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Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide
range of important engineering applications. Accurate modeling and reconstructing
three-dimensional (3D) microstructure of topologically complex materials from limited
morphological information such as a two-dimensional (2D) micrograph is crucial to the
assessment and prediction of effective material properties and performance under extreme
conditions. Here, we extend a recently developed dilation–erosion method and employ the
Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–
ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite
phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is
dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction
is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is
compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as
well as the standard stochastic reconstructions incorporating topological connectedness
information. The fact that the former can achieve the same level of accuracy as the latter
suggests that the dilation–erosion procedure is tantamount to incorporating appreciably
more topological and geometrical information into the reconstruction while being much
more computationally efficient.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Heterogeneous materials such as composites, alloys, granular
materials and porous media abound in nature and in engineer-
ing applications. Applications of heterogeneous materials in
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civil, industrial and aerospace engineering require accurate
assessments and predictions of the effectivematerial properties
and their performance under extreme conditions, which in
turn rely on the accurate knowledge of the complex material
microstructures. In the past few decades, a quantitative under-
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standing of the microstructure and structure–property relation
of heterogeneousmaterials has begun to emerge,mainly due to
the development of advanced experimental and computational
material microstructure characterization techniques [1–3].
Specifically, advanced imaging techniques such as X-ray
tomographic microscopy [4–6], which eliminates destructive
cross-sectioning and allows for superior resolution and
image quality with minimal sample preparation [7,8], have
been widely used to obtain high-resolution three-dimensional
(3D) microstructure for a wide range of heterogeneousmaterials,
including Sn-rich alloys [9], powder metallurgy steels [10], metal
matrix composites [11–15], and lightweight alloys [16–20]. On the
theory side, a zoologyof statisticalmicrostructuredescriptorshas
been presented and derived from rigorous structure–property
analysis [1,2]. For example, the canonical n-point correlation
function Hn [2], the integrals of which are involved in various
rigorous bounds [21] and contrast expansions [22,23] of effective
material properties, gives the probability of finding a specific
n-point configuration in the phase of interest. A variety of
non-canonical descriptors providing topological connectedness
information [24–26] and interface information [27] have also been
devised and applied to study a wide spectrum of materials.

Despite of rapid advances of non-destructive 3D imaging
techniques, there are still material systems for which only 2D
images are available. For example, in certain alloys the contrast
between the absorption rates of probing rays associated with
different phases is too weak to resolve the individual phases. In
such situations, usually the only available structural data
obtained from non-destructive means are 2D electron micro-
graphs or optical images of the sample surfaces, which does not
contain topological connectedness information of the material
phases [2]. Although serial sectioning can be employed to obtain
full 3D microstructure, this procedure is very tedious and will
completely destroy the material sample. Therefore, it is highly
desirable to render realistic virtual 3D microstructures
that faithfully present the limited morphological information
contained in the available 2D data sets, albeit with 3D
experimental verification.

Over the past two decades, a variety of microstructure
reconstruction methods from limited structural information
have been developed, including the Gaussian random field
method [28], stochastic reconstruction procedure [29,30], phase
recovery method [31], multi-point reconstruction method [32],
and raster-path method [33]. The Gaussian random field
method [28] was originally devised to reconstruct realizations
of statistically homogeneous and isotropic randommedia from
the associated two-point correlation functions. Specifically, a
field-field correlation function is constructed basedon the given
two-point correlation function S2 (see definition in Section. 2). A
Gaussian random field is then generated using the field-field
correlation function, whose level-cut results in a binary
microstructure associated the target two-point function. Al-
though a wide class of microstructures can be obtained using
this method, the morphological information used for recon-
struction is limited to the two-point correlation functions [28].
The phase recovery method enables one to take into account
the full vector information contained in the two-point statistics
associated with the material, and thus allows the reconstruc-
tions of complex anisotropicmicrostructure and polycrystalline
materials [31]. This method proceeds by iteratively solving for
the phase information that is lost when representing the
microstructure using the vector two-point correlation func-
tions. Once such phase information is successfully recovered,
the microstructure can be directly obtained via fast Fourier
transform.

The multi-point reconstruction method was originally devel-
oped for the reconstruction of porous geomaterials from 2D
images [32]. Instead of using two-point statistics associated with
the entire 2D microstructure, this method incorporates all
n-point statistics within a smaller window containing a portion
of the microstructure. The window size is determined by the
correlation length of the material. A sequential addition method
is then employed to put down voxels in an initially empty
reconstructiondomainbasedon the n-point statistics to generate
a 3D microstructure. Although more accurate reconstructions
can be obtained due to the additionalmorphological information
contained in the multi-point statistics, it is difficult to efficiently
store, represent and retrieve the n-point statistics even for a very
small window. Recently, a raster-path method is devised which
allows one to employ the multi-point statistics in a much more
efficient way [33]. Specifically, instead of extracting the statistics
from the 2D microstructure, a cross-correlation function is
introduced to directly compare a reconstructed portion of the
material to the target 2D image. Only the reconstructed portions
that sufficientlywellmatchaportion in the targetmicrostructure
will be accepted and inserted into an initially empty reconstruc-
tion domain along a 1D raster path [33].

The stochastic reconstruction procedure [29,30] (also re-
ferred to as Yeong–Torquato procedure in literature) enables
one to incorporate an arbitrary number of correlation functions
of any types into the reconstructions. Specifically, a random
initial microstructure is evolved using simulated annealing
procedure such that the set of correlation functions sampled
from the reconstructed microstructure match the correspond-
ing set of target statistics up to a prescribed small tolerance (see
Section. 3 for algorithmic details). This reconstruction proce-
dure is very flexible and versatile, however, due to its stochastic
nature a large number of intermediate microstructures need to
be generated and analyzed, which makes it computationally
intensive. Several different implementations of the Y–T proce-
dure have been devised to improve efficiency [34–36], preserve
isotropy [37–39] or handle anisotropic materials [40]. In partic-
ular, a dilation–erosion (DE) method based on the Y–T proce-
dure has recently been proposed by Zachary and Torquato to
improve the accuracy of the reconstructions of topologically
complex microstructures [41]. The DE method (discussed in
detail in Section. 3) has been applied to successfully reconstruct
2D model microstructures including multiply connected
“donut” media and random distributions of micro-cracks [41].

In this paper, we will extend the dilation–erosion procedure
devised by Zachary and Torquato [41] for 2D random textures to
accurately model and reconstruct 3D filamentary microstruc-
tures from limited morphological information (e.g., certain
spatial correlation functions associated with the filamentary
phase) available in 2D images of the material. We will focus on
austenitic–ferritic cast duplex stainless steels for which the 2D
optical micrographs of the sample surfaces (see Fig. 1) will be
used as the input for the reconstruction. As shown in Fig. 1, the
filamentary structures correspond to the ferrite phase which
percolates in three dimensions. Such percolating filamentary



Fig. 1 – Left panel: Optical micrograph of the surface of an
austenitic–ferritic cast duplex stainless steel. Right panel: The
segmented binary image associated with the optical
micrograph.
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structures abound in a wide spectrum of material systems
including grain-boundary networks, binary composites, and
geological structures, to name but a few. And a variety of
quantitative morphological descriptors for such structures have
been devised [42–45]. A thin 3D microstructure reconstruction
will be obtained via serial sectioning in order to ascertain the
accuracy of the stochastic reconstructions. The two-point
correlation function S2 sampled from 2D micrographs will be
used in both the standard reconstruction (without dilation–
erosion of the phases) and the dilation–erosion reconstruction,
in which the filamentary phase is dilated when sampling S2 and
eroded in the 3D reconstructions. For the austenitic–ferritic cast
duplex stainless steel under consideration, which is statistically
homogeneous and isotropic, S2 sampled from 2Dmicrographs is
representative of that obtained from full 3D material [2]. In
addition, the two-point cluster function C2 of the un-dilated
ferrite phase, which contains additional topological information
of the microstructure [26,36] (see definition below), will be
directly obtained from the 3D experimentally reconstructed
obtained microstructure and incorporated into the standard
reconstructions without dilation/erosion (unlike in Ref. [41]). We
show that the dilation–erosion method can lead to much more
accurate reconstructions than the standard method using S2
obtained from un-dilated 2D micrographs, which underes-
timates the linear extent and connectivity of the filamenta-
ry ferrite phase. Our results indicate that the dilation–
erosion process considered in this work is tantamount to
the use of the three dimensional cluster function C2, and
thus can better capture the topological connectedness
information of the filamentary structures. The important
point to note, since only S2 of the dilated phase is
incorporated into the reconstruction procedure, the compu-
tational cost associated with the DE reconstruction is
significantly lower than that of the reconstruction incorpo-
rating C2, which involves keeping track of the complex
clusters during the evolution of the microstructure. This
suggests that the dilation–erosion method could provide an
efficient tool for the modeling and characterization of
complex filamentary microstructures.

The rest of the paper is organized as follows: In Section. 2,
we provide definitions of the statistical descriptors used to
characterize the filamentarymicrostructures. In Section. 3, we
describe the stochastic reconstruction procedure and the
dilation–erosion method in detail. In Section. 4, we present
and analyze the reconstruction results. In Section. 5, we make
concluding remarks.
2. Statistical Microstructure Descriptors

2.1. Two-Point Correlation Function

In general, themicrostructure of a heterogeneousmaterial can be
uniquely determined by specifying the indicator functions
associatedwith all of the individual phases of thematerial [2], i.e.,

I ið Þ xð Þ ¼ 1 x in phase i
0 otherwise

�
ð1Þ

where i = 1,…, q and q is the total number of phases. The volume
fraction of phase i is then given by

φi ¼< I ið Þ xð Þ > ð2Þ

where <> denotes the ensemble average overmany independent
material samples or volume average over a single large sample if
it is spatially “ergodic” [2]. The two-point correlation function
S2(ij)(x1,x2) associated with phases i and j is defined as

S ijð Þ
2 x1;x2ð Þ ¼< I ið Þ x1ð ÞI jð Þ x2ð Þ > ð3Þ

which also gives the probability that two randomly selected
points x1 and x2 fall into phase i and j respectively (see Fig. 2A). For
a material with q distinct phases, there are totally q2 different S2.
However, it has been shown that only q − 1 of them are
independent [2,31] and the remaining q*(q − 1) + 1 functions can
be explicitly expressed in terms of the q independent ones. In our
case, q = 2 (filamentary structures in a matrix) and thus, we can
only consider the two-point correlation function associated with
the filamentary structures. In the ensuing discussion, we will
focus the correlation function for the phase of interest and drop
the superscript in the function for convenience.

For a statistically homogeneous and isotropic material such
as the stainless steel considered here, there are no preferred
center and direction in the microstructure. Therefore, the
associated S2 for the phase of interest depends only on the
relative distance between the two points [2], i.e.,

S2 x1;x2ð Þ ¼ S2 x2−x1j jð Þ ¼ S2 rð Þ ð4Þ

where r = |r| = |x2 - x1|. At r = 0 the quantity S2(0) gives the
probability that a randomly selected point falls into the phase
of interest, i.e., the volume fraction of the associated phase
S2(r = 0) = φ. At large r values, the probabilities of finding
the two points in the phases of interest are independent of
one another, leading to S2(r → ∞) = φ2. Importantly, it has
been shown that for statistically homogeneous and isotropic
microstructures, the associated S2 can be obtained from the
low-dimensional cuts of the microstructure (e.g., 2D slices of a
3D material) [2]. In other words, the S2 of 2D slices contains
morphological information that is representative of the original



Fig. 2 – Schematic illustrations of the events contributing to different correlation functions. The two-point correlation function
S2 gives the probably of finding two points in the phases of interest. In (A), we show events that contribute to S2 associatedwith
the blue phase. The lineal-path function L(r) gives the probability that a randomly chosen line segment of length r entirely falls
into the phase of interest. In (B), we show events that contribute to L associated with the blue phase. The two-point cluster
function C2(r) gives the probability of finding two points separated by r in the same cluster of the phase of interest. In (C), we
show events that contribute to C2 associated with the blue phase.
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3D microstructure. This makes it a very useful quantity for
reconstructing 3Dmicrostructures from 2D images.

We note that the general n-point correlation function Sn
which gives the probability of finding a particular n-point
configuration in specific phases can be defined in a similar
manner as S2 [c.f. Eq. (2)], i.e.,

Sn x1;x2;…;xnð Þ ¼< I x1ð ÞI x2ð Þ⋯I xnð Þ > ð5Þ

It has been shown that the effective properties of a
heterogeneous material can be explicitly expressed as series
expansions involving certain integrals of Sn. Interested
readers are referred to Ref. [2] for detailed discussions of Sn
and their properties.

2.2. Lineal-Path Function

The lineal-path function L(i)(r) gives probability that a randomly
selected line segment of length r = |r| along the direction of vector
r entirely falls intophase i (see Fig. 2B) [2,24]. At r = 0, L(i)(0) reduces
to the probability of finding a point in phase i and thus, L(i)(0) = φi.
In materials that do not contain system-spanning clusters, the
chances of finding a line segment with very large length entirely
falling into any phases are vanishingly small. Accordingly,
for large r values L(i) decays to zero rapidly in such materials,
i.e., L(i)(r → ∞) = 0. The lineal-path function contains partial
topological connectedness information of the material's phases,
i.e., that along a lineal-path. Generally, the lineal-path function
underestimates the degree of clustering in the system (e.g., two
points belonging to the samecluster butnot alonga specific lineal
path will not contribute to L(i)).

2.3. Two-Point Cluster Function

The two-point cluster correlation function C2
(i)(x1,x2) gives the

probability that two randomly selected points x1 and x2 fall
into the same cluster of phase i (see Fig. 2C) [2,26]. For
statistically homogeneous and isotropic materials, C2 for the
phase of interest depends only on the relative distance
between the two points, i.e., C2(x1,x2) = C2(|x1 − x2|) = C2(r). In
contrast to the lineal-path function, C2 contains complete
clustering information of the phases, which has been shown
to have dramatic effects on the material's physical proper-
ties [2]. Moreover, unlike S2 and L, the cluster functions
generally cannot be obtained from lower-dimensional cuts
(e.g., 2D slices) of a 3D microstructure, which may not contain
correct connectedness information of the actual 3D system.

It has been shown that C2 is related to S2 via the following
equation [26]

S2 rð Þ ¼ C2 rð Þ þ D2 rð Þ ð6Þ

whereD2(r)measures theprobability that twopoints separatedby
r fall into different clusters of the phase of interest. In other
words, C2 is the connectedness contribution to the standard
two-point correlation function S2. For microstructures with
well-defined inclusion, C2 (r) of the inclusions is a short-ranged
function that rapidly decays to zero as r approaches the largest
linear size of the inclusions. We note that although C2 is a
“two-point” quantity, it has been shown to embody higher-order
structural information which makes it a highly sensitive statis-
tical descriptor over and above S2 [36,41].
3. Stochastic Reconstruction Procedures

3.1. Yeong–Torquato Reconstruction Procedure

We use the Yeong–Torquato (YT) reconstruction procedure
[29,30] to generate virtual 3D microstructures from a specific
set of correlation functions discussed in the previous Section. 2.
As discussed in Section. 1, there are many other different
microstructure reconstruction procedures, such as theGaussian
random field method [28], phase recovery method [31],
multi-point reconstruction method [32] and the recently devel-
oped raster path method [33]. Importantly, the YT procedure is
the most flexible and versatile one that enables us to incorpo-
rate an arbitrary number of correlation functions of any type.

In theYTprocedure, the reconstructionproblem is formulated
as an “energy”minimization problem,with the energy functional
E defined as follows

E ¼
X
α

X
r

f α rð Þ− f̂ α rð Þ
h i2

ð7Þ

image of Fig.�2
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where f̂
α
rð Þ is a target correlation functionof typeαand f α(r) is the

corresponding function associated with an intermediate micro-
structure. In the case that the set of target functions only includes
the standard two-point correlation function, the “energy” formu-
lation of the reconstruction problemhas been successfully solved
using other schemes such as the gradient-basedmethod [46] and
iterative procedures [31]. The simulated annealingmethod [47] is
employed here to solve the aforementioned minimization
problem. Specifically, starting from an initial microstructure
(i.e., oldmicrostructure) which contains a fixed number of voxels
for each phase consistentwith the volume fraction of that phase,
two randomly selected voxels associated with different phases
are exchanged to generate a new microstructure. Relevant
correlation functions are sampled from the new microstructure
and the associated energy is evaluated, which determines
whether the new microstructure should be accepted or not via
the probability:

pacc old→newð Þ ¼ min 1; exp
Eold−Enew

T

� �� �
ð8Þ

where T is a virtual temperature that is chosen to be initially high
and slowly decreases according to a cooling schedule [29,30]. The
above process is repeated until E is smaller than a prescribed
tolerance, which we choose to be 10−10 here. Generally, several
hundred thousand trials need to bemade to achieve such a small
tolerance. Therefore, efficient samplingmethods [36–38] are used
that enable one to rapidly obtain the prescribed correlation
functions of a newmicrostructure by updating the corresponding
functions associated with the old microstructure, instead of
completely re-computing the functions.

3.2. Dilation–Erosion Method

For a topologically complex microstructure such as percolating
thin filaments in amatrix, it is difficult to accurately capture the
key structural features using a limited number of associated
correlation functions [48,49]. Instead, we consider a modified
microstructure that involves uniformly “dilating” or “eroding” a
reference phase in the direction normal to the two-phase
interface in the original microstructure [41]. Specifically, the
dilation can be achieved by placing a virtual sphere of radius δ
into the non-reference phase and determining the space
Fig. 3 – Schematic illustration of the dilation–erosion procedure.
microstructure. As shown in the middle panel, the reference (bla
two-phase interface. The resulting modified microstructure after
panel. It can be seen that the dilation process maps the original
The erosion process is just the inverse of the dilation procedure,
un-dilated system.
available to the sphere as if the reference phase was impene-
trable to the virtual sphere [1]. The space unavailable to the
sphere is considered to be the dilated reference phase. The
erosion process simply reverses this procedure such that the
reference phase is allowed to be penetrated by a distance δ
normal to the two-phase interface. In our implementations, we
chose δ = 1 pixel and the dilation (erosion) process simply
corresponds to converting the pixels of the non-reference
(reference) phase bordering the reference (non-reference)
phase into the reference (non-reference) phase; see Fig. 3 for
illustration. We will elaborate on this selection of δ in the
discussion section.

To reconstruct a filamentarymicrostructure from 2D images,
a dilationoperation is first applied to the original 2D images. This
leads to a modified 2D microstructure with thick “stripe-like”
structures. The two-point correlation functions associated with
the modified 2Dmicrostructure are then computed and used as
the input (i.e., target functions) for the Yeong–Torquato recon-
struction procedure. As discussed in Section. 2.1, although the
S2's are sampled from2D images, themorphological information
contained in such correlation functions is representative of the
3D microstructure. After a 3D reconstruction is obtained, an
erosion operation is applied to the 3D microstructure to recover
the thin filaments. The degree of dilation (erosion) is determined
by theparameter δ, which is the “thickness”of thedilated region.
The choice of this parameter depends on the systems under
consideration. A general rule is that the selected δ should be
large enough to produce a percolated phase in the dilated
microstructure such as the two-point correlation function S2 of
the dilated phase can lead to an accurate reconstruction.
4. Results

4.1. Experimental Results

The material studied in this work is a commercially available
austenitic–ferritic cast duplex stainless steel (Z3CN20-09 M). The
sampleused to obtain themicrostructureswasmachined froma
centrifugally cast pipewhichwasheat treated at 1105 ± 10 °C for
4.5 h and then water-quenched. More microstructural informa-
tion of the material can also be found in Ref. [50].
The leftmost panel shows an original filamentary
ck) phase is uniformly dilated in the direction normal to the
the dilation process is complete is shown in the rightmost
filamentary structures into percolating stripe-like structures.
which should lead to a better rendition of the original

image of Fig.�3


Fig. 4 – Left panel: Experimentally reconstructed microstructure of the cast duplex stainless steel showing the austenite matrix
(in green) and ferrite phase (in red) obtained via the serial sectioning technique. Right panel: Extracted 3D ferrite phase
morphology.

Fig. 5 – The correlation functions (defined in the text)
associated with the percolating filamentary ferrite phase in
the stainless steel microstructure. The unit of length is the
side length of a pixel and 1 pixel = 3.8 μm.
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In order to acquire the 3Dmicrostructure of thematerial, the
serial-sectioning method [51] was utilized and the sample
was polished using a semi-automatic polisher (MiniMet@ 1000,
Buehler company, Illinois, U.S). Initially, the sample was
polished with 0.3 μm Al2O3 solution and then, followed by
polishing with 0.05 μm colloidal silica solution to minimize the
material removal rate and to restore a good surface quality. After
each polishing cycle, themicrostructurewas revealed by etching
using a solution of 25 mlHCl, 25 mlHNO3 and 50 mlH2Oand the
optical micrographs of the microstructure were acquired using
an optical microscope (FS100, Mitutoyo, Japan). A removal
material thickness of around 1.7 μm for each slice, which was
measured to be much smaller than the microstructural phases
of interest, was obtained and great effort was made to maintain
the same removal rate for each slice. The micrographs were
aligned using MATLAB software and then segmented into black
and white images using a commercial image analysis software
(Image J, Bethesda. MD). Finally, all the 2D segmented images
were imported into a 3D visualization software for reconstruc-
tion and analysis (Mimics, Materiallise NV, Leuven, Belgium).

The experimentally reconstructed 3D microstructure com-
posed of ferrite phase (red) in the austenite matrix (green) is
shown in Fig. 4A. The extracted 3D ferrite phase morphology is
shown in Fig. 4B, fromwhich the connectivity of the phase can be
clearly seen. The volume fraction of the ferrite phase is φ = 0.26.
We employ the two-point correlation function S2, the lineal-path
function L and the two-point cluster function C2 to quantitatively
characterize the geometrical and topological features of the
ferrite phase. Since only a thin 3D microstructure is available,
the correlation functions are only sampled in 2D slices perpen-
dicular to the short direction of the sample. However, the 3D
connectedness information is properly taken into account to
compute the cluster function C2. Specifically, a pair of pointsmay
belong to apparently distinct clusters in the 2D slice, which are
actually connected in 3D. Such point pairs will contribute to C2.
The computed correlation functions are shown in Fig. 5. It can be
seen that the 3DC2 is long-ranged, indicating high connectivity of
the ferrite phase in three dimensions.

4.2. Three-Dimensional Reconstructions

Three-dimensional reconstructions are obtained using both
the standard YT procedure and the dilation–erosion method.
The microstructures obtained from the standard reconstruc-
tion using S2 sampled from 2D slices without dilation–erosion,
the reconstruction using the combination of S2 and C2

sampled from the actual 3D microstructure, as well as from
the dilation–erosion reconstruction using S2 sampled from
2D slices, are respectively shown in Fig. 6A,B, and C. The
corresponding reconstructed correlation functions are respec-
tively shown in Fig. 7A,B, and C.

It can be clearly seen from Figs. 6A and 7A that the standard
S2-alone reconstruction without dilation/erosion significantly
underestimates the linear extent and connectivity of the ferrite
filaments, although the reconstructed S2 is virtually indistin-
guishable from the target S2. This is because in general S2 alone is
not sufficient to uniquely determine a microstructure, i.e., there
are an enormous number of distinct microstructures that
are compatible with a specific S2 [49]. At low volume fractions
(i.e., φ = 0.26), the number of compatible microstructures con-
taining short filaments and compact clusters ismuch larger than
the number of compatible microstructures with percolating
filaments. Due to the stochastic nature of YT procedure, the
probability of finding a microstructure with disconnected cluster
is thus much higher. On the other hand, the standard recon-
struction incorporating both S2 and C2 leads to a significantly

image of Fig.�4
image of Fig.�5


Fig. 6 – 3Dmicrostructures obtained from the standard reconstruction using S2 obtained from 2Dmicrographswithout dilation/
erosion (A), reconstruction incorporating S2–C2 sampled from 3D experimental obtained material microstructure (B), and the
dilation–erosion reconstruction using S2 of the dilated phases obtained from 2D micrographs (C). The linear size of the system
is 400 μm. In (A), the linear sizes of the filaments are underestimated. The renditions of the filaments in (B) and (C) are
significantly improved, due to the incorporation of additional topological connectedness information by directly using the
cluster function C2 (B) or the dilation–erosion procedure (C).
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improved 3Dmicrostructure,which canbe seenbothvisually (see
Fig. 6B) and from the comparison of the lineal-path functions
associated with the reconstruction and the original microstruc-
ture (see Fig. 7B). The improved accuracy is due to the
incorporation of additional topological connectedness informa-
tion contained in the three dimensional C2, which is crucial to
capturing the salient features of percolating filamentary ferrite
phase.

Fig. 6C shows the 3D microstructure reconstructed from
S2 alone using the dilation–erosion method. It can be seen both
visually and from the comparison of the associated C2 and L
(seeFig. 7C) that theDE reconstructionalso significantly improves
upon the standard reconstructionusing S2 alone. Specifically, the
cluster function C2 associated with the DE reconstruction is
long-ranged, indicating the high connectivity of the reconstruct-
ed filamentary ferrite phase. This is because by dilating the
ferrite phase in the target 2D image, the phase volume fraction
increases from0.26 to 0.43, leading to percolating thick stripe-like
Fig. 7 – Comparison of the target and reconstructed correlation fu
phase. (A) Standard reconstruction using S2 obtained from 2D m
incorporating S2–C2 sampled from 3D experimental obtained ma
reconstruction using S2 of the dilated phases obtained from 2D m
and 1 pixel = 3.8 μm.
structures. At φ = 0.43, the majority of the microstructures
compatible with the given S2 are composed of percolating
stripe-like structures. Thus, the YT procedure has a high
probability to find a microstructure with high connectivity. By
applying an erosion operation on the initial reconstruction, the
percolating filamentary ferrite phase is then recovered.

We note that although only S2 from 2D slices is used, the 3D
reconstruction obtained by the dilation–erosion method is
comparable in accuracy to the reconstruction incorporating 3D
C2, which contains additional topological connectedness infor-
mation. This implies that dilating or eroding the reference phase
is tantamount to including connectedness information of the
phase. However, since the reconstruction using C2 requires one
to keep track of the dynamics (e.g., forming and breaking) of the
clusters for each intermediate microstructure [36], it is much
more computationally intensive than the DE reconstruction,
which only incorporates S2; see Table 1 for the comparison of the
CPU hours for different reconstructions.
nctions associated with the percolating filamentary ferrite
icrographs without dilation/erosion (A), the reconstruction
terial microstructure (B), and the dilation–erosion
icrographs (C). The unit of length is the side length of a pixel

image of Fig.�6
image of Fig.�7


Fig. 8 – Effect of the dilation thickness δ on the accuracy of the
dilation–erosion reconstructions.
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5. Summary and Discussion

We have extended the dilation–erosion method [41] to
reconstruct topologically complex 3D microstructures from
limited morphological information contained in 2D images.
Specifically, we have focused on an austenitic–ferritic cast
duplex stainless steel that contains percolating filamentary
ferrite phase. The Yeong–Torquato reconstruction procedure
was employed to generate 3D microstructures from the
two-point correlation function S2 sampled from 2D optical
micrographs of the sample surface as well as from the
two-point cluster function C2 obtained from experimentally
reconstructed 3D material microstructure. The key points are
summarized in the following bulleted list:

• The standard reconstruction based on S2 from 2D micro-
graphs without dilation–erosion significantly underesti-
mates the linear extent and connectivity of the ferrite
phase, leading to isolated elongated clusters.

• On the other hand, the reconstruction incorporating three
dimensional C2, and thus additional topological connected-
ness information, reproduces the salient features of the
percolating filamentary ferrite phase very well.

• The dilation–erosion reconstruction incorporating S2 obtain-
ed from dilated 2D micrographs can lead to 3D microstruc-
tures with the level of accuracy comparable to the S2-C2

reconstruction using 3D structural information directly
obtained from actual material microstructure. This suggests
that dilating or eroding the reference phase is tantamount to
including 3D connectedness information of the phase in the
reconstruction.

• The computational cost of the DE reconstruction is signif-
icantly lower than the reconstruction incorporating the
cluster function C2.

A key parameter in the dilation–erosion reconstruction
method is the dilation thickness δ which was chosen to be 1
pixel length in our implementation. As we mentioned in
Section. 3.2, a general rule to determine the value of δ is that
the selected value should lead to a percolating phase in the
dilated microstructure. Too small δ values result in isolated
phases which S2 is insufficient to accurately characterize. On
the other hand, too large δ values will produce significantly
dilated phases that are difficult to recover during the erosion
process. To quantify the effects of δ on the accuracy of the
reconstruction, we reconstruct the filamentary stainless steel
structure using different δ values, and compare the “errors” of
Table 1 – Comparison of the CPU hours for different
reconstruction methods including the standard Y–T
stochastic reconstruction using S2 alone without
dilation–erosion, the standard reconstruction using both S2
and C2, as well as the dilation–erosion (DE) reconstruction.
The simulations were carried out on a standard Dell T5600
workstation.

S2 alone
reconstruction

S2–C2

reconstruction
DE

reconstruction

CPU hours 1.6 29.5 1.8
the reconstructions, which are defined to be the squared
difference between the reconstructed and target two-point
cluster functions C2; see Fig. 8. At δ = 0, no dilation/erosion
operations are applied during the reconstruction and thus, the
procedure corresponds to the standard S2 reconstruction,which
is associated with an error E0. For δ > 0, the error E of the
reconstructions is normalized by E0. It can be clearly seen that
δ = 1 is associated with the minimal E among all δ considered.
This clearly indicates the optimality of our choice of δ.

The dilation–erosion method provides a computationally
efficient means for modeling and reconstructing realistic 3D
microstructure of topological complex materials from limited
morphological information for subsequent analysis of their
effective properties and performance. This technique is
readily applied to characterize and model other complex
filamentary structures such as composites and alloys with
microcracks. However, for materials composed of compact
well-isolated phases such as particle reinforced composites,
directly incorporating the cluster function C2 into the recon-
struction has been shown to be a superior method to
accurately characterize and model such structures [36].
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