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Disordered strictly jammed binary sphere packings attain an anomalously large range of densities
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Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically
stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly
jammed binary packings (packings that remain mechanically stable under general shear deformations and
compressions) can be produced with an anomalously large range of average packing fractions 0.634 � φ � 0.829
for small to large sphere radius ratios α restricted to α � 0.100. Surprisingly, this range of average packing
fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly
strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average
packing fractions of these packings at certain α and small sphere relative number concentrations x approach
those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that
these high-density disordered packings should be good glass formers and that they may be easy to prepare
experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with
rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when
large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane
where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606
to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To
generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear
programming algorithm [Phys. Rev. E 82, 061302 (2010)], which is an efficient producer of inherent structures
(mechanically stable configurations at the local maxima in the density landscape). The identification and explicit
construction of binary packings with such high packing fractions could have important practical implications for
granular composites where density is critical both to material properties and fabrication cost, including for solid
propellants, concrete, and ceramics. The densities and structures of jammed binary packings at various α and x

are also relevant to the formation of a glass phase in multicomponent metallic systems.
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I. INTRODUCTION

A packing is an arrangement of nonoverlapping objects in
a space of given dimension d, and the packing fraction φ is
the fraction of the space that the objects cover. Packings of
identical spheres have been employed in three-dimensional
Euclidean space R3 to describe the structures and some
fundamental properties of a diverse range of substances from
crystals and colloids to liquids, suspensions and particulate
media, amorphous solids, and glasses [1–7]. Complex struc-
tures with high symmetry can arise in packings of identical
spheres through simple principles like density maximization
in both confined and infinite spaces [8–21]. Polydisperse
sphere packings have been studied recently as models for
metallic glasses, in particular as packing effects are crucial
in determining the ability of a metallic multicomponent
atomic system to form a glass [1,22]. Packings of identical
nonspherical objects in R3 have also been studied, though not
to the extent of sphere packings, and have applications, for
example, in the self-assembly of colloids and nanoparticles
[23–35]. In structural biology, molecular dynamics simula-
tions of interactions between large numbers of molecules
employ chains of identical nonoverlapping spheres as models
for various biological structures such as proteins and lipids
[36–38], and packing of nonspherical objects of different

sizes are used, for example, in tumor growth modeling
[39–41].

Experimental packings of oiled steel ball bearings origi-
nally led to the idea that mechanically stable random packings
of identical spheres could not exhibit packing fractions
exceeding 0.64 or declining below 0.60 [42,43]. In particular,
the notion of a “random close packing” (RCP) state for
monodisperse hard spheres was pioneered by Bernal [44,45]
and has a venerable history [46,47]. The RCP state is
thought to be the maximal packing fraction that a large
random collection of congruent identical spheres can attain,
and this packing fraction of about 0.64 is thought to be a
universal quantity. Mathematically constructed models [48]
and early computer simulations [49] seemed to support these
conclusions, though later work demonstrated that the limiting
packing fractions obtained were highly dependent on the
packing protocols [5,47,50–55]. Moreover, “random” was
never defined, and because infinitesimal increases in φ above
0.64 would be accompanied by undetectable changes in what
might be considered “randomness,” the RCP concept has been
challenged [5,47,53–55].

It has been suggested that the notion of a RCP state for hard
spheres be supplanted by the mathematically precisely defined
maximally random jammed (MRJ) state [53,54]. Maximally
random jammed packings are those that exhibit the least order,
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as measured by a variety of different order metrics, from the set
of all strictly jammed (mechanically stable) packings [13,54].
In contrast to empirical RCP states, MRJ packings have unique
properties. In particular, three-dimensional MRJ packings have
a well-defined packing fraction φMRJ in the infinite-volume
limit, and the jammed spheres in an MRJ packing are isostatic
[33,53], meaning that the average number of contacts per
jammed sphere is the minimum required for mechanical
stability [56]. Additionally, the pair correlation functions g2(r)
of MRJ packings decay to unity proportionally to −1/r4 as
r → ∞, with corresponding linear behavior of the structure
factor S(k) as k → 0 [57,58], which implies hyperuniformity
[59]. This linear behavior in the structure factor has been
experimentally observed in colloids [34], granular materials
[60], and amorphous silicon [61,62]. Furthermore, it has
been used to extract growing length scales in million-particle
packings of monodisperse spheres [58] as packing fraction
approaches jamming and in models of supercooled glassy
atomic systems [63] as temperature is decreased.

In a strictly jammed packing, no simultaneous collective
motion of the objects and non-volume-increasing deformation
of the unit cell can reduce density, meaning that all strictly
jammed packings are mechanically stable. Generally, such a
packing consists of a subset of spheres, called the backbone,
that is strictly jammed, and a number of rattlers that can be
displaced without displacing (or overlapping) any neighbors.
The packing fraction at which a packing becomes strictly
jammed and the degree of disorder, or “randomness,” in a pack-
ing [13,54,59,64–67] are highly dependent on the specifics
of the packing protocol, including the initial configuration
and density before compression is begun, compression rate,
and system dynamics [47,68]. This means that though all
MRJ packings are strictly jammed, not all strictly jammed
disordered packings are MRJ [69], since MRJ packings
additionally require minimal order and exhibit characteristics
such as isostaticity.

Similarly to monodisperse sphere packings, at each speci-
fied pair of small to large sphere size ratio α and small sphere
relative number concentration x, MRJ binary sphere packings,
or packings of spheres of only two sizes, are expected to
exhibit a well-defined packing fraction φMRJ(α,x) and exact
isostaticity of their jammed backbones. However, by spanning
over the α-x parameter space, the possible range of φMRJ(α,x)
may be surprisingly large; one of the aims of this paper is to
explore the extent of this range. For example, it was recently
shown that the maximal packing fractions of ordered binary
sphere packings over a large set of α and x is substantially
greater than was previously known [20,70,71].

In this work, we generate and analyze disordered, strictly
jammed binary sphere packings of N = 1000 to N = 15 000
spheres at various α � 0.100 and 0 � x � 1 where each
packing contains an exactly isostatic backbone. We are able to
construct such packings with high fidelity using the Torquato-
Jiao (TJ) sequential linear programming algorithm [20,70,72],
a packing protocol that is particularly well suited to construct-
ing strictly jammed, isostatic packings, for reasons that will be
discussed in detail later in this work. We find that for α � 0.100
and 0 � x � 1, strictly jammed binary sphere packings with
exactly isostatic backbones exhibit an anomalously large range
0.634 � φMRJ(α,x) � 0.829 of average packing fractions and

FIG. 1. (Color online) Depiction of a 2000-sphere unit cell of a
periodic strictly jammed binary packing at α = 0.200 and x = 0.970
with packing fraction φ = 0.785. This MRJ packing was generated
using the Torquato-Jiao (TJ) algorithm and contains an exactly
isostatic backbone for strict jamming with an average of 6.0035
contacts per jammed sphere (see definition in text). The packing
contains 288 rattlers (all small spheres) to an accuracy of 10−6

large-sphere diameters.

that for certain values of α and x, φMRJ(α,x) approaches
the density of the densest known ordered packings [20,70].
These are particularly unexpected findings considering that the
packings are generated without any sort of special preparation
from random sequential addition (RSA) initial conditions [5]
at low initial packing fractions 0.1 � φinit � 0.3. Figure 1 is
an image of a 2000-sphere isostatic packing at φ = 0.785 with
α = 0.200 and x = 0.970.

Past investigations [69,72] have employed the TJ algorithm
to study strictly jammed packings of disordered monodisperse
spheres, but in this work we apply the algorithm to disordered
binary sphere packings. The packings that we have generated
are MRJ like due to the nature of the TJ algorithm [72] and
the use of RSA initial conditions. This is also evidenced by
the exact isostaticity of both the monodisperse and binary
disordered jammed packings studied here and the forms of
their corresponding pair correlation functions. We therefore
refer to the packings hereafter simply as MRJ [as indicated
by the terminology φMRJ(α,x)], deferring a detailed study of
structural disorder employing order metrics to a future work
due to the challenging requirement of defining and discussing
order metrics that are applicable across the entire α-x plane of
disordered and ordered binary packings.

Previously, research into simulated disordered binary
sphere packings had not focused on mechanical stability
because it was difficult not only to simulate strictly jammed
packings but even to conclusively demonstrate strict jamming
[56,73]. Consequently, many previous simulation studies of
disordered binary sphere packings have produced packings
that are not mechanically stable [74–76] and report coordi-
nation as opposed to contact numbers, where a coordination
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FIG. 2. (Color online) Depiction of a 15 000-sphere unit cell of a
periodic strictly jammed binary packing at α = 0.100 and x = 0.9968
with packing fraction φ = 0.829176 . . . . This MRJ packing was
generated using the Torquato-Jiao (TJ) algorithm and exhibits an
exactly isostatic backbone. The packing contains 14 954 rattlers
(14 952 small and 2 large) to an accuracy of 10−12 large sphere
diameters (the number of rattlers calculated is identical from contact
tolerances of 10−12 to 10−5 large sphere diameters). The jammed
backbone of this packing, consisting of 46 large spheres, exhibits a
packing fraction of 0.605892 . . . . It is expected that greater packing
fractions at α = 0.100 for packings at slightly larger values of x can be
achieved, since for the other values of α studied, the greatest packing
fraction as a function of x was achieved for packings where the vast
majority of small spheres were present in the packing backbone (i.e.,
were not rattlers).

number indicates only proximity of two spheres, whereas a
contact number reflects mechanical stability and is derived
from a jammed network [73]. It is perhaps for these reasons
that previous studies found maximal packing fractions for
disordered binary packings at ranges of α down to α = 0.100
of only about 0.79 [55], whereas we find strictly jammed,
exactly isostatic sphere packings generated from RSA initial
conditions with packing fractions up to 0.829. Figure 2 is
an image of a 15 000-sphere packing with exactly isostatic
backbone consisting of 48 large and 14 952 small spheres
(x = 0.9968) with packing fraction φMRJ(0.100,0.9968) =
0.829176 . . . .

Experimental studies of binary sphere packings, employing,
for example, binary spherical colloids [77] and metal shot [78],
produce mechanically stable packings by design. However,
it is difficult in experimental setups to identify rattlers or
even average coordination numbers and, therefore, to precisely
measure packing characteristics such as average number of
contacts per sphere z̄. Further, physical experiments can be
influenced not only by packing protocol but also by factors
that can be removed from simulations, including physical
packing boundaries, friction, the relative densities of small and
large spheres, and aberrations away from perfect sphericity.
Past experiments with binary sphere packings yielded density
ranges of about φ = 0.64 to φ = 0.77 for α � 0.1 [77,78].

In contrast, the TJ algorithm [20,70,72] is particularly
well suited to study disordered packings of spheres due

to its capability to produce mechanically stable packings
where contacts between spheres (and therefore rattlers) can
be precisely identified to arbitrary numerical precision. This
capability is particularly noteworthy, since no other sphere-
packing algorithm known to the authors consistently produces
exact isostaticity or even strictly jammed packings. This is a
crucial point, as recent works [68,79] studying monodisperse
and binary sphere packings at jamming have concluded that
isostatic jammed packings of spheres occur over a range
of packing fractions. It is important to note that because
such packings were not tested for exact isostaticity or strict
jamming, it is not clear that this conclusion is valid, especially
in the infinite-volume limit. In our investigations, though we
find a small range of packing fractions for strictly jammed,
exactly isostatic packings of a finite number of spheres at each
specified α and x, this range decreases apparently to zero as the
size of the packing increases. This issue as well as higher-order
rattler statistics is the subject of an analogous study of MRJ
monodisperse spheres under strict jamming [80].

In the first part of this paper, we present the packing
fractions of isostatic binary sphere packings produced using
the TJ algorithm across a range of x and α � 0.100. We also
discuss the average number and types of contacts between
jammed spheres in these packings, and the criteria for
determining whether a sphere is a rattler.

We then examine the trends in average density as a function
of x at fixed α. The qualitative “triangular” shape of density
as a function of x is observed [74–76,81]; however, we find
proportionality of φMRJ(α,x) according to a + bx/(c − x) with
a, b, and c constants, where, for example, at α = 0.200 this
proportionality ranges from x = 0 to the observed maximum
at x = 0.970. In addition, for all values of α, we find that
the packing fraction of the jammed backbone remains nearly
constant at about φ = 0.624 from x = 0 up to a value of x,
dependent on α, near which φMRJ(α,x) reaches a maximum.
We also identify a drop in average relative percentage of small
rattlers as a function of x at fixed α that precedes the peak in
density.

Next, we present pair correlation functions g2(r), with r

the radial distance between pairs of sphere centers. We discuss
fundamental changes in pair correlation functions that emerge
as x is varied at fixed α. Finally, we summarize our results and
discuss potential applications of our findings to the production
of solid propellants, concrete, and ceramics.

II. BINARY MRJ PACKINGS WITH ANOMALOUSLY
LARGE DENSITY RANGES

There have been numerous algorithmic protocols used to
simulate dense packings of identical spheres. For example,
the Lubachevsky-Stillinger (LS) protocol [50] simulates fric-
tionless spheres within a periodic unit cell that act according
to Newtonian dynamics while undergoing elastic collisions
and growing at a constant rate �. Research using the LS
algorithm demonstrates that when the growth rate is fast,
jammed disordered roughly isostatic packings can be produced
[57,82]. The packing fractions φ of these packings are strongly
dependent on the growth rate and initial conditions, as are
average contact numbers z̄, with φ and z̄ tending to increase
with decreasing growth rate �. In general, research has shown

022205-3



HOPKINS, STILLINGER, AND TORQUATO PHYSICAL REVIEW E 88, 022205 (2013)

that the packing fraction of jammed, disordered identical
spheres is strongly dependent on packing protocol [47].
However, the packing fraction of MRJ packings appears to
be somewhere between 0.63 and 0.64, as determined using the
LS protocol for very fast growth rates [53,83].

Though the LS algorithm can be used to generate strictly
jammed sphere packings, for large numbers of spheres and fast
growth rates, pressure (and therefore simulation time) tends to
diverge before a strictly jammed packing is produced. Using
the TJ algorithm to quickly generate packings can be thought
of as similar to using the LS algorithm with an extremely fast
growth rate, except that the resultant packings are guaranteed
to be strictly jammed. This is because the TJ algorithm exactly
solves for the linear movement of the unit cell and collective
motion of the spheres that maximizes density.

Limiting the TJ algorithm at each step to small dis-
placements in sphere position (less than 0.001 large sphere
diameters) and unit cell shape, only localized adjustments
to sphere positions are possible. This means that each step
in the TJ algorithm gives a solution for local improvements
in density that is similar to (but far more efficient than) the
process by which quickly compressed (or cooled) physical
systems exhibiting strong repulsive pair potentials densify
when there is not enough time to equilibrate. It therefore is
not surprising that for N = 1000 spheres, the TJ algorithm
produces isostatic jammed packings of identical spheres with
packing fractions of φ = 0.6336 ± 0.0018, very similar [83]
to the packing fractions obtained for MRJ packings using the
LS algorithm [84]. It is noteworthy that scalar order metrics
give nearly identical averaged values for these packings and
MRJ packings produced using the LS protocol.

It is surprising to find that the range of average packing
fractions of binary MRJ structures for x ∈ [0,1] and α �
0.100 obtained using the TJ algorithm and RSA initial
conditions is 0.634 � φ � 0.829. The lower limit is obtained
for monodisperse packings, i.e., at any value of α with x = 0
or, equivalently, x = 1. However, by removing the rattlers from
binary MRJ packings and considering only their backbones,
even lower packing fractions can be obtained while preserving
strict jamming and exact isostaticity.

Due to the requirement of mechanical stability, disordered
strictly jammed structures require a nonzero minimum density;
for example, in R3 for identical spheres, disordered strictly
jammed packings have been produced with packing fractions
no lower than 0.60 [72], and ordered strictly jammed packings
have been produced with packing fractions as low as

√
2π/9 ≈

0.494 [85]. For the disordered binary packings studied at
α = 0.100, 0.150, 0.200, and 0.330, a decrease in the average
packing fraction of the jammed backbones as a function of
x at fixed α is observed when x is only slightly smaller than
the value for which the maximum packing fraction (including
rattlers) is obtained. The lowest average packing fraction
φ = 0.606 of jammed backbones of MRJ packings appears as
a local minimum in x at x = 0.9968 with α fixed at α = 0.100.
For the other values of α studied, this local minimum in the
average packing fraction of the jammed backbones is less
pronounced and occurs at somewhat smaller values of x.

Table I presents the highest packing fractions φMRJ(α,x)
obtained for binary MRJ structures using the TJ algorithm.
We expect these highest φMRJ(α,x) to increase at values of α

TABLE I. Highest average packing fractions of binary MRJ
packings obtained using the TJ algorithm

α Highest φMRJ(α,x)

0.100 φMRJ(0.100,0.997) = 0.829
0.150 φMRJ(0.150,0.989) = 0.806
0.200 φMRJ(0.200,0.97) = 0.785
0.330 φMRJ(0.330,0.90) = 0.718
0.450 φMRJ(0.450,0.80) = 0.682
0.950 φMRJ(0.950,0.045) = 0.635

smaller than 0.100. We also expect the the minimal packing
fraction of the jammed backbones of MRJ binary packings to
decrease for α � 0.100.

Producing isostatic jammed sphere packings is nontrivial,
yet the TJ algorithm consistently generates strictly jammed,
exactly isostatic packings. The total number of contacts Z(N )
necessary for a packing in a finite-sized deformable unit cell
to be strictly jammed is [56]

Z(N ) = 3N + 3. (1)

All packings that we produce using the TJ algorithm include
this number (a small percentage include one more than this
number, presumably because the numerical tolerance of the
simulation was not sufficient to distinguish between proximity
and contact, but these packings are excluded from our results).
For collective jamming, jamming of a bounded packing of
finite size where there is no unit cell to deform, only 3N − 2
contacts are required for jamming in three dimensions.

The reason leading to this requirement [Eq. (1)] is subtle
and requires a more detailed explanation. The total number
of contacts 3N + 3, or 6 + 6/N average contacting spheres
per given sphere, is required such that all degrees of freedom
available to the spheres in the packing be restricted by contacts.
There are dN degrees of translational freedom available to the
spheres, and d(d + 1)/2 degrees of symmetric shear and strain
freedom available to the periodic box in which the spheres
are placed. A total of d degrees of freedom are subtracted to
remove arbitrary translations of the box and spheres in space
(which do not result in unjamming) and an additional single
degree of freedom is subtracted as deformations of the box
are required to be non-volume-increasing. A single degree of
freedom is then added back, which can be best explained by
noting that a trapping simplex in d-dimensional configuration
spaces requires d + 1 bounding hypersurfaces, which equates
to d + 1 sphere contacts. The total, d(N − 1) + d(d + 1)/2 −
1 + 1, is equal to 3N + 3 in three dimensions.

To check if the backbone of a strictly jammed packing
is isostatic, it is necessary to determine which spheres in
the packing are rattlers, for which purpose we employ an
iterative scheme. First, the total contacts between all spheres
are counted and tabulated, employing a specified contact
tolerance t , and local jamming is checked using the linear
programming method described by Donev et al. [73]. Those
spheres that are not locally jammed are labeled rattlers. Next,
we repeat this scheme after removing all contacts involving
spheres identified as rattlers and continue repeating until
no new rattlers are identified. Figure 3 is a plot of the
number of rattlers identified in a packing of 1000 spheres
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FIG. 3. Plot of the number of rattlers identified as a function of
contact tolerance t (with t in units of large sphere diameters) for a
packing of 1000 spheres at α = 0.45 and x = 0.850, where in this
packing the TJ algorithm has been directed to solve to a numerical
contact tolerance of 8 × 10−6. Note the “plateau” beginning just
before the algorithm’s numerical contact tolerance 7 × 10−6 and
spanning about an order of magnitude to 5 × 10−5, indicating that all
rattlers have been identified to the precision solved by the algorithm.
At t = 7 × 10−6, there are exactly 101 rattlers and an average of
6.0067 contacts per jammed sphere, precisely the number required
for isostaticity.

at α = 0.450, x = 0.850 as a function of the contact tolerance
t in the rattler-identification algorithm. The plot illustrates the
contact tolerance for strict jamming as solved for by the TJ
algorithm, which coincides with the contact tolerance of the
rattler-identification algorithm over a “plateau” of a constant
number of rattlers identified, as seen in Fig. 3.

III. TRENDS IN DENSITY AND NUMBER OF RATTLERS

In addition to studying the packing fractions of MRJ
binary packings, we have also studied the functional form
of φMRJ(α,x) as a function of x at fixed α, the composition
of small and large spheres present in the jammed backbone,
and the number of small and large rattlers. We find that for all
α studied, φMRJ(α,x) at fixed α can be described at all values
of x by two functional forms, that the packing fraction of the
jammed backbone remains nearly constant at about φ = 0.624
for all values of α at the vast majority of values of x, and that
small spheres are present in the jammed backbone at all values
of 0 < x < 1 and α � 0.150 (for some of the strictly jammed
packings studied at α = 0.100, all small spheres were rattlers).

Past research has identified a qualitative “triangular” shape
in the dependence of φMRJ(α,x) on x at fixed α, and our
work supports this finding. However, more precisely, we find
proportionality of packing fraction with a + bx/(c − x) at
α = 0.100, 0.150, 0.200, 0.330, and 0.450 from x = 0 to a
certain value of x, x = x0(α) [where x0(α) is not necessarily
the maximum of φMRJ(α,x)]. The functional form found can
be explicitly written as

φMRJ(α,x) = a + b(α)x

c(α) − x
; x � x0(α). (2)
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FIG. 4. (Color online) Plot of the average packing fraction
obtained at various values of x and α = 0.100, 0.150, 0.200, 0.330,
0.450, and 0.950, where each data point except at α = 0.100
represents an average of 10 packings (the measured standard deviation
is slightly smaller than the size of the symbols). For α = 0.100,
due to computational time constraints, each data point represents a
single packing. No fewer than 40 large spheres are present in any
packing. The solid curves for α = 0.150, 0.200, 0.330, and 0.450 are
least-squares fits φMRJ(α,x) = a + b(α)x/[c(α) − x] with R2 values
of 0.9992, 0.9998, 0.9976, and 0.9958, respectively, where the fits
range over the values of x indicated by the curves. We do not display
curves for α = 0.100 due to a paucity of data and for α = 0.950 due
to the inability to define a value x0(0.950).

For α = 0.950, no value x0(α) can be identified, as φMRJ(α,x)
is roughly flat over all values of x studied. We additionally
note that the functional form of Eq. (2) applied to the data at
α = 0.100 and 0.150 is limited to the small number of values
of x studied, 0.98 � x � 0.99 for x = 0.150 and 0.996 � x �
0.997 for α = 0.100. Limited ranges of x are studied at α =
0.100 and α = 0.150 due to computational time constraints,
as large numbers of 5000 to 15 000 spheres were necessary to
carefully study packings near the peak in packing fraction of
φMRJ(α,x) at these two values of α.

In Eq. (2), α can be read as a parameter that defines the
constants b(α) and c(α). For x > x0(α), we find that packing
fraction is proportional roughly to a polynomial of degree
3. The behavior of φMRJ(α,x) as a function of x for six
values of α is displayed in Fig. 4. Proportionality according
to a + bx/(c − x) up to x0(α) leads to an increasingly sharp
peak in φMRJ(α,x) with decreasing α, where we find, within
the resolution in x of the study, that x0(α) corresponds
approximately with the peak in packing fraction for α = 0.100,
0.150, and 0.200. Identifying such a sharp and pronounced
peak in packing fraction as a function of x at small values of α

is a surprising finding, indicating that the precise tailoring of
the size and composition of mixtures of spherical composites
can lead to substantial increases in density.

It is noteworthy that the densest known ordered packing
at α = 0.200, x = 0.970 has a packing fraction of 0.796,
differing by only about 1.4% from φMRJ(0.200,x = 0.970)
[20,70]. The densest packing referenced is a phase-separated
packing including the following: an (11-1) phase that can be
described as a distorted fcc lattice of large spheres with 11
small spheres per large sphere in the interstices and a phase
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of fcc small spheres. A diagram of the (11-1) structure can
be found in Appendix A. It is conjectured that this proximity
in maximal packing fractions between the densest ordered
and MRJ packings also may be present at α = 0.150 and
α = 0.100, but this cannot be confirmed at present since the
densest ordered packings at these two smaller values of α has
not been studied in detail. The proximity in densities between
the MRJ and densest ordered packings at α = 0.200 and x =
0.970 is striking. The small structural entropy difference (via
free volume) between the two packing configurations and the
additional entropy in the MRJ packings due to disorder indicate
that (a) free energy is not significantly reduced by freezing and,
therefore, that these are good parameters for generating binary
sphere glasses and (b) that the MRJ packings at these α and x

should be particularly easy to obtain experimentally.
The equality presented in Eq. (2) and Fig. 4 is also clearly

present when φMRJ(α,x) is measured, as it often is [74–76],
as a function of α and the relative volume fraction of small
spheres xV , where

xV = xα3

xα3 + 1 − x
. (3)

Under the change of variables x → xV , Eq. (2) retains its
functional form, i.e.,

φMRJ(α,xV ) = a + bV (α)xV

cV (α) − xV

, (4)

with bV (α) ≡ b(α)/[1 + c(α)α3 − c(α)] and cV (α) ≡
c(α)α3/[1 + c(α)α3 − c(α)]. Figure 5 is a plot of φMRJ(α,xV )
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FIG. 5. (Color online) Plot of the average packing fraction
φMRJ(α,xV ) versus xV for the values of x presented in Fig. 4, alongside
fits to the data according to Eq. (4) for α = 0.150, 0.200, 0.330,
and 0.450. Each data point represents an average of 10 packings
where the measured standard deviation is close to the size of the
symbols. For α = 0.100, due to computational time constraints,
each data point represents a single packing. The solid curves are
least-squares fits of the form of Eq. (4) to the data from xV = 0
to xV = xV (x0(α)), except for α = 0.150, where the fit ranges over
all available data, 0.1419 � xV � xV (x0(0.150)). The dashed line
is a linear least-squares fit to the data for α = 0.200 from xV = 0
to xV (x0(0.200)), shown for comparative purposes only. It is visually
clear from the plot that the linear fit to α = 0.200 is a significantly less
precise descriptor of the data than is the fit curve according to Eq. (4).
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FIG. 6. (Color online) Plot of the average packing fraction
φMRJ(α,xV ) versus α for xV = 0.200, 0.220, 0.240, and 0.260. Each
data point represents a linear extrapolation from the nearest values of
xV at which packings were produced, where the same packings used
to create Figs. 4 and 5 are considered. The linear extrapolations extend
no more than 6% from the closest value of xV at which packings were
produced.

for four values of α along with curves fit to the data from
xV = 0 to xV (x0(α)), where the fit curves are of the form
of Eq. (4). Figure 5 also includes a plot of the best linear
fit to φMRJ(0.200,xV ) from xV = 0 to xV (x0(0.200)) ≈ 0.20,
clearly demonstrating visually that the form of Eq. (4) is
a better fit than a line. All fit curves displayed in Fig. 5
according to Eq. (4) are better fits than a line, though the fit
for α = 0.450 is only slightly better than a line. Data and fit
curves for α = 0.100 and α = 0.950 are not shown for the
same reasons they were not shown in Fig. 4. Appendix B
discusses other fits to the average packing fraction data
obtained in this study.

Though the graphs displayed thus far all plot φMRJ as a
function of x or xV at fixed α, plots of φMRJ as a function of α

at fixed xV can also be drawn. Figure 6 displays φMRJ(α,xV )
as a function of α at fixed xV for xV = 0.200, 0.220, 0.240,
and 0.260 for the values of α studied (excluding α = 0.950
for visual clarity). The data presented are derived from the
data presented in Figs. 4 and 5; since the packings studied
were not generated at the precise values of xV presented in
Fig. 6, the data presented in the plot are linear extrapolations
between the nearest two values of xV at which packings were
produced. Only four values of xV are plotted so that these
linear extrapolations extend minimally from values of xV at
which packings were actually produced.

Another interesting feature in the densities of the MRJ
binary packings generated becomes apparent when packing
fraction is calculated with all rattlers removed. In this case, we
find that for the majority of the α-x plane, the average packing
fraction of the backbones is about 0.624. This is an unexpected
finding considering that at all values of α and x studied,
small spheres contribute to the jammed backbones of packings
(except at α = 0.100) and are often more numerous than the
large spheres. For example, at α = 0.330 and x = 0.800 with
N = 1000, we find the average jammed backbones to be
comprised of an average of 231.8 small spheres and 199.6
large spheres, yielding an average packing fraction of 0.628.
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FIG. 7. (Color online) Average packing fraction of the jammed
backbone obtained at various values of α and x (left axis and legend).
The average packing fraction of the jammed backbone is roughly
constant at 0.624 for the majority of the α-x plane, including over
the area x < 0.3 not shown in the figure. Overlayed is a plot of the
average relative percentage of small rattlers (right axis and legend).
Note that this percentage is roughly constant over the same range of x

at fixed α that the average packing fraction of the jammed backbones
is roughly constant (at the value 0.624).

Figure 7 plots the average packing fractions of the packings
studied in Fig. 4 for four values of α, except with rattler
spheres removed. Overlayed on this plot is a plot of the
average fraction of small spheres that are rattlers. Data for
fewer values of x were collected due to computational time
constraints at α = 0.150 and α = 0.100, and, consequently,
data for α = 0.100 are not plotted in Fig. 7. However, the data
for α = 0.100 and α = 0.150 show similar behavior to the
data for the α = 0.200 packings, except the sharpness of the
increase in backbone packing fraction at the peak in density is
more pronounced, as is the sharpness of the decrease in number
of spheres that are rattlers. Data for α = 0.950 are not plotted
in Fig. 7, as, for all x studied, the backbone packing fraction
and fraction of small spheres that are rattlers do not deviate
substantially from the values taken for monodisperse packings.

Figure 7 also illustrates that the increase in the backbone
packing fraction occurs concurrently with a drop in the relative
percentage of small rattlers (all values of α studied display this
trend except for α = 0.950). The increase is additionally nearly
concurrent with the complete disappearance of large rattlers,
i.e., in not one of the thousands of packings studied was a
single large rattler present past the beginning (roughly) of the
rise in backbone packing fraction. These observations indicate
a fundamental change in the underlying structure of MRJ
binary sphere packings from (a) a jammed backbone of mostly
large and some small spheres at a packing fraction of about
0.624, incorporating small rattler spheres in the interstices, to
(b) a jammed backbone comprised of mostly small spheres
incorporating a few small and no large rattlers.

Over the α-x plane for the packings studied, the total
volume fraction of spheres that are rattlers varies substantially
from its value for monodisperse packings of about 1.6% to as
high as 26.9% at α = 0.100, x = 0.997. Figure 8 illustrates
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FIG. 8. (Color online) Average volume fraction of spheres that are
rattlers obtained at various values of α and x (left axis and legend).
For all values of α studied, as x increases from x = 0, the volume
fraction of spheres that are rattlers increases to a maximum that
is concurrent with the peak in the total packing fraction and then
declines. Overlayed on the plot of the average volume fraction of
spheres that are rattlers is a plot of the average number fraction of
large spheres that are rattlers (right axis and legend).

trends in the volume fraction of spheres that are rattlers for
the values of x studied at α = 0.450, 0.330, 0.200, and 0.150.
Alongside this data are plotted the fraction of large spheres
that are rattlers at the same four values of α. The data for
α = 0.100 are not plotted due to data sparsity, but the data
exhibit a qualitative trend similar to that of α = 0.200 and
α = 0.150, except with a sharper peak exhibiting a maximum
at roughly x = 0.997.

There were no small spheres present in the jammed
backbones of the 15 000-sphere packings at α = 0.100 and
x = 0.996; however, we do not believe this observation to
be representative of packings of all sizes at α = 0.100 for
x � 0.996. Rather, we suspect that packings of greater than
15 000 spheres at x = 0.996 will include small spheres in
their jammed backbones and that they were absent in the
packings studied because the jammed backbone included only
54 spheres. Comparing to the α = 0.150 packings at values
of x before the peak in the backbone packing fraction, at
x = 0.980, small spheres represent about 6% of the jammed
backbone by number, and at x = 0.988, they represent about
43%. This is in spite of the fact that the small spheres of
diameter ratio α = 0.150 are smaller than the largest size of
a small sphere that can fit through the gap formed by three
mutually contacting large spheres (this largest small sphere
size occurs at diameter ratio α = 2/31/2 − 1 ≈ 0.155).

Even though very few or no small spheres are incorporated
in the jammed backbones of binary MRJ packings at α =
0.100 before the peak in density at x = 0.9968, this does not
mean that the small spheres have no effect on the structure
and contact network of the large spheres. Surprisingly, the
presence of small spheres tends to reduce the packing fraction
of the jammed backbone of large spheres at values of x just
below the x at which φMRJ(0.100,x) is at a maximum. This
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is strong evidence that the structure of binary MRJ packings
of spheres differs fundamentally from that of monodisperse
MRJ packings. Notably, binary MRJ packings are never (for
the values of α studied) simply monodisperse MRJ packings
of spheres with small spheres in the interstices, even when
there are no small spheres present in a jammed backbone of
only large spheres.

IV. PAIR CORRELATION FUNCTIONS AND
CONTACT NUMBERS

Packing pair correlation functions g2(r) and detailed
jammed-sphere contact distributions can provide deeper in-
sight into packing structure. For the binary MRJ packings
studied, the structural change that appears as x varies at fixed
α is clearly evident in the short-range behavior of the g2(r).
In addition, the g2(r) indicate a preference in higher-density
packings for collinear arrangements of groups of three sphere
centers when the three include both small and large spheres.

The pair correlation function g2(r) of a configuration of
points (sphere centers) in R3 is proportional to the probability
density of finding an expected number of points in a volume
element 4πr2dr at distance r from an arbitrary point. For an
ideal gas, g2(r) = 1 for all r; for a disordered packing, it decays
to unity as r increases. The average pair correlation function
at small r gives details about pair distances in average local
arrangements of the centers of spheres.

For comparative purposes, we present monodisperse MRJ
packing average pair correlation functions and contact dis-
tributions before their binary counterparts. Figure 9 details
the average pair correlation function g2(r) (for r � 3.25) and
contact distribution calculated from 100 packings of 1000
identical spheres employing a contact tolerance of t = 10−6

[86]. We report here the average rattler concentration found by
the TJ algorithm for the 100 monodisperse packings studied
in this work: It is 1.62% ± 0.26%, which is in agreement with
a more thorough investigation using the TJ algorithm [80].

Figure 10 includes plots of average pair correlation func-
tions, each calculated for ten 1000-sphere binary packings at

various values of α and x. For x much smaller than the point
for which the maximum in φMRJ(α,x) at fixed α is achieved,
the pair correlation functions calculated for only the large
spheres (top two plots of Fig. 10) closely resemble that of
a jammed packing of monodisperse spheres. In particular,
the upper left plot of Fig. 10 is virtually indistinguishable
from the left plot of Fig. 9. This similarity indicates that the
packings employed to generate this plot consist primarily of
jammed large spheres, with most small spheres present in the
interstices as opposed to in the jammed backbone. The upper
right plot of Fig. 10 also has these qualitative features, despite
that for the larger value of α = 0.450, the small spheres do
not fit within the interstices created by jammed large spheres.
The upper right plot additionally shows a very sharp local
maximum at r = 1.450, indicating an increased probability of
the presence of two large spheres surrounding and in contact
with a small sphere such that the centers of all three spheres are
collinear.

The preference for collinearity between three spheres is also
evident in the bottom two plots of Fig. 10, which display the
average pair correlation functions for spheres of both sizes in
ten 1000-sphere packings at the maxima in φMRJ(α,x) at α =
0.450, x = 0.800, and α = 0.330, x = 0.900, respectively.
In these plots, many of the characteristics of monodisperse
MRJ packings, e.g., the “split second peak,” are not present,
indicating a fundamental structural difference between these
high-density binary MRJ packings and those at lower densities.
Local maxima and apparent discontinuities are observed in
the bottom left plot (α = 0.450, x = 0.800) of Fig. 10 at r =
1.175, r = 1.450, and r = 1.725, corresponding to collinear
arrangements of the centers of two adjacent small spheres with
one large sphere, either two small spheres sandwiching a large
sphere or two large spheres sandwiching a small sphere, and
two adjacent large spheres with one small sphere, respectively.

These collinear arrangements are also represented for α =
0.330 and x = 0.900, as shown in the bottom right plot of
Fig. 10, with local maxima and apparent discontinuities at
r = 0.995, r = 1.330, and r = 1.665, respectively. The plot in
Fig. 11, an average cross-correlation function proportional to
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FIG. 9. (Color online) Plots of average pair correlation function (left) and average contact histogram (right) calculated from 100 strictly
jammed packings of 1000 monodisperse spheres. In the left figure, the bin (1.0 < r � 1.005) including nearest-neighbor contacts is not shown;
its value is 83.92. In the right figure, the average fraction of jammed spheres exhibiting the specified number of contacts is plotted, while the
1.62% of spheres that are rattlers are not. There were no spheres with 12 contacts, and only 0.0059% of jammed spheres exhibited 11 contacts.
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FIG. 10. (Color online) Plots of average pair correlation functions each calculated from ten 1000-sphere packings, where the x axis in each
figure is in units of the diameter of the large spheres. The top two figures are pair correlation functions calculated considering only the large
spheres in the packings, whereas the bottom two are calculated considering all spheres. In each figure, the bins (of width 0.005 in r) including
nearest-neighbor contacts are not shown. In the top left image, the value not shown at r = 1.0 is 83.57; in the top right image, the value is
78.16. In the bottom left image, the values not shown are at r = 0.450, r = 0.725 and r = 1.0, with values 33.46, 22.81, and 3.37; in the
bottom right image, they are r = 0.330 and r = 0.665 with values 36.30 and 12.06, respectively.
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FIG. 11. (Color online) Average cross-correlation function rep-
resenting large-small sphere center distances calculated from ten
1000-sphere binary packings at α = 0.330 and x = 0.900. The bin
0.665 � r < 0.670 including nearest-neighbor contacts is not shown;
it has the value 63.05. Note the local maxima at r = 0.995 and r =
1.665, indicating an increased probability of collinear arrangements
of the centers of two small spheres and one large sphere and of two
large spheres and one small sphere, respectively.

the probability density of finding a given distance r between
the centers of pairs of spheres of different sizes, highlights
that the peak at r = 0.995 for packings at α = 0.330 and
x = 0.900 is due to collinear arrangements of the centers
of two small spheres and one large sphere, as opposed to
arrangements of two contacting large spheres (distance of
1.000) or four contacting small spheres (distance of 0.999).
This is also evidence of collinear arrangements of two small
spheres and one large sphere in the g2(r) studied at α = 0.150
and α = 0.100, though at α = 0.100, this is only the case for
x � 0.997, probably because no jammed small spheres are
present in α = 0.100 packings for x < 0.997.

We also study the average number and types of contacts per
jammed sphere. Past works studying coordination numbers
[74,87] have found that the number of large sphere contacts at
fixed α increases as x increases, at first slowly and then rapidly
roughly when small spheres begin to comprise the volumetric
majority of the packing. Studying contact numbers, we also
see this behavior, as is illustrated in the bottom three plots of
Fig. 12, histograms of average number of contacts per large
sphere at α = 0.200 and various values of x. In addition, we
find in the packings studied that the number of contacts per
small sphere never exceeds six. The number is 4 at small x for
α = 0.150, 0.200, 0.330, and 0.450 and then moves quickly
toward (but never exceeds) 6 roughly when the small spheres
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FIG. 12. (Color online) Histograms depicting the average fractions of jammed spheres with specified numbers of contacts for α = 0.200
and x = 0.700 [(a) and (d)], x = 0.9625 [(b) and (e)], and x = 0.9700 [(c) and (f)]. Plots (a), (b), and (c) each represent the average over 10
packings of the fractions of jammed small spheres with specified contact numbers, and plots (d), (e), and (f) each represent average fractions
for the jammed large spheres.

begin to form the numeric majority of the jammed backbone
of the packing. The upper three plots of Fig. 12 illustrate this
behavior for α = 0.200 at various values of x.

Detailed contact distributions can also reveal information
about clustering in strictly jammed packings. For example, at
α = 0.200 and x = 0.700 for small sphere contacts (upper left
plot of Fig. 12), each small sphere has one small-small contact
and three small-large contacts, indicating that all jammed small
spheres are present in “dipole” clusters of two spheres. This
is roughly the case also for x = 0.9625, though some larger
clusters are present as well. However, at x = 0.970 (the point at
which the jammed backbone density increases dramatically for
α = 0.200), there are an average of three small-small contacts
per jammed small sphere and one or two (but no more than
three) small-large contacts, suggesting percolation of small
and possibly also large spheres (as seen in Fig. 1). This notion
is supported by the large-sphere contact distribution for α =
0.200 and x = 0.970, shown in the bottom right plot of Fig. 12,
which depicts an average of about 44 sphere contacts per large
sphere, including an average of 40 small-large contacts and
4 large-large contacts. For α = 0.150 and x < 0.989, contact
distributions reveal that clusters of four jammed small spheres
are preferred, suggesting that clusters including large and small
spheres require four spheres at the smaller α = 0.150 relative
size in order for jamming to occur.

V. CONCLUSION AND DISCUSSION

We have generated exactly isostatic, mechanically stable
binary sphere packings over the broadest spectrum of average

densities 0.634 � φMRJ(α,x) � 0.829 for α � 0.100, with
average packing fractions for MRJ packings at certain α and x

surprisingly approaching those of the densest known packings.
Nevertheless, the packing fraction of the jammed packing
backbones appear to be roughly constant over the majority of
the area of the α-x plane, even when small spheres are present
in the backbones in significant numbers. The latter finding is
unexpected, in particular because the jammed backbones of
the densest packings of binary spheres exhibit vastly different
packing fractions as α and x vary [20,70].

Rather than a linear, “triangular” shape in φMRJ(α,x) as
a function of x at fixed α, we observe proportionality of
φMRJ(α,x) ∝ a + bx/(c − x) over a range of x, with this pro-
portionality for the smallest values of α studied extending very
near to the maximum in φMRJ(α,x). This sharp spike in density
has practical implications for the development of granular
composites such as solid propellants, concrete, and ceramics.
For example, the burning rate of ammonium-perchlorate solid
propellants is influenced by the size and size distribution
of ammonium-perchlorate particles through particle packing
[88]. Specifically tailoring the size and polydispersities of
particles to achieve maximal densities corresponding precisely
to the peaks identified in this work could lead to substantial
performance improvements. This is also the case for concrete,
the mechanical strength of which can depend exponentially
on its density [89]. The cost of producing most concrete also
depends heavily on the amount of cement used to fill the gaps
between granular aggregates such as sand and gravel, meaning
that carefully chosen aggregate sizes could lead to decreased
production costs. With respect to ceramics, in several industrial
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processes such as sintering and ceramic formation, there is
interest in increasing the density and number of contacts of
the powder particles to be fused [90].

We have also studied pair correlation functions and detailed
contact distributions of the packings, the latter study being
possible given the ability of the TJ algorithm to generate
precisely strictly jammed packings. Binary MRJ packing pair
correlation functions indicate a preference for collinearity
among three-sphere arrangements consisting of both small
and large spheres. They also indicate a fundamental change
in packing structure as x increases at fixed α, which is
exemplified by a sharp increase in the presence of small spheres
in packings’ backbones. Additionally, contact distributions
indicate the presence of two-sphere jammed small-sphere
clusters in packings of binary spheres at smaller values of
α and x, where at the smallest values of α studied and x less
than the x at which the peak in φMRJ(α,x) occurs, small spheres
in two- or four-sphere clusters are the only spheres present in
the jammed backbone.

In future work, we will study binary MRJ packings at
smaller values of α. We will investigate polydisperse packings
of more than two types of spheres, for which we expect
an even broader density range and the presence of more
intricate MRJ structures. We will also introduce order metrics
capable of comparing the degree of order in the densest known
binary packings to the MRJ-like packings studied in this work.
Order metrics will also be computed for larger (greater than
1000 spheres) monodisperse strictly jammed exactly isostatic
packings, and finite-size effects in order metrics, number of
rattlers, and other packing descriptors will be investigated.

Quasi-long-range pair correlations with asymptotic scaling
of −1/r4 have been shown to be a unique signature of
MRJ packings of monodisperse spheres [57,58] as well as
jammed binary sphere packings [60,91,92] and MRJ packings
of nonspherical particles [33,92], when the corresponding
structure factor S(k) is appropriately generalized. The latter
quantity for monodisperse MRJ sphere packings and the
so-called spectral density χ (k) for polydisperse packings and
packings of nonspherical objects go to zero linearly as the
wave number k tends to zero, translating to the aforementioned
quasi-long-range pair correlations. Any system in which these
spectral functions vanish in the infinite-wavelength limit are
called hyperuniform [59], since their large-scale density or
volume-fraction fluctuations vanish. In future work it will be
interesting to determine the possible set of (α,x) consistent
with MRJ binary sphere packings that are simultaneously
hyperuniform.
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APPENDIX A: DENSEST KNOWN BINARY PACKINGS

The densest known binary packings of spheres are com-
posed of separated regions of both binary and monodisperse
phases. The binary phases include nearly 20 different families
of ordered alloys, where the term “alloy” is used to apply
to structures with more than one component in fixed relative
concentration, e.g., a binary packing with α = 0.200 and x =
11/12. The currently known densest packing at α = 0.200,
x = 0.970 is composed of two phases. One of these is a binary
alloy consisting of 11 small spheres for every large sphere
packed in the (11-1) family illustrated in Fig. 13, and the other
consists of close-packed (e.g., fcc or hcp) monodisperse small
spheres exhibiting packing fraction φ = π/

√
18 = 0.7405 . . .

[20,70].

APPENDIX B: A LINEAR FUNCTIONAL RELATION
BETWEEN PACKING FRACTION AND φS

The functional forms for φMRJ(α,x) and φMRJ(α,xV ) rep-
resented by Eqs. (2) and (4), respectively, are also mathe-
matically interesting from the perspective of another measure
of volume fraction, φS . A simpler version of these forms is
implied by a linear relation between average packing fraction
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and φS for a fixed value of α, where φS is the volume fraction
of space covered by only the small spheres [93].

A proposed linear relation between φS and average packing
fraction can be written as

φMRJ(α,φS) = a + h(α)φS, (B1)

where the functional dependence of the average φS for MRJ
binary packings on α and x can be written in terms of
φMRJ(α,x) as

φS(α,x) = α3x

(1/φMRJ(α,x))(α3x + 1 − x)
. (B2)

Combining Eqs. (B1) and (B2) permits an implicit form to be
written for average packing fraction,

φMRJ(α,x) = a + h(α)
φMRJ(α,x)α3x

α3x + 1 − x
, (B3)

which can be solved explicitly for x to give

φMRJ(α,x) = a + ah(α)α3x

1 − x + α3x[1 − h(α)]
. (B4)

If h(α) were equal to unity in Eq. (B1), then from a density
perspective, it would be tempting to accept the conceptual
picture of binary packings as MRJ packings of large spheres
with small spheres placed in the void spaces. However, this
is not an accurate picture, as small spheres are present in
increasing numbers (as a function of x) in the jammed
backbone of MRJ binary packings, as demonstrated in Sec. III.
Indeed, h(α) is not unity, and it is not clear at this point that
the linear form suggested by Eq. (B4) precisely describes the
data even with a slope h(α) 	= 1, though from our research it
does appear to provide a good fit. Figure 14 illustrates the best
linear fit obtained of average packing fraction as a function of
φS for the α = 0.200 packings studied in this work. For this
fit, h(0.200) = 0.934.

The linear fit to the data presented in Fig. 14 is not quite as
precise as the fits of average packing fraction to the forms
of Eqs. (2) and (4) when the average packing fraction is
depicted as a function of x and xV , respectively. However, if the
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FIG. 14. (Color online) Plot of the average packing fraction
obtained at α = 0.200 for the values of x presented in Figs. 4 and
5. Each data point represents an average of 10 packings, and the
measured standard deviation is slightly smaller than the size of the
symbols. The dashed line is a least-squares linear fit of the form
of Eqs. (B3) and (B4) to the data from φS = 0 to φS = 0.1612
(equivalent to the range x = 0 to x = 0.970). The fit exhibits a slope
h(0.200) = 0.934 and an R2 of 0.9993.

functional form represented by Eq. (4) is considered a
sufficiently precise fit to the data, then the constants b(α)
and c(α) in Eq. (2) can be written only in terms of one free
parameter h(α) as

b(α) = aα3h(α)

1 − α3 + α3h(α)
, (B5)

c(α) = 1

1 − α3 + α3h(α)
. (B6)

This indicates that there is an additional free parameter in the
fits represented by Eqs. (2) and (4) as functions of x and xV

as compared to the linear fit as a function of φS presented in
Eq. (B1) and suggests that the increased precision in the fits as
functions of x and xV could simply be the result of including
the additional parameter. Further investigations will be needed
to determine whether this is the case.
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