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We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained
by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of
mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions,
and structure factors of such lattices. We show that this model retains many of the crucial structural features of
the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables
exploration of much higher dimensions than are usually accessible.
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I. INTRODUCTION

There are many reasons for studying jammed sphere
packings in Euclidean spaces of high dimension. For one,
sphere packing in high dimensions has direct applications
for constructing codes in communication and information
theory [1]. A classical result of Minkowski provides a
nonconstructive lower bound on the optimal packing density
in d-dimensional Euclidean space, ϕ > 2−d+1, and this lower
bound is achieved by a Bravais lattice packing [2]. However, no
general construction is known that achieves this bound in arbi-
trary dimension, either by a lattice or a nonlattice packing [1].
The current asymptotically best bound is given by Ball, ϕ >

2d2−d [3]. Random processes have been described that seem
to satisfy the asymptotic behavior described by Minkowski’s
bound, and in some cases to give polynomial corrections
to it: ϕ ∼ dν2−d . Such processes include random sequential
addition (RSA) [4], ghost RSA [5], and compression of a
hard-sphere fluid [6,7]. These processes all result in nonlattice
packings of immense complexity. Here we describe a random
process that yields Bravais lattice packings and that seems to
give a larger polynomial correction to Minkowski’s bound than
previously described processes: ϕ ∼ dν2−d with ν ≈ 3.

Perhaps more importantly, investigating jammed sphere
packings in high dimensions has the clear potential of
advancing our fundamental understanding of granular matter
and structural glasses in three dimensions: by going to higher
dimensions, not only do we circumvent some of the technical
difficulties encountered in low dimensions, e.g., the presence
of rattlers [6] and the tendency to form crystallites [8], but
we also stand to resolve many ongoing theoretical disputes
if we can determine how crucial quantities like the jamming
density scale as a function of dimension [7,9–12]. However, the
increased difficulty of simulating systems in higher dimensions
has been a major roadblock to taking full advantage of their
potential to guide the field forward. Pioneering work has
studied jammed sphere packings in up to 6 dimensions [6,13]
and recent heroic efforts have obtained data for densities in up
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to 13 dimensions [14]. Still, detailed structural data are only
available in up to 10 dimensions [14]. We find that Bravais
lattices are simple enough to study in these, and much higher,
dimensions, and yet complex enough that in high-enough
dimensions they exhibit all the phenomena of interest in the
study of disordered packing.

Jammed configurations of (frictionless) hard spheres are
those in which any motion of the spheres necessary requires an
increase in the volume of the system. These configurations are
characterized by mechanical stability: as long as the volume
of the system is held fixed, the system can resist any set of
forces applied to its constituents. Here we propose to study the
jamming behavior of a related system: the hard-sphere lattice
model. A d-dimensional lattice sphere packing is a periodic
arrangement of nonoverlapping spheres in Euclidean space
Rd with a single sphere per unit cell; that is, a Bravais lattice
(we will henceforth use the word lattice to refer exclusively to
Bravais lattices). In the hard-sphere lattice model, the lattice in
question is the dynamic variable, and the sphere centers occupy
all lattice sites. One should not confuse this kind of lattice
model with the more common meaning of lattice model, where
the underlying lattice is fixed and particles move from site to
site. We show that the hard-sphere lattice model allows us to
study many of the same phenomena that are of interest in the
classical hard-sphere model, which includes the equilibrium
phase diagram, as well as jammed states, disordered or not.
We will henceforth use the modifiers lattice and classical to
differentiate between phenomena as they occur in the lattice
model and in the classical hard-sphere model. With the lattice
hard-sphere model, we can study these phenomena in much
higher spatial dimensions than accessible in the classical
model: we obtain and analyze detailed structural data in up
to 24 dimensions. Especially in high dimensions and in the
limit d → ∞ there are reasons to expect some similarities
between the lattice and classical hard-sphere models [15,16].

The classical hard-sphere model has been invaluable in the
study of materials: it is a useful model for the liquid state [17],
the fluid-solid transition [18], the glass transition [19], granular
flow [20], exotic melting behavior in two dimensions [21],
and countless other phenomena. Much like the classical hard-
sphere model has been incredibly useful in the study of many
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phenomena, the recent wave of work on hard-sphere lattices
demonstrates that this versatility by and large carries over to
the lattice setting as well: Parisi established a liquid state theory
of lattice sphere packings [15], we have previously focused on
the ground state [22,23], and here we focus on jamming.

Our results indicate that the typical density of jammed
hard-sphere lattices is likely to be much higher than the density
of a classical jammed hard-sphere configuration in the same
dimension. The mean packing fraction of a jammed hard-
sphere lattice appears, based on our analysis (see Sec. IV A),
to scale asymptotically as ϕ ∼ dν2−d , with ν = 3.01 ± 0.01.
In contrast, estimates and predictions for classical jammed
hard spheres give asymptotic scaling with an exponent 1 �
ν � 2 [7,24]. The fact that jammed hard-sphere lattices seem
to be much denser than classical jammed configurations might
come as a surprise, because in the case of optimal packing,
the densest configurations are expected to be much more
dense than the densest (Bravais) lattice configurations in most
high-enough dimensions [5]. However, the fact that jammed
lattices must have at least d(d + 1) contacts around each
sphere, compared to an average of 2d contacts in a classical
jammed configuration (see Sec. II), suggests that we might
also expect higher densities.

We report here pair correlation functions and contact force
distributions similar to the ones observed in the classical
setting. In particular, we observe power law behaviors for the
distribution of weak contact forces and for the near-contact
pair correlation. The power law exponents do not depend on
dimension, but they are different than those observed in the
classical model [14]. In Sec. II, we give some background
and formulate the lattice sphere packing problem as an
optimization problem. This formulation gives rise to the
description of contact forces in a jammed packing as Lagrange
multipliers. In Sec. III, we will describe the procedure by
which we construct ensembles of isostatic extreme lattices in
dimensions 15 to 24. In Sec. IV, we describe our observations
of that ensemble, summarized above. We end with some
closing remarks in Sec. V.

II. THEORY

The study of lattices as a special case of sphere packing in
arbitrary dimensions has a long and celebrated history [1,25].
In the physical setting, lattices have been considered as
ordered phases of hard-sphere systems, but the behavior of
a system restricted to take only lattice configurations has only
recently begun to draw serious study [15]. Parisi considered
the problem of calculating the entropy of such a system as a
function of unit cell volume. He uses results of Rogers as a
starting point to derive the basic tools and techniques needed to
establish a formal statistical mechanics theory of lattice sphere
packings [15]. The second- and third-named authors studied
the behavior of the system under rapid compression using
the Torquato-Jiao algorithm [13,22]. The first-named author
performed quasistatic compression simulations using a Monte
Carlo method, which showed that the system experiences
a fluid-solid crystallization transition in moderately high
dimensions [23].

The use of the terms fluid and crystallization might be
confusing or seem inappropriate when all configurations con-

sidered are a priori lattices and therefore ostensibly crystalline.
However, in light of the fact that Parisi establishes a virial ex-
pansion for lattice sphere packings, there is much sense in de-
scribing a fluid phase as the range of validity of this expansion.
Moreover, as Parisi shows, for some purposes as d → ∞ the
distribution of lattice points is well approximated by an uncor-
related distribution of random points (see Sec. 4.4 of Ref. [15]).
The so-called solid phase is associated with the densest lattice
packing in a given dimension, the ground state of the system.

It is important to note here that while we can describe each
configuration as a periodic pattern occupying the entire d-
dimensional Euclidean space, this pattern is always composed
of many copies of a single unit cell. Therefore, the system
should be considered a spatially nonextended system in the
sense that all its degrees of freedom are restricted to a single
unit cell and once this unit cell is defined the entire periodic
pattern inRd is prescribed. For any fixed value of d, the number
of parameters required to fully describe the configuration of the
system is finite, despite the fact that the positions of an infinite
number of spheres are thus described. Therefore, at any fixed d,
the system does not have a thermodynamic limit, and any phase
transition is in fact rounded. The role of the thermodynamic
limit is filled by d → ∞. This situation bares a resemblance
to mean-field spin glass models where every pair (or p-tuple,
as the case may be) of spins interact, such as the Sherrington–
Kirkpatrick spin glass or the spherical p-spin glass [26].

As with classical hard spheres, the fluid phase remains
metastable at densities above the crystallization point, and
if the system is compressed quickly enough, it will reach
a mechanically stable, jammed structure without falling into
the solid phase. In fact, in high dimensions, even very slow
compression will lead to this result. According to the random-
first-order transition (RFOT) theory, the system does experi-
ence a fluid-solid transition, but this solid phase is associated
with one of many local maxima of the density, and not the
global maximum [27]. At a finite pressure, the system will
occupy many configurations in the basin of attraction around
the local maximum, but as the pressure approaches infinity, the
system configuration will approach the local maximum itself.
Lattices that are local maxima of density in the space of valid
packings are known in the literature as extreme lattices, and it
is known that the number of contacts around any sphere in an
extreme lattice cannot be smaller than z = d(d + 1) [28]. This
fact is similar, and indeed has similar origins, to the isostatic
condition in the classical setting, which requires at least z = 2d

contacts on average around each sphere. Classical jammed
sphere packings are observed to also have no more than this
number of contacts [29]. In Ref. [22], the authors identify tens
of thousands of extreme lattices in dimensions d � 19 as the
final states of their algorithm. They find that an overwhelming
majority in dimensions d � 17 have exactly d(d + 1) contacts.
We call such lattices isostatic, and this notion of isostaticity
should be contrasted with the classical notion of isostaticity,
where an average of 2d contacts are incident on each sphere.

The lattice sphere packing problem can be formulated as
the following optimization problem over symmetric d × d

matrices:

minimize det G

subject to 〈n,Gn〉 � 1 for all n ∈ Zd \ {0}. (1)
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Note that any feasible matrix G must be positive definite
(depending on context, we will use the equivalent terms
feasible which comes from the optimization literature and
admissible from the geometry literature). A feasible matrix
G corresponds to a packing of unit-diameter spheres, centered
at the lattice points Mn, n ∈ Zd , where M is some matrix such
that G = MT M (M is determined by G only up to rotation).
The choice of unit diameters fixes our scale for distances
and wave numbers, which will take dimensionless values
in units of the sphere diameter and its inverse, respectively.
We call G the Gram matrix of the lattice, and M the
generating matrix. The fraction of space filled by the packing
is ϕ = 2−d (det G)−1/2Vd , where Vd = πd/2/�( d

2 + 1) is the
volume of a unit-radius ball in d dimensions. Note that
the constraints in 1 actually come in equivalent pairs, since
〈n,Gn〉 = 〈−n,G(−n)〉.

Each active constraint (a constraint satisfied with equality)
labeled by n corresponds to one contact per unit cell of the
packing; namely, between the sphere centered at Mn′ and that
at M(n′ + n) for any n′ ∈ Zd . We associate a contact force to
this contact using the Lagrangian formulation of 1. A stationary
point of the Lagrangian satisfies

(det G)G−1 =
z∑

i=1

fininT
i , (2)

where the sum runs over all contacts ni , i = 1, . . . ,z, and
we assume that fi = fi ′ when ni = −ni ′ due to Newton’s
third law. Note that in contrast to the classical setting, this
is not the same as simple mechanical force balance, since
here we have force balance automatically from the equality of
forces along contacts at antipodal points on the surface of the
sphere. For stability, the forces must be repulsive fi > 0. The
criterion 2 with fi > 0 is known in the literature as eutaxy [28].
It turns out that an additional criterion for stability is that
the rank-1 matrices ninT

i have to form a complete basis of
the space of symmetric d × d matrices; a criterion known as
perfection [28]. An equivalent definition of perfection is that
the Gram matrix is fully determined by the identity of the
contacts ni ; that is, there is a unique Gram matrix such that
〈ni ,Gni〉 = 1 for all i = 1, . . . ,z. An admissible lattice which
satisfies these two mechanical stability criteria is an extreme
lattice, a local minimum of the optimization problem 1. The
minimum number of contacts which makes this possible is the
isostatic number z = d(d + 1). We limit our attention from this
point on to isostatic extreme lattices. The average contact force
can be obtained from 2 by multiplying both sides by G and
taking the trace. Using the fact that tr ninT

i G = 〈ni ,Gni〉 = 1,
we have that

∑
fi = d(det G) and so 〈f 〉 = (det G)/(d + 1).

We will be interested in the distribution of distances
between pairs of spheres in the lattice. Consider the function

Z(r) = |{n ∈ Zd : 〈n,Gn〉 � r2}| − 1,

which gives the number of spheres whose center is a distance
of r or less from the center of some fixed sphere, not counting
that sphere. This function is related to the more common
pair correlation function g(r) = (dZ/dr)/(d2drd−1ϕ). The
problem of finding the number of vectors in a lattice shorter
than some length, given its generating matrix M or its Gram
matrix G, is well studied and is known to be NP-hard [30].

The structure factor of the packing S(k) is given simply by
the reciprocal lattice M−1Zd :

S(k) = det M−1
∑

m∈Zd

δ(k − M−1m).

Each nonzero point k of the reciprocal lattice, if it is “visible”
from the origin, corresponds to a partition of the direct lattice
points into planes separated by a distance 1/|k|. Note that
extremity imposes a constraint on the length of the shortest
reciprocal lattice vector: a sphere in a given plane 〈k,x〉 = 0
must be in contact with at least d spheres in the half-space
〈k,x〉 < 0, or else the planes defined by k can be brought closer
together and the lattice is not locally optimal in density. The
largest possible separation along the direction of k between
the original sphere and the closest of the touching spheres
is obtained when the spheres form a regular simplex, and
the separation between the layers is [(1 + 1

d
)/2]1/2. Therefore

|k| � [2d/(d + 1)]1/2 for any nonzero reciprocal lattice vector
k. This bound is achieved uniquely by the shortest reciprocal
lattice vectors for the direct lattice generated by the root system
Ad , which is in fact extreme and isostatic [1].

III. METHODS

In Ref. [22] 10 000 lattice packings were generated in each
dimension d = 10, . . . ,18 and 100 000 in d = 19,20. Using
the same procedure, we generate 10 000 additional lattices in
each dimension d = 21, . . . ,24, and in dimensions d = 19,20
we use only 20 000 of the 100 000 generated in Ref. [22]. The
method used seeks to optimize the density using a sequence of
moves, leading in some cases to the globally optimal solution
and in other cases to a local optimum. Therefore, we expect
the lattices obtained to be locally optimal; that is, extreme,
but perhaps affected by numerical errors. For each lattice
we calculate Z(1 + 5 × 10−8), the number of approximate
contacts, and keep a record of the corresponding integer
vectors n. We keep all the lattices for which this number is
exactly d(d + 1). Next, we reconstruct the Gram matrix from
the identity of the contacts, which is guaranteed to be possible
by perfection. However, due to numerical errors, for a small
number of lattices the rank-1 matrices do not form a complete
basis, and the reconstruction fails. We reject these lattices.
Note that since we are using the integer vectors to determine
the Gram matrix, we can achieve arbitrary precision, but for
the purposes of this article, the precision of double precision
floating point numbers suffices. We recalculate the number of
neighbors using the precise Gram matrix, rejecting the small
number of lattices that are not, after all, isostatic. Finally,
we calculate the contact forces by solving 2. Again, due to
numerical errors in the original data we have to reject a small
number of lattices that yield negative forces. The number of
extreme isostatic lattices we end up with is given in Table I. For
d � 14, only a small fraction of lattices generated are isostatic,
but this fraction quickly grows to dominate the ensemble
in higher dimensions. We suspect that this fraction should
theoretically tend to one, but does not in our case because
of numerical errors that make it difficult to exactly identify
contacts. In Sec. IV we study the isostatic extreme lattices
only in the dimensions where they constitute the majority of
lattices generated; namely, d � 15.
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TABLE I. Number of runs of the algorithm of Ref. [22] used
in each dimension d , and the number of extreme isostatic lattice
obtained as a result of processing the resulting lattices according to
the procedure outlined in Sec. III.

d Runs Extreme isostatic

13 10 000 365
14 10 000 1625
15 10 000 5196
16 10 000 6761
17 10 000 9235
18 10 000 9590
19 20 000 19 200
20 20 000 19 085
21 10 000 9473
22 10 000 9406
23 10 000 9281
24 10 000 9205

Our method of obtaining an ensemble of extreme lattices
should be compared, perhaps, to the method used in Ref. [31].
There, the authors generate a large number of extreme lattices
(tens of thousands) in dimensions d � 13. However, in higher
dimensions, their method becomes inefficient and a much
smaller number of distinct extreme lattices is generated (a
few hundred to a few thousand) in dimensions 14 � d � 19.
A major issue in Ref. [31] is that the method samples the same
lattice multiple times, and therefore a large sample may contain
only a small number of distinct lattices. With our methods
we have no such issue: we find that any two lattices among
our sample of extreme isostatic lattices in each dimension
15 � d � 24 have distinct values of the determinant, which
implies necessarily that they are distinct. The two methods
appear to complement each other well: the method of Ref. [31]
is well suited to generate large samples of distinct extreme
lattices in dimensions d � 13, where the present method would
produce many repetitions of the densest lattices, while the
present method is well suited for dimensions d � 14, where
it produces hardly any repetitions among the isostatic extreme
lattices.

IV. RESULTS

A. Densities

Understanding the distribution of densities at which hard
spheres jam and its dependence on dimension is one of the
major challenges facing the field. While it is now widely
accepted that hard spheres can jam at a range of different
densities [27,32–34], different causes have been proposed
to explain this variability; for example, variability in the
thermodynamic parameters of the initial configurations [35], or
the existence of crystalline regions, detectable using a carefully
constructed order parameter [36]. For a finite system, we
always expect to observe a distribution of jamming densities.
As the size of the system grows and if we use a fixed
algorithm or experimental protocol to generate the packing, the
distribution is expected to narrow and tend to a delta function
as the thermodynamic limit is approached [37]. In general, the
limit density depends on the algorithm used.

16 18 20 22 24
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d
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d
〈ϕ

〉 15 20 25
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1000

FIG. 1. (Color online) The mean density 〈ϕ〉 of jammed isostatic
lattice sphere packings as a function of dimension, rescaled by 2d .
The line is the best-fit power law 2d〈ϕ〉 = 0.0567d3.01 and the inset
shows the same on a log-log scale.

Additionally, different theories predict different scalings
for the typical jamming density as a function of dimension. A
local geometric argument based on a simple assumption for
the pair correlation predicts ϕ ∼ d2−d [24]. A replica theory
(RT) calculation also predicts a density ϕth ∼ d2−d [27], while
a mode-coupling-theory (MCT) calculation predicts a MCT
transition at a density ϕMCT ∼ d22−d , implying that jamming
must occur at an even higher density [7,9,10]. While our
present results do not address any of these controversies
directly, being obtained for a different system, we hope that
they will nevertheless be useful in resolving them by providing
both intuition and a convenient testing ground for theories.

The mean lattice density 〈ϕ〉 as function of dimension is
plotted in Fig. 1. The dependence on the dimension is well
fit by 〈ϕ〉 
 cdν2−d , with ν = 3.01 ± 0.01. These densities
are much higher than the jamming densities for classical hard
spheres, and the relative difference is expected to widen with
dimension. This result seems to be in stark contrast with
the situation expected for the densest, rather than jammed,
packings: in high-enough dimensions, the densest packing
of equal-sized hard spheres is expected to be much denser
than the densest (Bravais) lattice packing [5]. If the RT and
MCT calculations can be carried over to the lattice setting, it
would be interesting to see if any of them are contradicted by
these results. The geometric calculation of Ref. [24] predicts a
scaling ϕ ∼ z2−d , which in this case would imply ϕ ∼ d22−d .

In Fig. 2 we plot the distribution of densities in each
dimension rescaled by the mean density in that dimension. The
distributions appear nearly identical, seemingly contradicting
the expectation that the distribution should narrow as the
system size grows. However, we note that the standard
deviation of the distribution does show a slow narrowing trend:
from 3.3 × 10−2 for d = 15 to 2.9 × 10−2 for d = 24. We
cannot predict from the current data whether the distribution
will tend toward a delta function in the limit d → ∞. We also
note that the algorithm used here for different dimensions could
arguably be considered not fixed, since it is not clear what the
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FIG. 2. (Color online) The distribution of densities, rescaled by
the mean density. The line is the best overall Gaussian fit.

correct way to scale with dimension such parameters as the
step size and the influence radius (see Ref. [22]). However, the
persistence of a finite range of relative jamming densities in
the thermodynamic limit even for a fixed algorithm might be
possible due to the fact that the model has no spatial extent
and is therefore not required to be self-averaging [26].

B. Pair correlation

The pair correlation function g(r), averaged over the
jammed isostatic lattices in each dimension, is plotted in
Fig. 3. The pair correlation is zero for r < 1 due to the
hard-sphere constraint and has a delta-function singularity at
r = 1 due to the pairs that are in contact. For r > 1 we observe
a number of distinctive features: a power-law divergence
g(r) ∼ r−γ for r → 1+, and apparent singularities at r = √

2
and r = √

3. At finite-pressure the delta-function singularity

1 1.2 1.4 1.6 1.8

0.9

1

1.1

1

r

g
(r

)

15 16 17
18 19 20
21 22 23
24

FIG. 3. (Color online) The average pair correlation g(r) in a
jammed isostatic lattice of dimension d , where d = 15, . . . ,24. The
vertical lines mark the apparent singularities at r = √

2 and r = √
3.

The distances are given in units of the sphere diameter.

at r = 1 is also expected to broaden into a power law whose
exponent is related to the distribution of contact forces and
which will control the behavior at r → 1+ [14,38]. Since we
are working with configurations at infinite pressure, the two
singular behaviors at r = 1 are completely separated and can
be studied separately in the pair correlation g(r) and in the
contact force distribution (see Sec. IV C). Note that we were
able to easily approach the infinite-pressure limit in this system
because a simple linear equation gives the exact Gram matrix
once the contacts are identified. In the classical setting, the
equations determining the configuration based on the identity
of contacts are nonlinear, and highly nontrivial to solve. This
is another remarkable advantage of the lattice model.

We observe that the features of g(r), especially the
singularities at r = √

2 and r = √
3, become less pronounced

in higher dimensions, and the correlation function approaches
the asymptotic value g(∞) = 1 faster. The weakening of
correlation features with increased dimension is a prediction
of the principle of decorrelation [5] This principle has been
shown to apply not only to amorphous configurations but also
to lattices [16].

While, for any individual lattice, g(r) is, strictly speaking,
a sum of delta functions, the spacing between these is much
smaller than the sphere radius, and g(r) can be considered
a continuous curve (apart from the aforementioned singulari-
ties). Therefore, the curves in Fig. 3, which are averaged over
many lattices, can also be considered to represent the typical
lattice. Note that this is a nontrivial feature of this ensemble
of lattices. The extreme lattices that are densest, or close to
densest, in any dimension are typically given by Gram matrices
whose elements are rational numbers of small denomina-
tor [1,22,23]. Therefore, the possible squared pair separations
r2
ij = 〈ni − nj ,G(ni − nj )〉 must also be rational numbers

of small denominator, and the pair correlation function will
consist, at least for r � 2, of only a few delta functions.

The divergence for r → 1+ remains a strong feature for all
the dimensions studied here. Such a divergence, described

10−4 10−3

10−1

100

r − 1

(r
−

1
)(

dZ
/
d
r)

15 16 17
18 19 20
21 22 23
24

FIG. 4. (Color online) Logarithmically binned histogram of pair
separations. The curves are fit by power laws c(r − 1)1−γ with
exponents given in Table II. The dashed lines have a slope of 0.686,
corresponding to the average value of 1 − γ .
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TABLE II. The value in each dimension of the best-fit power-law
exponents for the data shown in Figs. 4 and 7.

d γ θ

15 0.3128 0.3534
16 0.3137 0.3685
17 0.3203 0.3633
18 0.3177 0.3603
19 0.3172 0.3654
20 0.3159 0.3731
21 0.3134 0.3834
22 0.3083 0.3856
23 0.3097 0.3830
24 0.3071 0.3775

by a power law, is also observed in classical jammed
packings [38,39], and the power-law exponent seems to be
independent of dimension [14]. We use logarithmic binning to
extract the correlation of near-contacting pairs, which appears
to be well-described by a power law 〈Z(1 + ξ )〉 
 Aξ 1−γ (see
Fig. 4). The best-fit values of γ are given in Table II. The
value of the power-law exponent seems to take a dimension-
independent value of γ = 0.314 ± 0.004. The amplitude of the
near-contact singularity, on the other hand, seems neither to be
a constant with dimension nor to be directly proportional to the
density. Instead, the amplitude seems to scale with a distinct
power-law exponent as a function of dimension, A 
 cdν̃ ,
where ν̃ = 3.30 ± 0.05 (see Fig. 5).

C. Forces

The distribution of the contact force at a random contact in
a lattice, rescaled by the mean value for that lattice, is plotted
in Fig. 6. The mean value for each lattice is determined by
its density (see Sec. II). Again we note that for any individual
lattice, this distribution is discrete, but that it approaches a
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FIG. 5. (Color online) The amplitude of the near-contact singu-
larity in the pair correlation as a function of dimensions. The line is
the best fit power law A = (1.43 × 10−3)d3.30. The inset shows the
same on a log-log scale.
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FIG. 6. (Color online) The distribution of contact forces. The
behavior of the tail of the distribution is shown in the inset on a
semilog plot.

smooth distribution as the number of contacts increases with
dimension. For the densest lattices in any dimension, this is
again not the case: not only are the contact forces not well
defined (because of hyperstaticity), but the high degree of
symmetry implies that there are only a few inequivalent classes
of contacts [1,31].

Note that the distribution seems, already at the lowest
dimensions studied here, to approach a limit distribution. The
probability density peaks around the mean value and clearly
goes to zero at zero force. Logarithmic binning of the forces
reveals a power-law dependence at low force of the form
P (f/〈f 〉) = c(f/〈f 〉)θ (see Fig. 7). Again, this behavior is
consistent with the behavior of classical jammed packings [14].
The best-fit values of θ are given in Table II and show that the
power-law exponent does not seem to depend on dimension
and takes a value of θ = 0.371 ± 0.010.

10−3 10−2 10−1

10−5

10−4

10−3

10−2

10−1

f/〈f〉

(f
/
〈f

〉)P
(f

/
〈f

〉)

FIG. 7. (Color online) Logarithmically binned histogram of con-
tact forces. The black line shows the best-fit power law
(f/〈f 〉)P (f/〈f 〉) = 0.430(f/〈f 〉)1.371.
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FIG. 8. (Color online) Spherically averaged structure factor, av-
eraged over all jammed isostatic lattices in each dimension. The inset
shows the value of k such that S(k) = 1/2 as a function of dimension.
The wave numbers are given in units of the inverse sphere diameter.

D. Structure factor

We plot the spherically averaged structure factor S(k),
averaged over all lattices in a given dimension, in Fig. 8. As
argued in Sec. II, the structure factor of an extreme lattice
must vanish for a finite range of wave numbers near k = 0,
a property known as stealth [40]. Classical jammed packings,
by contrast, tend to have a structure factor which approaches
0 continuously at k = 0 [41]. While the stealth wave number
for an extreme lattice must be greater than [2d/(d + 1)]1/2

(its value for the wholly atypical lattice Ad ), its value for
the typical jammed lattice seems to be significantly larger,
and to increase with dimension (see inset of Fig. 8). The
amplitude of the oscillations about the value S(k) = 1 for large
k become smaller and smaller with dimension, as expected by
the decorrelation principle [5,16].

Apart from the low-wave-number behavior, these structure
factors bear a marked resemblance to those observed in
classical jammed packing [6,42,43]. Those structure factor
do not exhibit stealth, but are instead heavily suppressed

at small wave numbers, followed by a sharp rise and then
oscillations about S(k) = 1 that decay as k → ∞. The height
of the first peak in S(k) decreases with increasing dimension
and the wave number at which it appears increases.

V. CONCLUSION

Due in part to similarities observed between the phe-
nomenology of structural glasses and of the spherical p-spin
glass model, there has been an effort over the last decade
to understand the glass transition and jamming in hard-sphere
systems by studying models with no spatial extent [27]. In most
cases, the network of interactions between different degrees of
freedom in these models are sparse graphs or trees [44–46].
However, the interactions in the spherical p-spin model are
dense: every p-tuple of spins interacts. Also, while it appears
that much progress can be made in understanding some general
behavior using these models, much is lost in the process about
the distinct structural features of jamming. Features such as
the power-law behaviors of weak contacts and small gaps
play a major role in determining the stability of jammed
states [47,48], yet so far they have been missed completely
in replica theory calculations [14]. In this article, we presented
a spatially nonextended model of hard spheres with a dense
interaction network that retains nearly all of the structural
features of the classical hard-sphere model. We have examined
some of the phenomena exhibited by jammed isostatic lattices,
as manifested in their densities, pair correlations, contact force
distributions, and structure factors, and the relation to similar
phenomena exhibited in the classical hard-sphere model.
The lattice hard-sphere model enables numerical exploration
of these phenomena in much higher dimensions than was
previously possible. We have only begun exploring this rich set
of phenomena, and there is clearly much work still to be done.
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