionals for
the Poisson point process, the equilibrium hard-sphere liquid,
and the MRJ packing. As expected, the volume distributions
of the equilibrium hard-sphere packings and the MRJ pack-
ings are qualitatively very similar, while the distribution of
the Poisson point process deviates. The same is true for the
distribution of the mean curvatures. The distributions of the
surface area for both the MRJ and the equilibrium hard-sphere
packings are not only qualitatively similar to each other but
also to the uncorrelated Poisson point process. So, besides
the quantitative difference in the mean and the standard

TABLE I. Mean 〈Wμ〉, standard deviation σWμ
, and correlation coefficients ρμ,ν of the Minkowski functionals Wμ of single Voronoi cells

in the Poisson point process, in a system of hard spheres in equilibrium at a packing fraction φ = 0.48, and in the MRJ state. The unit of length
is λ = 1/ρ1/3, i.e., the number density ρ is set to unity.

〈Wμ〉 σWμ
ρμ,1 ρμ,2

Poisson
Volume W0 1.0005(3) 0.4230(2) 0.98161(3) 0.94486(8)
Surface area W1 5.823(1) 1.4798(7) 0.98701(2)
Integ. mean curv. W2 9.1623(8) 1.0941(5)

Equilibrium
Volume W0 1.00000(7) 0.07434(5) 0.97700(5) 0.9282(2)
Surface area W1 5.4488(3) 0.2681(2) 0.98136(5)
Integ. mean curv. W2 8.6477(2) 0.2163(2)

MRJ
Volume W0 1.00000(3) 0.04335(2) 0.96976(4) 0.9035(1)
Surface area W1 5.4043(1) 0.1695(8) 0.97248(5)
Integ. mean curv. W2 8.5894(1) 0.1470(7)
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FIG. 2. (Color online) Distributions of the single Minkowski
functionals Wμ of a three-dimensional Voronoi cell in a Poisson point
process, an equilibrium hard-sphere system at a packing fraction
φ = 0.48, and a MRJ sphere packing: μ = 0 volume (left), μ = 1
surface area (center), and μ = 2 integrated mean curvature (right).
The distributions are rescaled—like in Ref. [47]—by their mean
〈Wμ〉 and their standard deviation σWμ

(see Table I). The lines in
the plot of the volume distributions are γ distributions; generalized
γ distributions are fitted to the distributions of the surface area and
the integrated mean curvature.

deviations of the Minkowski functionals, the distributions of
the Minkowski functionals of single Voronoi volumes are
qualitatively similar for the equilibrium hard-sphere liquid
and the MRJ state as well as even partially for the Poisson
point process. The distribution of the Minkowski functionals
of a single cell only incorporates local information and
is rather insensitive to global structural features such as
hyperuniformity of the MRJ state [29,45].

Figure 3 shows the joint probability distribution of the
volume and the surface area of a single Voronoi cell in a
Poisson point process, an equilibrium hard-sphere liquid, and
a MRJ sphere packing. The joint probability distributions for

FIG. 3. (Color online) Joint distribution of volume v and surface
area S of a single three-dimensional Voronoi cell in a logarithmic
scale for a Poisson point process and a MRJ sphere packing; the joint
distribution for the equilibrium hard-sphere liquid is represented by
the blue contour plot. The unit of length is λ = 1/ρ1/3, where ρ is the
number density. Samples of a MRJ sphere packing and an overlapping
sphere packing, where the sphere centers follow a Poisson point
process, are depicted together with their Voronoi diagrams.

the equilibrium hard-sphere liquid and the MRJ state are also
relatively similar.

Both for the Poisson point process [70] and for many
different numerical and experimental sphere packings [15],
the volume distribution follows well a γ distribution [71].
We also find, for the volume distributions for the Poisson
point process and the equilibrium hard-sphere liquid, an
excellent agreement with γ distributions [72]. However, for
the MRJ sphere packings there is a slight but statistically
significant deviation for very small cells for which the
frequency of occurrence is too high. The surface area and the
integrated mean curvature distributions are well approximated
by generalized γ distributions [73], which was already found
for the Poisson point process by Refs. [51,74]. However, the
distributions for the MRJ sphere packings deviate slightly but
statistically significantly from a generalized γ distribution
for cells with small surface area or small integrated mean
curvature, respectively [75].

III. CORRELATION FUNCTIONS AND PROBABILITY
DENSITY FUNCTIONS OF MINKOWSKI FUNCTIONALS

In order to quantify the global structure of the Voronoi
diagram, correlation functions of the Minkowski functionals of
cells at a distance r and cell-cell probability density functions
are introduced and defined here.

A. Correlation functions of Minkowski functionals

We define the volume-volume correlation function
C00(r1,r2) of the Voronoi cells of an arbitrary point process as
the correlation between the volume of two Voronoi cells given
that the corresponding centers are at the positions r1 and r2:

C00(r1,r2) := 〈v(r1)v(r2)〉 − 〈v(r1)〉〈v(r2)〉
σv(r1|r2)σv(r2|r1)

, (1)

where 〈·〉 denotes the ensemble average given two points at
r1 and r2; and σv(r i |rj ) is the standard deviation of the volume
v of the Voronoi cell at r i given that there is another point
at rj . Note that because of this condition, both the mean
and the standard deviation of a single Voronoi volume are
functions of the positions r1 and r2: e.g., knowing that there
is a point in close proximity, very large volumes are less
likely and the mean volume decreases. For a statistically
homogeneous and isotropic point process, the volume-volume
correlation is simply a radial function, which we denote
by C00(r), where r = ‖r2 − r1‖. The correlation function
C00(r) ∈ [−1; 1] measures the correlations, both positive and
negative (anticorrelations), between Voronoi volumes of cells
given that their centers are at a distance r .

The Voronoi tessellation assigns to each point a volume
of its corresponding Voronoi cell. This is a special case of a
marked point process where the constructed mark assigned to
each point is determined by the positions of the points in the
neighborhood. In this sense, the volume-volume correlation
function can be seen as a special type of a marked correlation
function [56,68,76].

The volume-volume correlation function does not, in
general, converge to perfect correlation for vanishing ra-
dial distance limr→0 C00(r) < 1 because for all r > 0 the
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correlation function C00(r) provides the correlation of the
Voronoi volumes of two different cells with volumes v(0)
and v(r). Because the cell is perfectly correlated with itself,
i.e., C00(0) = 1, the correlation function C00(r) is discon-
tinuous at the origin. If there is no long-range order, the
correlation function tends to zero for infinite radial distance
limr→∞ C00(r) = 0.

The correlation functions of the other Minkowski func-
tionals are defined analogously to Eq. (1), replacing volume
(μ = 0) by surface area (μ = 1) or integrated mean curvature
(μ = 2):

Cμμ(r1,r2) := 〈Wμ(r1)Wμ(r2)〉 − 〈Wμ(r1)〉〈Wμ(r2)〉
σWμ(r1|r2)σWμ(r2|r1)

, (2)

with σWμ(r i |rj ) the standard deviation of the Minkowski func-
tional Wμ of the Voronoi cell at r i given that there is another
point at rj . For a statistically homogeneous and isotropic point
process, the correlation function of the Minkowski functionals
is again a radial function, which we denote by Cμμ(r). In
general, Cμμ(r) will be discontinuous for r → 0, as noted
above for the volume-volume correlation function.

In the Appendix, we calculate the volume-volume corre-
lation function analytically for the one-dimensional Poisson
point process. In Sec. IV, we determine the correlation
functions for the three-dimensional Poisson point process, the
equilibrium hard-sphere liquid, and MRJ sphere packings.

A different type of correlation function, a pointwise Voronoi
correlation function, assigns to arbitrary points the volumes of
the Voronoi cells in which they lie [52]. Correlations between
Voronoi volumes have also already been studied by finding a
nonlinear scaling in the aggregate Voronoi volume fluctuations
as a function of the sample size [49].

B. Cell-cell probability density functions of the Voronoi volume

The volume-volume correlation function C00(r2,r1) is
defined conditionally on the fact that the centers of the two
cells are at r1 and r2. The full two-point information about the
Voronoi volumes is given by the cell-cell probability density
function p(r2,v,r1,v

∗) of finding two points in the point
process at two arbitrary positions r2 and r1 with associated
Voronoi volumes v and v∗, respectively. It quantifies, for
example, how likely it is to find near a point with a small
Voronoi cell another point with either a large or another small
Voronoi cell. Integrating over the volumes yields the standard
pair-correlation function,

g2(r2,r1) =
∫∫

dvdv∗ p(r2,v,r1,v
∗)

ρ(r2)ρ(r1)
. (3)

This relation clearly indicates that the Minkowski probability
density function p(r2,v,r1,v

∗) contains more information
than g2(r2,r1). Moreover, the volume-volume correlation
function C00(r2,r1) from Sec. III A follows from calculating
the moments 〈vv∗〉, 〈v〉, and 〈v∗〉 of p(r2,v,r1,v

∗)
ρ(r2)ρ(r1)g2(r2,r1) and the

corresponding standard deviations σv and σv∗ .
For a statistically homogeneous and isotropic point process,

the cell-cell probability density function is a radial function,
i.e., it only depends on the radial distance r = |r2 − r1|:
p(r,v,v∗) is the probability density of finding two points with
Voronoi volumes v and v∗ at a radial distance r . If there is

no long-range order, the cell-cell probability density function
p(r,v,v∗) converges for large radii r → ∞ to ρ2f (v)f (v∗),
with ρ the number density and f (v) the distribution of the
Voronoi volume v of a single cell (see Sec. II).

For a better visualization and comparison of different
volumes, we divide the cell-cell probability density function
by its long-range value; the cell-cell pair correlation function
is defined as

gvv(r2,v,r1,v
∗) := p(r2,v,r1,v

∗)

ρ(r2)f (v)ρ(r1)f (v∗)
(4)

and, for a homogeneous and isotropic system,

gvv(r,v,v∗) := p(r,v,v∗)

ρ2f (v)f (v∗)
. (5)

If gvv(r,v,v∗) > 1, it is more likely to find a pair of Voronoi
cells with volumes v and v∗ at a distance r than to find them
at a large distance, i.e., uncorrelated. If gvv(r,v,v∗) < 1, the
occurrence of a point in the point process with a Voronoi
volume v at a distance r of another Voronoi center with a
Voronoi volume v∗ is suppressed. Analogous cell-cell pair-
correlation functions can be defined for the other Minkowski
functionals.

We analytically calculate the cell-cell probability density
function for the one-dimensional Poisson point process in the
Appendix. In Sec. V, we determine the cell-cell pair correlation
function for the three-dimensional Poisson point process, the
equilibrium hard-sphere liquid, and MRJ sphere packings.

IV. CORRELATION FUNCTIONS OF MINKOWSKI
FUNCTIONALS

In order to sample the correlation functions of the
Minkowski functionals, the distances of all pairs of parti-
cles [77] are computed and assigned to a bin. For each radial
distance, i.e., for each bin, the correlation coefficient of the
Minkowski functionals of the two Voronoi cells is determined.

Figures 4–6 compare the correlation functions of the
Minkowski functionals for the Poisson point process, equi-
librium hard-sphere liquids, and MRJ sphere packings. It
is seen that these Minkowski correlation functions contain
visibly more information than the corresponding standard
pair-correlation functions, even in the case of the Poisson point
process.

A. Poisson point process

It is evident that in the infinite-system limit, the pair-
correlation function g2(r) is a constant (unity) for the Poisson
point process, i.e., the points are completely uncorrelated.
Because a Voronoi cell is determined by the neighbors of
its center, the volume will obviously be correlated; see Fig. 4.
There are large Voronoi volume fluctuations for the Poisson
point process. Very large cells lead to a strong correlation of
the Voronoi volumes even for distances up to four times the
mean nearest-neighbor distance. This is to be contrasted with
the standard pair-correlation function g2(r), which is trivially
unity for all radial distances.

Figure 4 compares the correlation functions Cμμ(r) for
all Minkowski functionals μ = 0,1,2. All functionals have
approximately the same correlation length. For r → 0, the
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FIG. 4. (Color online) Correlation functions for a three-
dimensional Poisson point process: pair-correlation function g2(r)
(bottom); volume-volume correlation function C00(r) (center), which
is the correlation function of the volumes of two Voronoi cells given
that their centers are at a distance r; the mark correlation functions
of the three different Minkowski functionals (top): μ = 0 volume,
μ = 1 surface area, and μ = 2 integrated mean curvature. The radial
distance r is normalized by λ = 1/ρ1/3, where ρ is the number
density.

surface areas are more strongly correlated than the volumes
because at small radial distances, the cells will most likely
share a face. In the Appendix, we calculate C00(r) analytically
for the one-dimensional Poisson point process.

B. Equilibrium hard-sphere liquid

Figure 5 shows the pair-correlation function and the
correlation functions of the Minkowski functionals for equi-
librium hard-sphere liquid configurations at a packing fraction
φ = 0.48. Because the hard spheres are impenetrable, the
correlation functions of the Minkowski functionals are only
defined for radial distances larger or equal to the diameter D

of a sphere; in this case, D ≈ 0.97 λ.
There is a strong correlation of the Voronoi volumes of

spheres that are in near contact because the Voronoi neighbors
are correlated by construction of the Voronoi diagram. How-
ever, the maximum correlation is reached for noncontacting
spheres at r ≈ 1.3 λ; a large cell has many neighbors and a
Voronoi neighbor with a sphere not in contact will be, on
average, larger than another neighbor cell with a contacting
sphere.

Between 1.8 and 2.4 λ, there is a double peak of anticor-
relation and, for larger radial distances, there is an oscillating
anticorrelation and correlation similar to the pair-correlation
function g2, but nearly inverted. The correlation length of the
Voronoi volumes in the hard-sphere liquid is larger than in the

uncorrelated Poisson point process, where the correlation was
only due to the large Voronoi volume fluctuations.

At the top of Fig. 5, the correlation functions of the other
Minkowski functionals are compared. Similar to the Poisson
case, the integrated mean curvature is more strongly correlated
at contact r = D than the surface area which, in turn, is
more strongly correlated than the volume. There is no double
anticorrelation peak in the integrated mean curvature. For large
radii, the correlation functions are shifted against each other
despite the strong correlation of the different functionals for a
single Voronoi cell. The surface area and the integrated mean
curvature are slightly less (anti)correlated.

C. MRJ sphere packings

The pair-correlation function g2(r) and the correlation
functions of the Minkowski functionals of the MRJ sphere
packings are shown in Fig. 6. The diameter of the spheres
in the MRJ sphere packings is D ≈ 1.07λ. The most striking
differences in the pair correlation of the jammed packings to
the equilibrium packings are the two discontinuities at r =√

3D and r = 2D, the split-second peak, which corresponds
to configurations of two edge-sharing equilateral and coplanar
triangles (r = √

3D) or a linear chain of three particles
(r = 2D), respectively [78]. There is also a significant (seem-
ingly nonanalytic) feature of the volume-volume correlation
function C00(r) at r = √

3D: a dip in the anticorrelation.
However, at r = 2D, the feature is statistically insignificant.
At least two double anticorrelation peaks are clearly resolved.

The most important qualitative differences in the volume-
volume correlation function are the much stronger anticor-
relations in the MRJ packings compared to the equilibrium
packings. The correlation with the nearest neighbors is weaker
and the first anticorrelation double peak is more than twice as
strong as for the equilibrium hard-sphere packings. The MRJ
sphere packings are hyperuniform [29,45], i.e., large-scale
density fluctuations are suppressed. Therefore, strong Voronoi
volume anticorrelations are necessary such that Voronoi cells
with a high local packing fraction are accompanied by cells
with rather low packing fractions, and vice versa.

Another difference between MRJ and equilibrium packings
is a stronger shift of the correlation functions of the other
Minkowski functionals. For the MRJ packings, there are
radial distances, e.g., r = 2.51 λ, at which the integrated
mean curvatures are anticorrelated [C22(2.51 λ) < 0] but the
volumes are correlated [C00(2.51 λ) > 0], and vice versa.

So, in contrast to the local Voronoi analysis, the global
Voronoi analysis of the MRJ packing reveals qualitative
structural differences to the equilibrium hard-sphere liquid.

V. CELL-CELL PROBABILITY DENSITY FUNCTIONS

The sampling of the cell-cell probability density function
p(r,v,v∗) is very similar to that of the pair-correlation function
g2 (see, e.g., Ref. [4]); only an additional binning with respect
to the Voronoi volumes is needed. Figures 7–9 show the cell-
cell pair-correlation function gvv = p(r,v,v∗)/[ρ2f (v)f (v∗)]
for exemplary large or small cell volumes v,v∗ in the
three-dimensional Poisson point process, in an ensemble of
equilibrium hard spheres, or in the MRJ sphere packings. As
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FIG. 5. (Color online) Correlation functions for equilibrium hard
spheres with diameter D at a packing fraction φ = 0.48; for details,
see Fig. 4.

examples of large or small cells, the volumes were chosen such
that their probability density is equal to 1/3 of the maximum
of the volume distribution; see Table I and Fig. 2.

For the Poisson point process, the small cells are strongly
correlated at short distances because, by construction, there
must be points at close distances, and the neighbor cells of a
small Voronoi cell are more likely to be small as well. However,
the probability of finding a point with either a corresponding
large or a small cell at a short radial distance of the center of a
large cell is strongly suppressed because it is unlikely for the
center of a large cell to have close neighbors. At intermediate
distances, two large cells are correlated, as expected, because
of the Voronoi construction.

In the equilibrium hard-sphere liquid, the large cells at
near contact are less correlated than the small cells. However,
at slightly larger distances, where g2 shows anticorrelation
and the small cells are even more strongly anticorrelated, the
large cells are positively correlated. For distances larger than
twice the diameter, the cell-cell pair-correlation function for a
large and a small cell is equal to the standard pair-correlation
function within statistical significance. However, both the
cell-cell pair correlation functions of finding two short or of
finding two large cells at large radial distance r are shifted
compared to the standard pair-correlation function.

These features can also be found in the MRJ sphere
packings. Moreover, the anticorrelations of two small cells
are much stronger. The split-second peak even separates in
two stronger peaks with anticorrelation in between, where the
standard pair-correlation function shows positive correlation.
In contrast to this, the peak at r = √

3D completely vanishes
for two large cells gvv(

√
3D,1.06,1.06) = 1, and the peak at

r = 2D is significantly weaker.
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FIG. 6. (Color online) Correlation functions for MRJ sphere
packings of spheres with diameter D; the average packing fraction is
φ ≈ 0.64. For details, see Fig. 4. The pair-correlation function g2(r)
is in agreement with previous results for MRJ sphere packings [39].
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FIG. 7. (Color online) The cell-cell pair-correlation function
gvv(r,v,v∗) for a three-dimensional Poisson point process for either
two large cells (bottom), a large and a small cell (center), or two
small cells (top). As examples of large or small cells, the volumes
were chosen such that their probability density is equal to 1/3 of
the maximum of the volume distribution; see Table I and Fig. 2.
The curves are compared to the standard pair-correlation function
g2(r) (dashed black line), which is trivially unity for the uncorrelated
Poisson point process. The radial distance r is normalized by
λ = 1/ρ1/3, where ρ is the number density.
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FIG. 8. (Color online) The cell-cell pair-correlation function
gvv(r,v,v∗) for equilibrium hard spheres at a global packing fraction
φ = 0.48; for details, see Fig. 7.

VI. CONCLUSIONS AND DISCUSSIONS

We have characterized the structure of MRJ sphere packings
by computing the Minkowski functionals, i.e., the volume,
the surface area, and the integrated mean curvature, of
the associated Voronoi cells. The local analysis, i.e., the
probability distribution of the Minkowski functionals of a
single Voronoi cell, provides qualitatively similar results for
the equilibrium hard-sphere liquid and the MRJ packings and
partly even for the uncorrelated Poisson point process.

In order to study the global structure of the Voronoi cells,
we have improved upon this analysis by introducing the
correlation functions Cμμ(r) of the Minkowski functionals
and the cell-cell probability density function p(r,v,v∗). The
correlation function Cμμ(r) measures the correlation of the
Minkowski functionals Wμ of two Voronoi cells given that
the corresponding centers are at a distance r . The cell-cell
probability density function p(r,v,v∗) also incorporates the
probability that there are two particles at a distance r . For an
easier interpretation and better visualization, we have defined
the dimensionless cell-cell pair-correlation function gvv =
p(r,v,v∗)/[ρ2f (v)f (v∗)], where f (v) is the probability of the
Voronoi volume v. The generalization of the pair correlation
to the cell-cell pair correlations provides powerful theoretical
and computational tools to characterize the complex local
geometries that arise in jammed disordered sphere packings.

Because the faces of a Voronoi cell are bisections between
a point in the point process (whether a packing or not) and
its neighbors and, moreover, because Voronoi neighbors share
a face and edges, the Minkowski functionals of neighboring
Voronoi cells are correlated by construction. This leads to a
large correlation length for the Voronoi cells in a Poisson point
process because of large Voronoi volume fluctuations. In the
equilibrium hard-sphere liquid and MRJ sphere packings, there
are correlations and anticorrelations. In contrast to the qual-
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FIG. 9. (Color online) The cell-cell pair-correlation function
gvv(r,v,v∗) of the MRJ sphere packings; the average packing fraction
is φ ≈ 0.64; for details, see Fig. 7.

itatively similar local Voronoi structure, the global Voronoi
structure of the MRJ hard-sphere packings is qualitatively
quite different from that of an equilibrium hard-sphere liquid.
We find strong Voronoi volume anticorrelations, which is
consistent with previous findings that MRJ sphere packings
are hyperuniform [29,45], i.e., large-scale density fluctuations
are suppressed. MRJ sphere packings are prototypical glasses
in that they have no long-range order but they are perfectly
rigid, i.e., the elastic moduli are unbounded [19,37,79]. The
global analysis introduced here shows the difference in the
structure of the Voronoi cells of the MRJ state and those of a
hard-sphere liquid, which further indicates that the structure
of a glass is not that of a “frozen liquid” [45,79,80].

An already known distinct structural difference between
the hyperuniform MRJ sphere packings and equilibrium hard-
sphere liquids is that while in the equilibrium packing the total
pair-correlation function h(r) = g2(r) − 1 is exponentially
damped, the total correlation function of the MRJ state
has a negative algebraic power-law tail [29,45,79]. It is an
interesting question as to whether the asymptotic behaviors
of the correlation function of the Minkowski functionals
Cμμ(r) or the radial cell-cell correlation functions gvv(r,v,v∗)
are different for the MRJ state and the hard-sphere liquid.
However, a direct observation of the power-law tail has,
so far, not been possible [29,45,79]; much larger systems
are needed but are not available at the moment. Still, the
global characteristics Cμμ(r) and gvv(r,v,v∗), introduced in
the present paper, allow for an investigation of the underlying
geometrical reasons for the negative algebraic tail in the total
pair-correlation function: the suppressed clustering of regions
with low and high local packing fractions [45].

Moreover, they also allow for a quantification of the global
structure of other cellular structures, e.g., foams, where the
centers of mass of the single cells can be used as centers of the
cells instead of the Voronoi centers used here.
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A frequently discussed question is whether or not
there are local icosahedral configurations in jammed pack-
ings [14,20,21,31,81], i.e., a central sphere with 12 spheres
in contact where the centers of the touching spheres form a
regular icosahedron. The Voronoi cell of the central sphere
in such an icosahedron is a regular dodecahedron, which has
the maximum possible local packing fraction (≈0.76). There
is growing evidence that there are no regular icosahedral ar-
rangements in hard-sphere packings, e.g., see Refs. [14,78,82].
Indeed, we find in our MRJ sphere packings no regular and
hardly any nearly regular dodecahedral Voronoi cells. All
spheres out of more than two million have less than 12
contacts. There are local packing fractions up to 0.75, but only
4.2 × 10−5 of all cells have a local packing fraction greater
than 0.74.

In a preliminary approach to look for possibly strongly
distorted dodecahedral Voronoi cells in the MRJ sphere pack-
ings, we examined the topology of the Voronoi polyhedra, i.e.,
the number of faces and the corresponding types of polygons,
following Refs. [81,83,84]. In a compact notation, the topology
of a polyhedron is given by the so-called p vector (n3 n4 n5n6),
where n3 is the number of triangles, n4 of quadrilaterals, n5 of
pentagons, and n6 of hexagons. The dodecahedron is formed
by 12 pentagons, i.e., its topology is denoted by (0 0 12 0).
Although these polyhedron characteristics are discontinuous
and inadequately metric for definite conclusions [85], they can
provide a first insight into whether there could be a significant
number of distorted dodecahedra. In the MRJ sphere packings,
1.1% of all cells have the topology of a dodecahedron (0 0 12
0) [86]. The average local packing fraction of those distorted
dodecahedra is 0.69 and is thus significantly greater than the
total mean local packing fraction which is 0.64. However, only
0.4% of the distorted dodecahedra have a local packing fraction
greater than 0.74. The distorted dodecahedra also have a higher
average number of contacts, ≈7, compared to the typical cell,
≈6, but as stated above there is not a single sphere with 12
contacts in this high-quality MRJ data. There are 25 other
topologies in the Voronoi diagram of the MRJ sphere packings
that occur more frequently than the dodecahedron. With 5.2%
of all cells, the most likely topology is (0 3 6 5). However,
by adding one or two faces, the dodecahedron can transform
to the following polyhedra [81]: 1.1% of all cells in the MRJ
sphere packings are (1 0 9 3), 3.1% are (0 1 10 2), and 4.4%
are (0 2 8 4). The latter is the second most common type in the
MRJ sphere packings. So, while we find no regular icosahedral
configurations in the MRJ sphere packings, the preliminary
topological analysis indicates that more detailed studies of
probably strongly distorted icosahedra could be interesting.
For example, also in metallic glasses, significant numbers of
distorted icosahedra have been found [87,88].

In the second paper of this series, we will further investigate
the global structure of the MRJ sphere packings by looking at
density fluctuations, the pore-size distribution, and the two-
point correlation functions.
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APPENDIX: CORRELATION FUNCTIONS OF THE
VORONOI CELLS IN THE ONE-DIMENSIONAL POISSON

POINT PROCESS

As an introductory example of the global Voronoi statistics
introduced in this paper, we analytically calculate the corre-
lation functions of the Voronoi cells in the one-dimensional
Poisson point process. Therefore, we use the probability
density functions Hp(nl) and Hp(nr ) of the nearest neighbor
on the left-hand side at a distance nl or on the right-hand side
at a distance nr , respectively.

Two points x1 and x2 at a distance r are given. Without
loss of generality, we assume in the following x1 = 0 and
x2 = r . The nearest-neighbor probability density functions
of x1 are Hp(nl) = ρe−ρnl and Hp(nr ) = ρe−ρnr θ (r − nr ) +
e−ρrδ(r − nr ), where θ (x) is the Heaviside step function and
δ(x) is the Dirac delta distribution. For x2, the distributions
for the right- and the left-hand side simply exchange. The
probability distribution f (v∗|r) of the volume v∗ of the
cell corresponding to x1 = 0 is given by the average of
δ( nr+nl

2 − v∗):

f (v∗|r) =
{

4v∗ρ2e−2v∗ρ if v∗ < r
2

2ρ(rρ + 1)e−2v∗ρ if v∗ � r
2 .

(A1)

Given a volume v∗ of the cell corresponding to x1: If v∗ <

r/2, there will be at least one additional point y between x1 and
x2. Its distance z to x2 is uniformly distributed between r − 2v∗
and r . With h(z|r,v∗) denoting the probability density function
of this distance, the conditional probability distribution of the
volume v of the cell corresponding to x2 is given by

f (v|r,v∗) =
∫ r

0
dzh(z|r,v∗)f (v|z), (A2)

with f (v|z) from Eq. (A1). A case-by-case analysis for
differently large v compared to r and v∗ is needed. If v <
r
2 − v∗, then

f (v|r,v∗) = 4vρ2e−2vρ. (A3)

If r
2 − v∗ < v < r

2 , then

f (v|r,v∗) = ρe−2vρ

2v∗ [4v(r − v)ρ − (r − 2v∗)2ρ

+ 4(v + v∗) − 2r]. (A4)

If v > r
2 , then

f (v|r,v∗) = 2ρe−2vρ[1 + ρ(r − v∗)]. (A5)

If v∗ > r/2, there will be at least one additional point y

between x1 and x2 with probability rρ/(rρ + 1) and with prob-
ability 1/(rρ + 1) the points x1 and x2 are nearest neighbors.
In the first case, the conditional probability distribution of the
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volume v is given by Eq. (A2), but the distance z is now
uniformly distributed between 0 and r . If v < r

2 , then

f (v|r,v∗) = 4vρe−2vρ

r
[(r − v)ρ + 1]. (A6)

If v > r
2 , then

f (v|r,v∗) = ρe−2vρ(rρ + 2). (A7)

In the second case, where there is no point between x1 and x2,
the volume v is at least r/2 and completely determined by the
nearest neighbor of x2 on the right-hand side,

f (v|r,v∗) = 2ρerρe−2vρ. (A8)

The cell-cell probability density function p(r,v,v∗) from
Sec. III B is then given by

p(r,v,v∗) = ρ2f (v∗|r)f (v|r,v∗). (A9)

From Eqs. (A1) and (A3) follows the asymptotic behavior of
p(r,v,v∗)

r→∞−−−→ ρ2f (v)f (v∗).
As described in Sec. III B, the volume-volume correlation

function C00 from Sec. III A follows straightforwardly,

C00(r) := r2ρ2 − 2rρ + 2 − 2e−rρ

4 − 4rρe−rρ − 2e−2rρ
e−rρ . (A10)

Figure 10 depicts the volume-volume correlation function
C00(r) of the one-dimensional Poisson point process; both the
analytic result and simulation data are shown.

As discussed in Sec. IV A for the three-dimensional
Poisson point process, the Voronoi neighbors are correlated by
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FIG. 10. (Color online) Correlation functions for the one-
dimensional Poisson point process: pair-correlation function g2(r)
(bottom); volume-volume correlation function C00(r) (top). The
distance r is scaled (in this one-dimensional example) by the inverse
of the number density λ = 1/ρ. An example of a one-dimensional
Voronoi diagram of a Poisson point process is depicted.

construction. Although very large Voronoi cells are rather
unlikely, their next-neighbor correlation leads to a large cor-
relation length in C00(r). In contrast to the three-dimensional
case, the Voronoi neighbors are uncorrelated if the distance of
their centers vanishes because in one dimension these Voronoi
cells become independent. They only depend on either the
nearest neighbor on the left- or on the right-hand side of
x1 = x2, which are independent of each other. For large radii,
the correlation vanishes exponentially, as expected, because
there is no long-range order in the Voronoi diagram.
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Phys. Rev. E 85, 030301 (2012).
[21] A. S. Clarke and H. Jónsson, Phys. Rev. E 47, 3975 (1993).
[22] G. T. Seidler, G. Martinez, L. H. Seeley, K. H. Kim, E. A. Behne,

S. Zaranek, B. D. Chapman, S. M. Heald, and D. L. Brewe, Phys.
Rev. E 62, 8175 (2000).

[23] E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).
[24] S. Torquato and F. H. Stillinger, Exp. Math. 15, 307 (2006).
[25] S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302 (2010).
[26] G. W. Delaney, T. Di Matteo, and T. Aste, Soft Matter 6, 2992

(2010).
[27] Y. Jiao, F. H. Stillinger, and S. Torquato, J. Appl. Phys. 109,

013508 (2011).

052120-10

http://dx.doi.org/10.1126/science.1086189
http://dx.doi.org/10.1126/science.1086189
http://dx.doi.org/10.1126/science.1086189
http://dx.doi.org/10.1126/science.1086189
http://dx.doi.org/10.1103/PhysRevE.67.031403
http://dx.doi.org/10.1103/PhysRevE.67.031403
http://dx.doi.org/10.1103/PhysRevE.67.031403
http://dx.doi.org/10.1103/PhysRevE.67.031403
http://dx.doi.org/10.1016/j.mechmat.2005.06.025
http://dx.doi.org/10.1016/j.mechmat.2005.06.025
http://dx.doi.org/10.1016/j.mechmat.2005.06.025
http://dx.doi.org/10.1016/j.mechmat.2005.06.025
http://dx.doi.org/10.1063/1.2718279
http://dx.doi.org/10.1063/1.2718279
http://dx.doi.org/10.1063/1.2718279
http://dx.doi.org/10.1063/1.2718279
http://dx.doi.org/10.1371/journal.pcbi.1000152
http://dx.doi.org/10.1371/journal.pcbi.1000152
http://dx.doi.org/10.1371/journal.pcbi.1000152
http://dx.doi.org/10.1371/journal.pcbi.1000152
http://dx.doi.org/10.1103/PhysRevE.87.022208
http://dx.doi.org/10.1103/PhysRevE.87.022208
http://dx.doi.org/10.1103/PhysRevE.87.022208
http://dx.doi.org/10.1103/PhysRevE.87.022208
http://dx.doi.org/10.1103/PhysRevB.34.797
http://dx.doi.org/10.1103/PhysRevB.34.797
http://dx.doi.org/10.1103/PhysRevB.34.797
http://dx.doi.org/10.1103/PhysRevB.34.797
http://dx.doi.org/10.1103/PhysRevLett.93.165702
http://dx.doi.org/10.1103/PhysRevLett.93.165702
http://dx.doi.org/10.1103/PhysRevLett.93.165702
http://dx.doi.org/10.1103/PhysRevLett.93.165702
http://dx.doi.org/10.4007/annals.2005.162.1065
http://dx.doi.org/10.4007/annals.2005.162.1065
http://dx.doi.org/10.4007/annals.2005.162.1065
http://dx.doi.org/10.4007/annals.2005.162.1065
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.77.021309
http://dx.doi.org/10.1103/PhysRevE.77.021309
http://dx.doi.org/10.1103/PhysRevE.77.021309
http://dx.doi.org/10.1103/PhysRevE.77.021309
http://dx.doi.org/10.1063/1.2802184
http://dx.doi.org/10.1063/1.2802184
http://dx.doi.org/10.1063/1.2802184
http://dx.doi.org/10.1063/1.2802184
http://dx.doi.org/10.1038/266309a0
http://dx.doi.org/10.1038/266309a0
http://dx.doi.org/10.1038/266309a0
http://dx.doi.org/10.1038/266309a0
http://dx.doi.org/10.1103/RevModPhys.82.2633
http://dx.doi.org/10.1103/RevModPhys.82.2633
http://dx.doi.org/10.1103/RevModPhys.82.2633
http://dx.doi.org/10.1103/RevModPhys.82.2633
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.47.3975
http://dx.doi.org/10.1103/PhysRevE.47.3975
http://dx.doi.org/10.1103/PhysRevE.47.3975
http://dx.doi.org/10.1103/PhysRevE.47.3975
http://dx.doi.org/10.1103/PhysRevE.62.8175
http://dx.doi.org/10.1103/PhysRevE.62.8175
http://dx.doi.org/10.1103/PhysRevE.62.8175
http://dx.doi.org/10.1103/PhysRevE.62.8175
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1080/10586458.2006.10128964
http://dx.doi.org/10.1080/10586458.2006.10128964
http://dx.doi.org/10.1080/10586458.2006.10128964
http://dx.doi.org/10.1080/10586458.2006.10128964
http://dx.doi.org/10.1103/PhysRevE.82.061302
http://dx.doi.org/10.1103/PhysRevE.82.061302
http://dx.doi.org/10.1103/PhysRevE.82.061302
http://dx.doi.org/10.1103/PhysRevE.82.061302
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1063/1.3524489


CHARACTERIZATION OF MAXIMALLY RANDOM JAMMED . . . PHYSICAL REVIEW E 90, 052120 (2014)

[28] M. Palombo, A. Gabrielli, V. D. P. Servedio, G. Ruocco, and S.
Capuani, Sci. Rep. 3, 2631 (2013).

[29] A. Donev, F. H. Stillinger, and S. Torquato, Phys. Rev. Lett. 95,
090604 (2005).

[30] L. E. Silbert and M. Silbert, Phys. Rev. E 80, 041304 (2009).
[31] R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
[32] L. Berthier, P. Chaudhuri, C. Coulais, O. Dauchot, and P. Sollich,

Phys. Rev. Lett. 106, 120601 (2011).
[33] S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev.

Lett. 84, 2064 (2000).
[34] A. R. Kansal, S. Torquato, and F. H. Stillinger, Phys. Rev. E 66,

041109 (2002).
[35] Note that there are many other more ordered packings with the

same packing fraction.
[36] S. Torquato and F. H. Stillinger, J. Phys. Chem. B 105, 11849

(2001).
[37] S. Torquato, A. Donev, and F. Stillinger, Int. J. Solids Struct. 40,

7143 (2003).
[38] The jamming category of a finite system will depend on the

boundary conditions.
[39] S. Atkinson, F. H. Stillinger, and S. Torquato, Phys. Rev. E 88,

062208 (2013).
[40] E. Marcotte and S. Torquato, Phys. Rev. E 87, 063303

(2013).
[41] A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato, Phys.

Rev. E 75, 051304 (2007).
[42] B. D. Lubachevsky and F. H. Stillinger, J. Stat. Phys. 60, 561

(1990).
[43] S. Torquato and F. H. Stillinger, Phys. Rev. E 68, 041113 (2003).
[44] This determines the asymptotic behavior of the total correlation

function and the number variance or density fluctuations within
a spherical observation window as a function of the radius of an
observation window [43].

[45] A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E
86, 021505 (2012).

[46] J. L. Finney, P. R. Soc. A Math. Phys. 319, 479 (1970).
[47] F. W. Starr, S. Sastry, J. F. Douglas, and S. C. Glotzer, Phys.

Rev. Lett. 89, 125501 (2002).
[48] F. Lechenault, F. da Cruz, O. Dauchot, and E. Bertin, J. Stat.

Mech. (2006) P07009.
[49] T. Aste and T. Di Matteo, Eur. Phys. J. E 22, 235 (2007).
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