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ABSTRACT: Numerous recent investigations have been
devoted to the determination of the equilibrium phase behavior
and packing characteristics of hard nonspherical particles,
including ellipsoids, superballs, and polyhedra, to name but just
a few shapes. Systems of hard nonspherical particles exhibit a
variety of stable phases with different degrees of translational
and orientational order, including isotropic liquid, solid crystal,
rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-
cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of
systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly
space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases:
first a liquid−solid transition and then a solid−solid transition. The isotropic liquid phase coexists with the Conway−Torquato
(CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [J. Chem. Phys. 2011, 135,
151101]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591
± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the
densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for
stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated
tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically
study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and
orientational pair correlation function. We find that such MRJ packings are hyperuniform with an average packing fraction of
0.770, which is considerably larger than the corresponding value for identical spheres (≈ 0.64). We conclude with some simple
observations concerning what types of phase transitions might be expected in general hard-particle systems based on the particle
shape and which would be good glass formers.

I. INTRODUCTION

Hard-particle systems have served as useful models of low-
temperature states of matter, including liquids,1 crystals,2

glasses,2,3 granular media,4,5 heterogeneous materials,4 and
powders.6 Understanding the equilibrium and nonequilibrium
properties of hard particle systems is of great interest. This is
reflected by the numerous studies devoted to these topics for
nonspherical particles that span a wide range of shapes,
including ellipsoids, superballs, and polyhedra.1,7−19 Nano-
particles and colloidal particles of various shapes can now be
routinely synthesized in the laboratory.20−23

In general, a packing is defined as a large collection of
nonoverlapping solid objects (particles) in d-dimensional
Euclidean space d. The associated packing fraction (or
density) ϕ is defined as the fraction of space d covered by
the particles. The densest packing of a specific particle shape,
which is usually achieved by an ordered arrangement depending

on the particle symmetry,17,18 is the thermodynamic stable
phase of that shape in the infinite-pressure limit,25 and thus
provides the starting point to determine the entire high-density
phase behavior of the system. On the other hand, the maximally
random jammed (MRJ) state of packing can be considered to
be a prototypical glass.24,25 Roughly speaking, MRJ packings
can be obtained by compressing liquid configurations at the
largest possible rate such that the packing is strictly jammed
(i.e., mechanically stable).25

The hard-sphere model in 3 has a venerable history.1,4,25−33

It is well-known from numerical simulations that such a system
exhibits a first-order liquid-crystal phase transition as the
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density increases along the liquid branch. The associated
freezing- and melting-point packing fractions have been
determined to be around 0.49 and 0.55, respectively, by both
pressure and free-energy calculations.1,25 At the maximal
density, free-energy calculations have been used to demonstrate
that the face-centered cubic crystal (FCC) is very slightly more
stable than the hexagonal close-packed crystal.28,30,31 Upon
rapid compression from a liquid configuration, the system falls
out of equilibrium and follows a metastable branch, whose end
state is presumably the MRJ state in the infinite-volume
limit.25,29 The aforementioned equilibrium and nonequilibrium
properties of the hard-sphere system are schematically
illustrated in Figure 1.

Since nonspherical particles have both translational and
rotational degrees of freedom, they usually have a richer phase
diagram than spheres, i.e., the former can possess different
degrees of translational and orientational order. For example, a
rotator (or plastic) phase is one in which particles possess
translational order but can rotate freely.34−36 A nematic phase is
one in which the particles are aligned (i.e., with orientational
order) while the system lacks any long-range translational
order.37,38 A smectic phase is one in which particles have
ordered orientations and possess translational order in one
direction.39 The types of phases formed by hard nonspherical
particles are influenced by many factors. It is well-known that
entropy plays a principal role in determining the phase behavior
of hard-particle systems. For example, spheroids (ellipsoids of
revolution) with needle-like shapes exhibit a liquid-nematic
phase transition at low densities.37 While more recent studies7,8

have also revealed that spheroids with shapes closer to spheres
exhibit a liquid-rotator crystal phase transition at intermediate
densities. It has been demonstrated that the local curvature of
the particle shape contributes to the stabilization of rotator
phases by studies of superballs at intermediate densities.9,40

Gantapara et al.12 showed that the phase diagram of truncated
cubes exhibits a rich diversity in crystal structures that depend
sensitively on the amount of truncation. When the interactions
are dominated by hard-particle-like repulsions, such as in

certain polymer systems, the role of entropy is significant as
well.41

One aim of this paper is to determine systematically the
equilibrium phase behavior of the Archimedean truncated
tetrahedra for the entire density range. An Archimedean
truncated tetrahedron (henceforth often called a truncated
tetrahedron for simplicity) is obtained by truncating the corners
of a regular tetrahedron with edge length that is one-third of
the edge length of the original tetrahedron, and it therefore has
four regular triangular faces and four hexagonal faces. It is of
particular interest because it is the only nonchiral Archimedean
solid without central symmetry and, as we will discuss, packings
of truncated tetrahedra can nearly fill all of the space. Some
geometrical properties of the truncated tetrahedron, including
the inradius rin, circumradius rout, asphericity γ ≡ rout/rin, radius
of mean curvature R̅,42 surface area S, volume v, and scaled
exclusion volume vex/v,

42 are summarized in Table 1.

Jiao and Torquato10 have recently analytically constructed
the densest known packing of such polyhedra with ϕ = 207/
208 = 0.995192.... Given that this packing fraction is nearly
equal to unity and truncated tetrahedra cannot tile three-
dimensional Euclidean space 3, this densest known packing is
likely the densest packing for such solids. In the same paper, the
equilibrium melting properties of truncated tetrahedra were
also qualitatively studied by simply monitoring the structural
changes upon decompression from the densest known packing.
They found that the system apparently undergoes a transition
to another crystal phase, namely the one associated with the
packing of truncated tetrahedra discovered by Conway and
Torquato43 (henceforth referred to as “CT crystal”) as well.
Figure 2 shows a portion of the CT packing and the densest
known packing. However, only free-energy calculations can
yield quantitatively accurate information about the phase
behavior of truncated tetrahedra over the entire range of
densities.
In the present work, we employ a Monte Carlo

implementation of the adaptive-shrinking-cell (ASC) numerical
scheme17,18 and free-energy calculations1 to investigate with
high precision the equilibrium phase behavior of truncated
tetrahedra and to verify whether the types of phases found in
ref 10 are indeed thermodynamically stable. Consistent with the
findings of ref 10, we find that the system undergoes two first-
order phase transitions as the density increases: first a liquid−
solid transition and then a solid−solid transition. The isotropic
liquid phase coexists with the Conway-Torquato (CT) crystal
phase with densities in the range ϕ ∈ [0.496 ± 0.006, 0.591 ±
0.005]. At higher densities, the CT phase coexists with the one
associated with the densest-known crystal with densities in the
range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no
evidence for stable rotator or nematic phases. Moreover, we
also generate maximally random jammed packings of truncated

Figure 1. Schematic plot for the pressure of the hard-sphere system as
a function of packing fraction along the stable liquid and crystal
branches, and along a metastable branch ending at the MRJ state in the
infinite-volume limit. This figure is adapted from ref 25.

Table 1. Some Geometrical Properties of the Archimedean
Truncated Tetrahedron with Side Length a

inradius, rin (6a)1/2/4
circumradius, rout (22a)1/2/4
asphericity, γ √(33/3)
radius of mean curvature, R̅ (9/4π)cos−1(1/3)a
surface area, S 7(3a2)1/2

volume, v (23/12)(2a3)1/2

scaled exclusion volume, vex/v 2 + (378/23π)(3/2)1/2 cos−1(1/3)
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tetrahedra using ASC simulations with a sufficient large
compression rate and study their characteristics, including the
packing fraction, centroidal pair correlation function, structure
factor and orientational correlation function. We find that the
MRJ packings are hyperuniform44 (see section V for definitions
and details). In closing, we explain why truncated tetrahedra are
expected to have the two types of first-order phase transitions
reported here.
The rest of the paper is organized as follows: In section II, we

discuss the simulation methods used in studying the phase
behavior of truncated tetrahedra. In section III, we discuss the
structural descriptors used to characterize equilibrium and MRJ
packings of truncated tetrahedra. In section IV, we study the
equilibrium phase behavior of truncated tetrahedra using ASC
simulations and free-energy calculations. In section V, we
generate and characterize MRJ packings of truncated
tetrahedra. In section VI, we provide concluding remarks and
make some simple observations concerning what types of phase
transitions might be expected in general hard-particle systems
based on the particle shape.

II. SIMULATION PROCEDURES FOR PHASE BEHAVIOR

A. Adaptive-Shrinking-Cell Monte Carlo Method. The
adaptive-shrinking-cell (ASC) Monte Carlo method is
employed to equilibrate hard truncated tetrahedra at different
packing fractions. While we sketch the procedure here, the
reader is referred to ref 18 for additional details. Along the
liquid branch, initially a system at each packing fraction is
generated by compressing dilute disordered particle config-
urations with ϕ < 0.1 in a simulation box subject to periodic
boundary conditions. Along the crystal branch, initially a system
at each packing fraction is generated by dilating the densest
crystal of the particles in a simulation box subject to periodic
boundary conditions. Our ASC scheme is capable of shrinking
the simulation box, but we do not employ that feature for the
determination of the phase behavior (just use it for the
generation of MRJ states, as described in section V). The initial
systems at fixed densities are equilibrated by particle trial moves
and volume-preserving shear deformations of the simulation
box. Specifically, for a fixed simulation box, each particle is
sequentially randomly displaced and rotated by small amounts.
A trial move is rejected if it results in overlap between a pair of
particles and is accepted otherwise. The separation axis theorem
(SAT)45 is used to check overlaps. After a prescribed number of
trial-move cycles, the boundary of the periodic simulation box
(fundamental cell) is allowed to deform by specified small
amount. Such a boundary move is accepted if no overlaps

between any pair of particles in the system occur and is rejected
otherwise. The boundary deformation is represented by a
symmetric strain tensor, whose trace (i.e., the sum of the
diagonal components) corresponds to the volume change (i.e.,
compression or expansion) of the fundamental cell, and the off-
diagonal components correspond to the shape change (i.e.,
deformation) of the fundamental cell. The equilibrium pressure
is obtained as discussed in the ensuing section.

B. Pressure Calculation. The equilibrium pressure of the
truncated-tetrahedron system in our NVT simulation is
computed from the distribution of interparticle gaps. Following
ref 46, the scaled pressure Z is given by

ρ
ϕα≡ = +Z

p
k T

1
2B (1)

where ρ = N/V is the number density of the system, T is the
temperature, and kB is the Boltzmann’s constant. The
parameter α depends on the particle shape and is computed
from the following relation:

ϕ α α ϕΔ = − ΔPln ( ) ln1 (2)

where P1(Δϕ) is the probability that a given particle first
overlaps with another particle if the packing fraction of the
system is increased by Δϕ, regardless of other overlapping pairs
of particles.
In practice, one just needs to compute for each particle the

minimal compression (i.e., change of volume) leading to
overlap between it and its nearest neighbor. This process is
repeated for every particle in the system and a histogram of the
distribution of minimal interparticle gaps is then obtained.

C. Free Energy Calculations. Free Energy Calculations of
the Liquid Phase. To compute the free energy of the liquid
phase, we first use pressure calculations discussed in section
II.A to obtain the associated dimensionless equation of state
(EOS) for the scaled pressure, i.e., Z = p/(ρkBT). Then we
integrate the EOS from a low-density reference state with
packing fraction ϕ0 to a specific ϕ to get the associated
Helmholtz free energy,,11i.e.

∫ϕ ϕ ϕ
ϕ

ϕ= +
′

′
′

ϕ

ϕA
Nk T

A

Nk T
p
k T

( ) ( ) ( )v
d

B

0

B B
2

0 (3)

where

ϕ μ ϕ ϕ ϕ= −A Nk T k T p k T( )/( ) ( )/( ) ( )v/( )0 B 0 B 0 B 0 (4)

and v is the volume of a particle and μ (ϕ0) the chemical
potential at packing fraction ϕ0, which is calculated by Widom’s

Figure 2. (a) Portion of the CT crystal. (b)Portion of the densest known crystal.
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particle insertion method.47 In this paper, we use a reference
system at ϕ0 = 0.10 for liquid-phase free energy calculations.
Free Energy Calculations of a Solid Phase. To compute the

free energy of a solid phase, we employ the standard NVT
Einstein crystal method.1,9,11,48 Specifically, we construct a
reversible path between the actual hard-particle crystal and an
ideal Einstein crystal, which allows us to calculate the free-
energy difference between these two systems. Since the free
energy of the ideal Einstein crystal is known analytically, we can
thus obtain the absolute value of the free energy for the hard-
particle crystal, i.e.

∫ λ
λ

λ
= −

∂
∂

λA N V T
k T

A N V T
k T

U( , , ) ( , , )
d

( )E E

B B 0

max

(5)

where ⟨...⟩ denotes ensemble average of systems with coupling
potential UE, and λmax is the maximum coupling constant that is
sufficiently strong to suppress particle collisions. When λ = λmax,
the system behaves like an ideal Einstein crystal. When λ = 0,
there is no coupling potential and the system behaves as the
real crystal under consideration. The free energy of the ideal
Einstein crystal AE(N,V,T) is given by

∫

π
λ σ

σ
π

θ ϕ χ

θ
λ

ψ ψ

= − − +
Λ Λ

+ −

− +

⎪

⎪

⎪

⎪

⎛
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⎞
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⎛
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⎩

⎡
⎣⎢

⎤
⎦⎥
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N

VN
N

k T

( , , ) 3( 1)
2

ln ln

ln ln
1

8
d d d

sin exp (sin sin )

E t r

a b

B

B

max

3

4

3

1/2 2

max

B

2 2

(6)

where Λt and Λr are the translational and rotational thermal de
Broglie wavelengths, respectively, and both are set to 1 in our
simulations; σ = 1/v1/3 is the characteristic length of the particle
with volume v; θ, ϕ and χ are the Euler angles49 defining the
orientation of the particle with respect to the reference
orientation in the reference lattice; ψa and ψb are the minimal
angles formed by the two reference vectors a, b and the
characteristic vectors of a particle defining its orientation. The
potential UE(λ) characterizes the coupling between the hard
particles to their reference lattice sites and reference
orientations,9,50 i.e.,

∑λ λ σ ψ ψ= − + +
=

U r r( ) [( ) / (sin sin )]E
i

N

i i i ia b
1

0
2 2 2 2

(7)

where ri − ri0 is the displacement of particle i with respect to its
reference lattice site.
Validation of Free Energy Calculation. To validate our

implementation of the free energy calculations, we have
calculated the free energy of hard regular octahedra within
intermediate density ranges, where it has been previously
shown that there is a first-order liquid to Minkowski crystal51

phase transition.9,12 Our results are shown in Figure 3. On the
basis of our free energy calculations, we estimate the freezing-
and melting-point packing fractions of hard octahedra to be
0.489 ± 0.004 and 0.582 ± 0.008, respectively, which agree well
with previously reported values in the literature.9,12

III. STRUCTURAL DESCRIPTORS
In this section, we present a number of structural descriptors
that quantitatively characterize various packing structures of

truncated tetrahedra that are associated with the equilibrium
and nonequilibrium phases of the system. In addition, we
briefly review the “hyperuniformity” concept and its quantifi-
cation, which appears to be a universal structural characteristic
of general maximally random jammed packings.

A. Orientational Pair Correlation Function. The
emergence of orientational order in a MC simulations is
usually a strong indication of a possible first-order phase
transition. To quantify the orientational order in the system of
truncated tetrahedra at different densities, we use an orienta-
tional pair correlation function, which we define as

δ α α

δ
=

∑ ∑ − +

∑ ∑ −
= ≠

= ≠

g r
r r

r r
( )

( )(sin sin )/2

( )orient
i
N

j i
N

ij ij
F

ij
F

i
N

j i
N

ij

1
2 2

1

1 2

(8)

where αij
F1 is the minimum angle formed by any of the

characteristic vectors associated with truncated tetrahedron i
and any of the characteristic vectors associated with truncated
tetrahedron j, and αij

F2 is the second minimum besides αij
F1 (αij

F1 ≤
αij
F2). We define a characteristic vector associated with a

truncated tetrahedron as the unit vector pointing from the
particle centroid to the center of one of the four hexagonal
faces of a truncated tetrahedron. The superscript F1 denotes
such pair of characteristic vectors passing through the
hexagonal face centers that minimizes the angle between
them, and F2 denotes the next pair that minimizes the angle
besides the pair associated with F1. The orientational pair
correlation function will be employed to suggest possible stable
phases for subsequent free energy calculations.

B. Structure Factor and Centroidal Pair Correlation
Function. The ensemble-averaged structure factor of infinite
point configurations in d-dimensional Euclidean space at
number density ρ is defined via

ρ= + ̃S hk k( ) 1 ( ) (9)

where h̃(k) is the Fourier transform of the total correlation
function h(r) = g2(r) − 1 and g2(r) is the centroidal pair
correlation function of the system. Note that definition 9
implies that the forward scattering contribution to the
diffraction pattern is omitted. For statistically homogeneous

Figure 3. Reduced Helmholtz free energy per unit volume A/(VkBT)
as a function of packing fraction ϕ for hard octahedra. The liquid
phase is found to coexist with the Minkowski crystal. The freezing- and
melting-point packing fractions are estimated to be 0.489 ± 0.004 and
0.582 ± 0.008, respectively.
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and isotropic systems, the focus of this paper, g2 depends on the
radial distance r ≡ |r| between the points as well as the number
density ρ.
For computational purposes, the structure factor S(k) for a

given finite point configuration can be obtained directly from
the positions of the points rj,

53 i.e.

∑= | · | ≠
=

S
N

ik k r k 0( )
1

exp( ) ( )
j

N

j
1

2

(10)

where N is the total number points in the system (under
periodic boundary conditions) and k is the wave vector. Note
that the forward scattering contribution (k = 0) in equation 10
is omitted, which makes relation 10 completely consistent with
the definition 9 in the ergodic infinite-system limit. For
statistically homogeneous and isotropic systems, the focus of
this paper, the structure factor S(k) only depends on the
magnitude of the scalar wavenumber k = |k| = 2πn/L, where n =
0, 1, 2, ..., and L is the linear size of the system.
C. Hyperuniform Systems. The small-k behavior of the

structure factor S(k) encodes information about large-scale
spatial correlations in the system and in the limit k → 0
determines whether the system is hyperuniform. Specifically, an
infinite point configuration in d-dimensional Euclidean space is
hyperuniform if

=
→

S klim ( ) 0
k 0 (11)

which implies that the infinite-wavelength density fluctuations
of the system (when appropriately scaled) vanish.44

A hyperuniform point configuration has the property that the
variance in the number of points in an observation window Ω
grows more slowly than the volume of that window.44 In the
case of a spherical observation window of radius R, this
definition implies that the local number variance σ2(R) grows
more slowly than Rd in d dimensions. The local number
variance of a statistically homogeneous point configuration in a
spherical observation window is given exactly by

∫σ ρ ρ α= +


R R h Rr r r( ) v( )[1 ( ) ( ; ) d ]2
d (12)

where v(R) is the volume of a spherical window of radius R and
α(r;R) is the scaled intersection volume, i.e., the intersection
volume of two spheres of radius R separated by a distance r
divided by the volume of a sphere v(R).
It has been shown that the number variance in eq 12, under

certain conditions, admits the following asymptotic scaling:44

σ ϕ= + +
− −

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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⎨
⎩

⎛
⎝

⎞
⎠

⎛
⎝
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⎠

⎡
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⎛
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⎞
⎠

⎤
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⎫
⎬
⎭

R A
R
D

B
R
D

o
R
D

( ) 2d
d d d

2
1 1

(13)

where

∫ρ= + =
→

A h Sr r k1 ( ) d lim ( )
k 0d (14)

D is a characteristic microscopic length associated with the
point configuration (e.g., the average nearest-neighbor distance
between the points) and o(x) denotes all terms of order less
than x. Clearly, when the coefficient A = 0, i.e., limk→0 S(k) = 0
satisfies the requirements for hyperuniformity. The relation in
14 then implies that hyperuniform point patterns do not
possess infinite-wavelength density fluctuations (when appro-
priately scaled) and hence from 13 the number variance scales

as the surface area of the window for large R, i.e., σ2(R) ∼ Rd−1

in the large-R limit. Equations 13 and 14 are valid for all
periodic point patterns (including perfect lattices), quasicrys-
tals, and disordered systems in which the pair correlation
function g2 decays to unity exponentially fast.44 The degree to
which large-scale density fluctuations are suppressed enables
one to rank order crystals, quasicrystals and special disordered
systems.44,53

Disordered hyperuniform structures can be regarded as new
states of disordered matter in that they behave more like
crystals or quasicrystals in the manner in which they suppress
density fluctuations on large length scales, and yet are also like
liquids and glasses in that they are statistically isotropic
structures with no Bragg peaks. Thus, disordered hyperuniform
materials can be regarded to possess a “hidden order” that is
not apparent on short length scales and are endowed with novel
physical properties. Such states of matter can be arrived at via
both equilibrium and nonequilibrium routes and include
fermionic ground states,54 classical disordered ground states,55

and MRJ particle packings.15,56−59 Disordered hyperuniform
dielectric network materials have been shown to possess large
and complete photonic band gaps.60 More recently, it has been
demonstrated that this exotic state of matter arises in the
photoreceptor patterns in avian retinas.61

For disordered hyperuniform systems with a total correlation
function h(r) that does not decay to zero exponentially fast,
other dependencies of the number variance on R may be
observed. More generally, for any reciprocal power law,

∼ →αS k k k( ) ( 0) (15)

or, equivalently,

∼ − → +∞α+h r
r

r( )
1

( )d (16)

one can observe a number of different kinds of dependencies of
the asymptotic number variance σ2 on the window radius R for
R → ∞:44,53,57

σ

α

α

α

∼
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⎪⎪

R

R R

R

R

( )

ln , 1

, 1

, 1

d

d

d

2

1

1
(17)

Note that in all cases, the number variance of a hyperuniform
point pattern grows more slowly than Rd.

IV. EQUILIBRIUM PHASE BEHAVIOR OF TRUNCATED
TETRAHEDRA

To explore the possible phases arising in the system of hard
truncated tetrahedra, we first carry out ASC simulations and
quantify the orientational order in the system. Specifically, we
compute the orientational pair correlation function [as defined
in eq 8] for equilibrated systems with N = 686 particles at
different densities. As shown in Figure 4, below ϕ ≈ 0.53, there
is no long-range orientational correlation in the system, while
around ϕ = 0.57 long-range orientational correlation begins to
emerge. Together with the centroidal pair correlation function
g2 characterizing the translational order reported previously,10

we find that the orientational order and translational order arise
almost simultaneously during a possible first-phase liquid−solid
phase transition. These results strongly suggest that the
truncated tetrahedron system possesses neither stable nematic
nor rotator phases.
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A. First-Order Liquid−Solid Phase Transition of
Truncated Tetrahedra. We employ pressure and free energy
calculations to determine precisely the freezing- and melting-
point packing fractions for hard truncated tetrahedra.
Specifically, we calculate the reduced pressure, i.e, pv/(kBT)
vs ϕ for the liquid branch, liquid−solid phase transition region,
and the crystal branch, where v is the volume of a truncated
tetrahedron. A periodic simulation box containing N = 686
hard truncated tetrahedra is employed. A system at each density
is initially generated by dilating the fundamental cell of the
densest crystal of the particles, which is then equilibrated. At
each density, at least 500000 MC trial moves per particle and
5000 trial volume-preserving shear deformations of the
fundamental cell are applied to equilibrate the system. Then
the pressure of the equilibrated system is collected. As shown in
Figure 5, the reduced pressure pv/(ρkBT) increases smoothly
with ϕ along the equilibrium liquid branch up to a density ϕ ≈
0.49 ± 0.01. Within the density range between ϕ ≈ 0.49 ± 0.01
and ϕ ≈ 0.59 ± 0.01, the trend of the reduced pressure exhibits
discontinuities, suggesting that metastable states exist in this
region. (These coexistence densities will be determined more
precisely by free energy calculations below.) Beyond ϕ ≈ 0.59
± 0.01, the trend becomes smooth again, suggesting that the
system enters an equilibrium solid branch.
For the liquid branch, we compare the fit of our data for the

dimensionless pressure Z = p/(ρkBT) to the Boublıḱ’s analytical
approximation for the EOS62 for convex hard particles, which is
given by

ϕ
ϕ
ϕ

ϕ ϕ
ϕ

=
−

+
−

+ − −
−

Z
A A A A1

1
3

(1 )
3 (6 5)

(1 )2

2 2 3

3

(18)

where A = SR̅/3v is the nonsphericity parameter (S, R̅, v are the
surface area, radius of mean curvature, volume of a single
particle, respectively). As shown in Figure 6, the Boublıḱ’s EOS
appreciably underestimates the simulation data, which indicates
the need for an improved analytical approximation for the EOS.
To precisely locate the freezing- and melting-point packing

fractions associated with this first-order transition, we calculate
the free energies for the liquid and CT crystal phase at different
densities. For the liquid phase, a periodic simulation box

containing N = 686 hard truncated tetrahedra is employed. At
each density, at least 500000 MC trial moves per particle and
5000 trial volume-preserving shear deformations of the
fundamental cell are applied to equilibrate the system. For
the CT crystal phase, to eliminate finite-size effects, we use four
different system sizes (N = 432, N = 1024, N = 1458, and N =
2000) and extrapolate the corresponding free energies to obtain
the infinite-size limit.63 To suppress particle collisions, λmax in
eq 5 is chosen to be 2000. For each system, 40000 MC cycles
(i.e., a sequential trial move of each particle) are used to
equilibrate the system and another 40000 cycles are used to
compute the ensemble-averaged value of U(λ) at each
integration point in eq 5.
After the Helmholtz free energy per unit volume A/(NkBT)

as a function of ϕ for different phases are obtained, we employ
a common tangent construction, as shown in Figure 7, to find
precisely the coexistence densities.9 We find that the freezing-

Figure 4. Orientational pair correlation function gorient(r) as a function
of the dimensionless distance r/σ (where σ = v1/3) for equilibrated
systems of hard truncated tetrahedra at different packing fractions ϕ =
0.28, 0.48, 0.53, 0.57, 0.61, and 0.87. Below ϕ ≈ 0.53, there is no long-
range orientational correlation in the system, while around ϕ = 0.57
long-range orientational correlation arises.

Figure 5. Reduced pressure pv/(kBT) as a function of packing fraction
ϕ for the liquid branch (below ϕ ≈ 0.49 ± 0.01), liquid−solid phase
transition region (between ϕ ≈ 0.49 ± 0.01 and ϕ ≈ 0.59 ± 0.01) and
the crystal branch (above ϕ ≈ 0.59 ± 0.01) of hard truncated
tetrahedra, where v is the volume of a truncated tetrahedron. The
square dots are the actual simulation data and the solid curves are the
fits of the data for the liquid and crystal branches, respectively. The
horizontal dash line denotes the coexistence region between the liquid
and the CT crystal, which is determined by subsequent free energy
calculations.

Figure 6. Z = p/(ρkBT) as a function of packing fraction ϕ for the
liquid branch by Boublıḱ’s expression and simulation data, respectively.
Note that the two curves diverge appreciably.
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and melting-point packing fractions are respectively given by ϕ
= 0.496 ± 0.006 and ϕ = 0.591 ± 0.005.

B. First-Order Solid−Solid Phase Transition of
Truncated Tetrahedra. Jiao and Torquato suggested that
there is a solid−solid phase transition between the CT crystal
and the densest known crystal at high densities by monitoring
structural changes upon decompression from the densest
crystal.10 However, the nature of this transition and the exact
transition densities were not determined in their study. Here
we employ pressure and free-energy calculations to investigate
this putative solid−solid phase transition.
Specifically, we calculate the reduced pressure pv/(kBT) as a

function of ϕ for ϕ ∈ [0.76, 0.85]. A periodic simulation box
containing N = 686 hard truncated tetrahedra is employed. At
each density, at least 500000 MC trial moves per particle and
5000 trial volume-preserving shear deformations of the
fundamental cell are applied to equilibrate the system. The
pressure of the equilibrated system is then collected. As shown
in Figure 8, between ϕ ≈ 0.775 ± 0.005 and ϕ ≈ 0.800 ±
0.002, the trend of the reduced pressure pv/(kBT) versus ϕ
exhibits a weak discontinuity, suggesting a possible first-order
solid−solid phase transition, which is consistent with the
qualitative study of Jiao and Torquato10 in which structural
changes upon decompression were monitored.
To precisely locate the coexistence densities associated with

this transition, we calculate the free energy for the CT crystal
and densest known crystal at different densities, as shown in
Figure 9. As in the case of liquid−solid transition, we correct for
finite-size effects in the values of the free energy at some fixed
density by using different system sizes (i.e., N = 432, N = 1024,
N = 1296, and N = 1458) and extrapolation (see Figure 10).
The parameter λmax in eq 5 is chosen to be 12000 to suppress
particle collisions. For each system, 40000 MC cycles are used
to equilibrate the system and another 40000 cycles are used to
collect the ensemble averaged value of U(λ) at each integration
point. A common tangent construction is then employed to
identify the coexistence densities for the first-order CT to

densest-known crystal transition, i.e., ϕ ∈ [0.780 ± 0.002, 0.802
± 0.003].

V. MAXIMALLY RANDOM JAMMED PACKINGS OF
TRUNCATED TETRAHEDRA

As indicated in section I, a hard-particle system falls out of
equilibrium when compressed sufficiently fast to a disordered
jammed packing state. The largest possible compression rate
consistent with jamming will result in the maximally random
jammed packing state. In this section, we generate the MRJ
packings of truncated tetrahedra using ASC simulations with a
sufficiently large compression rate and then study their
structural characteristics.

Figure 7. Reduced Helmholtz free energy per unit volume A/(VkBT)
as a function of packing fraction ϕ in the vicinity of the liquid-CT
crystal coexistence region of hard truncated tetrahedra. The freezing-
and melting-point packing fractions of hard truncated tetrahedra are
estimated to be ϕ = 0.496 ± 0.006 and ϕ = 0.591 ± 0.005,
respectively.

Figure 8. Reduced pressure pv/(kBT) as a function of packing fraction
ϕ at high densities for truncated tetrahedra, where v is the volume of a
truncated tetrahedron. The square dots are the actual simulation data
and the solid curves are fits of the data for the CT and densest known
crystal phases, respectively. The horizontal dash line denotes the
coexistence region between these two crystals, which is determined by
subsequent free energy calculations. Note that approximately between
ϕ ≈ 0.775 ± 0.005 and ϕ ≈ 0.800 ± 0.002 the trend for simulation
data exhibits discontinuities, suggesting the occurrence of a solid−solid
phase transition.

Figure 9. Reduced Helmholtz free energy per unit volume A/(VkBT)
as a function of packing fraction ϕ for CT crystal phase and densest
known crystal phase of hard truncated tetrahedra. The coexistence
densities of CT crystal and densest known crystal are estimated to be
ϕ = 0.780 ± 0.002 and ϕ = 0.802 ± 0.003.
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A. Generation of MRJ Packings via Fast Compression
Using the ASC Scheme. Starting from an unjammed initial
packing configuration, the particles are randomly displaced and
rotated sequentially. If a trial move (e.g., random displacement
or rotation of a particle) causes overlap between a pair of
particles, it is rejected; otherwise, the trial move is accepted and
a new packing configuration is obtained. After a prescribed
number of particle trial moves, small random deformations and
compressions/dilations of the simulation box are applied such
that the system is on average compressed. The compression
rate Γ is defined as the inverse of the number of particle trial
moves per particle per simulation-box trial move. For large Γ,
the system cannot be sufficiently equilibrated after each
compression and will eventually jam with a disordered
configuration at a lower density than that of the corresponding
maximally dense crystalline packing.15

Two types of unjammed packings are used as initial
configurations: dilute equilibrium hard polyhedron fluids with
ϕ < 0.1 and packings derived from MRJ hard-sphere packings.
In the later case, the largest possible polyhedron with random
orientation is inscribed into each sphere, which is employed to
maximize both translational and orientational disorder in the
initial packings. Initial configurations of both types are quickly
compressed (Γ ∈ [0.01, 0.1]) to maximize disorder until the
average interparticle gap is ∼0.1 of the circumradius of the
polyhedra. Then a much slower compression (Γ ∈ [0.0002,
0.001]) is used to allow true contact network to be established
which induces jamming. The final packings are verified to be
strictly jammed by shrinking the particles by a small amount
(<0.01 circumradius) and “equilibrating” the system with a
deformable boundary. If there is no increase of the interparticle
gaps (decreasing pressure) for a sufficiently long period of time
(>50 000 MC moves per particle), the original packing is
considered to be jammed.15 Translational and orientational
order are explicitly quantified by evaluating corresponding
correlation functions, which then enables us to find those
configurations with a minimal degree of order among a
representative set of configurations. This analysis leads to
reasonably close approximations to the MRJ states.15

For truncated tetrahedra, jammed final packings with similar
ϕ and structural characteristics can be obtained from both types

of initial configurations. Although larger Γ than employed here
can lead to final packings with even lower ϕ and a higher
degree of disorder, such packings are generally not jammed, i.e.,
they are “melt” upon small shrinkage and equilibration. We
have used the largest possible initial compression rates (Γ ∈
[0.01, 0.1]) that lead to jammed packings. The packings studied
here contain N = 500 particles. We find that the average
packing fraction of the MRJ state of truncated tetrahedra is
ϕMRJ = 0.770 ± 0.001. A representative MRJ packing is shown
in Figure 11. Figure 12 schematically depicts the pressure of the

hard truncated tetrahedra system as a function of packing
fraction. Note that the pressure diverges at the jamming point
ϕ ≈ 0.770, which is substantially larger than for spheres (ϕMRJ
≈ 0.64); see Figure 1.

B. Pair Correlations in MRJ Packings of Truncated
Tetrahedra. We find the packing fraction of the MRJ states of
truncated tetrahedra is ϕ = 0.770 ± 0.001. A representative
packing configuration is shown in Figure 11. The panels of
Figure 13 show the pair correlation function g2(r) associated
with the particle centroids and the orientational pair correlation
function gorient(r) obtained by averaging over 5 configurations. It

Figure 10. Quantity Aex/(NkBT) + ln N/N as a function of 1/N for a
system of truncated tetrahedra in a CT packing crystal at a packing
fraction of 0.78, where Aex ≡ A − Aid is the excess free energy (Aid is
the ideal gas free energy). The intercept of the ordinate obtained from
the linear extrapolation yields the infinite-volume limit of the excess
free energy.

Figure 11. Representative MRJ packing of truncated tetrahedra with N
= 500 particles.

Figure 12. Schematic plot of the pressure of the hard truncated
tetrahedra system as a function of packing fraction along the liquid
branch and then along a metastable extension of the liquid branch that
ends at the MRJ state. Note that the pressure diverges at the jamming
point ϕ ≈ 0.770, which is substantially larger than for spheres (ϕMRJ ≈
0.64); see Figure 1.
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can be seen that g2(r) possesses several prominent oscillations.
However, the magnitude of these oscillations are much smaller
than that associated with MRJ packings of hard spheres, or
other polyhedra with small asphericity values (e.g., icosahedra).
This is because in MRJ sphere packings, the pair distances
between contacting neighbors are exactly equal to the diameter
of the spheres. However, for nonspherical particles, the pair
distances between contacting neighbors in the associated MRJ
packings can vary from the diameter of their insphere to that of
their circumsphere, and thus, causing large fluctuations of pair
distances between the particle centroids. This further
diminishes the magnitude of the oscillations in the associated
g2(r), and thus the translational order in the system. The
orientational correlation function gorient(r) also suggests that the
packing is orientationally disordered.
Figure 14 shows the structure factor S(k) versus wavenumber

k as obtained by averaging over 5 configurations of MRJ

packings of truncated tetrahedra. Importantly, we find that
S(k) → 0 as k → 0, which means they are hyperuniform with
quasi-long-range pair correlations (see section III.C). We
employ a linear polynomial to approximate the small-k behavior
of S(k), i.e., S(k) = a0 + a1kσ/(2π), and use it to fit computed
S(k) and find that a0 ≈ 0 (<10−5). Moreover, the slope is a1 =
0.030, which is significantly larger than a0. These observations
indicate that the MRJ truncated tetrahedron packings possess
hyperuniform quasi-long-range (QLR) pair correlations in
which h(r) decays asymptotically with scaling −r−4, consistent

with our previous studies of MRJ packings of the nontiling
Platonic solids. This also provide further evidence that the
hyperuniform QLR correlations is a universal signature of MRJ
packings of hard convex particle of general shape.56 Note that
although we are employing a relatively small system with N =
500 particles, based on previous research15 we expect that the
extrapolated small-k behavior of S(k) obtained from such
systems should agree with extrapolations from large systems.
Therefore, our conclusions that MRJ packings of truncated
tetrahedra are hyperuniform, based on the relatively small
systems that we have studied, should be firm.
It is interesting to compare the slope a1 of S(k) for small k of

truncated tetrahedra to those of other polyhedra that we have
previously studied. For icosahedra, dodecahedra, octahedra and
tetrahedra, the values of a1 are respectively 0.015, 0.023, 0.029,
and 0.21. It is apparent that as the polyhedral shape deviates
more from that of a sphere, the value of the slope a1 increases,
i.e., the degree of hyperuniformity decreases. This is because
larger asphericities induce larger local number density
fluctuations at fixed long wavelengths (i.e., small k values)
due to the QLR correlations.
We would like to note that for nonspherical particles, the

more appropriate measure of hyperuniformity is based on local
volume fraction fluctuations (rather than density fluctuations)
and the small-wavenumber behavior of the associated spectrum
density.56 Similar conclusions on hyperuniform QLR correla-
tions in the system will be obtained if the more general
procedure is used, but with this procedure, the degree of
hyperuniformity would decrease with decreasing packing
fraction (instead of with increasing asphericity). This is because
denser packings possess more homogeneous void spaces, which
lead to smaller local volume fraction fluctuations.56

Table 2 lists the values of the MRJ packing fraction ϕMRJ and
the packing fraction of the densest known packing ϕmax for
different particle shapes.10,14,15,17,18,64−70 It is interesting to
note that the ratio β = ϕMRJ/ϕmax provides a measure of the
extent to which the system is a good glass former. Specifically,
when β is close to unity, high-density disordered packings are
entropically favored, i.e., it is more difficult to produce the
crystal phase and the associated maximally dense packing via
simulation or experimental protocols. Indeed, for spheroids
with β = 0.95, the densest-known packing was extremely
difficult to obtain via simulations, which requires very slow
compression of a small system with a few particles in a
fundamental cell with a specific shape.65 It has recently been

Figure 13. Pair correlation functions versus the dimensionless distance r/σ (where σ = v1/3) for MRJ packings of truncated tetrahedra obtained by
averaging over 5 configurations: (a) centroidal pair correlation function g2(r) and (b) orientational pair correlation function gorient(r).

Figure 14. Structure factor S(k) as a function of the dimensionless
wavenumber kσ/(2π) obtained by averaging over five configurations
of MRJ packings of truncated tetrahedra, where σ = v1/3. The red line
is a linear fit to the data for small wavenumbers.
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shown that disordered binary sphere packings can attain MRJ
packing densities that are nearly as dense as the densest known
packings and therefore are good glass formers.73 Finally,
consistent with the results for MRJ packings of nontiling
Platonic solids,15 we find that the rattler-free jammed
″backbones″74 MRJ packings of truncated tetrahedra are also
isostatic (the total number of constraints, related to the
different types of interparticle contacts, equals the total number
of degrees of freedom in the packing). Specifically, each particle
in MRJ packings of truncated tetrahedra has 12.01 contacts on
average (the number of face-to-face, edge-to-face, vertex-to-
face, and edge-to-edge contact is determined to be 2.79 ± 0.02,
0.32 ± 0.02, 0.92 ± 0.02 and 2.07 ± 0.02, respectively), which
is consistent with isostaticity.

VI. CONCLUSIONS AND DISCUSSION
In this paper, we have ascertained the equilibrium phase
behavior of truncated tetrahedra over the entire range of
possible densities, via ASC Monte Carlo simulations and free
energy calculations. We found that the system undergoes first-
order liquid−solid and solid−solid phase transitions as the
density increases, consistent with the finding in the qualitative
study by Jiao and Torquato.10 The liquid phase coexists with
the CT crystal phase within the density range ϕ ∈ [0.496 ±
0.006, 0.591 ± 0.005] and the CT phase coexist with the
densest-known crystal within the density range ϕ ∈ [0.780 ±
0.002, 0.802 ± 0.003]. We found no evidence for any stable
rotator or nematic phases. We also generated the maximally
random jammed (MRJ) packings of truncated tetrahedra,
which may be regarded to be the ending state of a metastable
branch of the phase diagram for truncated tetrahedra.
Specifically, we systematically studied the structural character-
istics of the MRJ packings, including the centroidal pair
correlation function, structure factor and orientational pair
correlation function. We found that such MRJ packings are
hyperuniform with an average packing fraction of 0.770 ±
0.001, which is considerably larger than the corresponding
value for identical spheres. We have also shown that the ratio
ϕMRJ/ϕmax for a general nonspherical particle shape provides a
measure of its glass-forming ability.

The transition from the CT to the densest-known crystal
phase involves symmetry breaking as one would expect.
Specifically, the CT packing possess a higher degree of
symmetry (rhombohedral) than that of the densest known
packing (triclinic). Similar symmetry-breaking crystal−crystal
phase transitions have also been observed in systems of
truncated cubes with a small degree of truncation,12 which
possess a first-order transition from the simple-cubic phase
(with cubic symmetry) to the one associated with the densest-
known packing (with rhombohedral symmetry). We conjecture
that particles with shapes close to the space-filling ones and that
nearly fill all of space (i.e., those obtained by chopping of the
corners of rhombohedron, cube, truncated octahedron, and
certain prisms) would probably undergo a first-order crystal−
crystal transition from a high-symmetry solid phase to a low-
symmetry one. The high-symmetry phase should be associated
with the optimal configuration of the corresponding space-
filling shape, and the low-symmetry phase should be associated
with the densest-known packing of the actual particle that is
nearly space-filling.10,43 Since the low-symmetry phase should
possess more free volume and thus is more favorable
entropically compared to the high-symmetry phase, we expect
that a solid−solid phase transition would occur at high densities
in such systems. However, we emphasize that such qualitative
predictions about the class of particle shapes that possess
crystal−crystal phase transitions has yet to be identified and
verified by rigorous free energy calculations.
These results also point to the great challenges in identifying

solid−solid phase transitions in hard-particle systems. In
particular, for truncated tetrahedra, if one had not known a
prior about the existence of both crystal structures (i.e., the CT
and densest known packings),10,43 one would never have tried
to see if the phases associated with these distinct crystals could
coexist. For example, if one only knew about the densest known
packing but not the CT packing, and simply decompressed the
packing from the highest density, one likely would have
thought there was no other crystal phase. Similarly, if one only
knew about CT packing, then further compression of the CT
from the melting point would probably not have alerted one to
consider another crystal structure at very high densities. This
also calls into the question whether in previous studies similar
solid-sold phase transitions were missed for other particle
shapes because no systematic structural probes were used to
ascertain whether the crystal structure changed symmetry. We
believe that crystal structures with distinct symmetries should
be explicitly examined in order to correctly identify possible
solid−solid phase transitions.
It is also useful to compare the phase behavior of truncated

tetrahedra to that of other nonspherical shapes, especially the
nature of the disorder−order phase transition. Truncated
tetrahedra behave like regular octahedra9 in that both systems
undergo a first-order transition from the isotropic liquid to a
crystal phase. It is clear that this transition, which is entropy-
driven,75 is determined by the characteristics of the particle
shape. Both the truncated tetrahedron and regular octahedron
have an aspect ratio δ (defined to be the ratio between the
longest and shortest principal axis) of unity. They also possess
moderately sized values of a relative scaled exclusion volume τ
≡ vex/(8v),

42 i.e., τ = 1.236 and 1.330 for truncated tetrahedra
and octahedra, respectively. Upon forming the crystal phase
from the liquid, a sufficiently large increase of free-volume
entropy is achieved by particle alignment and positional
ordering, and thus, the crystal phase is favored. For shapes

Table 2. Relationship between the MRJ Packing Fraction
ϕMRJ and the Densest Packing Fraction ϕmax for Congruent
Particles of Different Shapesa,10,14,15,17,18,64−72

particle shape ϕMRJ ϕmax ϕMRJ/ϕmax

octahedron 0.697 0.947 0.736
tetrahedron 0.763 0.856 0.891
dodecahedron 0.716 0.904 0.792
icosahedron 0.707 0.836 0.846
truncated tetrahedron 0.770 0.995 0.774
sphere 0.637 0.741 0.86
prolate spheroid with b/a = 2 0.70 0.77 0.91
prolate spheroid with b/a = 3/2 0.71 0.75 0.95
oblate spheroid with b/a = 1/2 0.70 0.77 0.91
oblate spheroid with b/a = 2/3 0.71 0.75 0.95
superball with q = 0.8 0.66 0.72 0.92
superball with q = 1.2 0.68 0.77 0.88
superball with q = 2 0.74 0.86 0.86

aIn the case of spheroids, b/a is the aspect ratio and in the case of
superballs, q is the deformation parameter (where q = 1 corresponds
to a sphere). A ratio ϕMRJ/ϕmax close to unity indicates a system that is
a good glass former, as discussed in the text.
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close to that of a sphere, such as ellipsoids with small δ and
superballs with τ close to unity, the associated systems possess a
transition from isotropic to rotator phase. This is because
orientational ordering does not lead to significant increase of
free-volume entropy, and thus, is not favored. On the other
hand, as the aspect ratio of an ellipsoid increases beyond a
critical value (e.g., δ > 2), the systems start to form a nematic
phase from liquid upon compression,7 due to a large gain of
free-volume entropy by particle alignment.
On the basis of the aforementioned observations and other

previous research,7,9,10,12 we predict the phase that breaks the
symmetry of the liquid for systems of hard nonspherical
particles such as the regular icosahedra, dodecahedra,76 and
rectangular parallelepiped (with side lengths a, b, and c, and a ≠
b ≠ c). Specifically, we expect that when the relative scaled
exclusion volume τ for particles with flat faces is less than the
order of 1.2, it is highly possible that rotator phase arises upon
compression from isotropic liquid phase. The scaled exclusion
volume of icosahedron is given by vex/v = [2 + (90√3
cos−1(√5/3)/π(2 +√5))] ≈ 8.915,42 and the relative scaled
exclusion volume is τ = 1.114, which is very close to 1.
Therefore, we expect the icosahedron systems to possess an
isotropic-rotator phase transition. Similarly, the scaled exclusion
volume of dodecahedron is given by vex/v = [2 + (90(25 +
10√5)1/2 cos−1 (1/√5)/π(15 + 7√5))] ≈ 9.121 and τ =
1.140.42 We see again that the later value is close to 1, which
suggests that the dodecahedron system is likely to possess a
rotator phase upon compression from isotropic liquid phase as
well. The scaled exclusion volume of rectangular parallelepiped
(a ≠ b ≠ c) is given by vex/v = [2+((ab + bc + ac)(a + b + c)/
abc))]. Again, when the value of τ is less than the order of 1.2,
we expect that there exists a phase transition from the isotropic
liquid to a rotator phase. Rigorous free energy calculations will
be able to verify such predictions.
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