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Optical cavities and waveguides in hyperuniform disordered photonic solids
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Using finite-difference time domain and band structure computer simulations, we show that it is possible
to construct optical cavities and waveguide architectures in hyperuniform disordered photonic solids that are
unattainable in photonic crystals. The cavity modes can be classified according to the symmetry (monopole,
dipole, quadrupole, etc.) of the confined electromagnetic wave pattern. Owing to the isotropy of the band-gap
characteristics of hyperuniform disordered solids, high-quality waveguides with free-form geometries (e.g.,
arbitrary bending angles) can be constructed that are unprecedented in periodic or quasiperiodic solids. These
capabilities have implications for many photonic applications.
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Recently, we introduced “hyperuniform stealthy” disor-
dered photonic solids with large isotropic band gaps compa-
rable in width to the anisotropic band gaps found in photonic
crystals and capable of blocking light of all polarizations.1

These solids challenge the conventional wisdom that band gaps
require Bragg scattering and, hence, periodic or quasiperiodic
order. The hyperuniform solids described in Ref. 1 demonstrate
that Mie scattering is sufficient to generate band gaps provided
the disorder is constrained to be hyperuniform (see definition
below). We have explained how to design the dielectric
materials in Ref. 1 and explored their band-gap and transport
properties in Ref. 2.

In this paper, we explore the cavity and waveguide architec-
tures possible in hyperuniform disordered (HD) solids. We find
a wide range of confined cavity modes characterized by differ-
ent approximate symmetries (monopole, dipole, quadrupole,
etc.) and high-quality free-form waveguides that are possible
because of the intrinsic isotropy of the solids and their band
gaps.

Central to the class of materials considered in this paper
is the concept of hyperuniformity, which was first introduced
as an order metric for ranking point patterns according to
their local density fluctuations at large length scales.3 A
point pattern in real space is hyperuniform if the number
variance σ 2(R) within a spherical sampling window of radius
R (in d dimensions) grows more slowly than the window
volume for large R, i.e., more slowly than Rd . Crystalline and
quasicrystalline point patterns trivially satisfy this property, but
it is also possible to have isotropic, disordered hyperuniform
point patterns. In Fourier space, hyperuniformity means the
structure factor S(k) approaches zero as the wavenumber
|k| → 0. The hyperuniform patterns that we consider are
restricted to the subclass in which the number variance grows
like the window surface area for large R, e.g., σ 2(R) = AR in
two-dimensions, or σ 2(R) = AR2 in three dimensions, up to
small oscillations.3,4

We further constrain the disorder to produce hyperuniform
stealthy point patterns for which the structure factor S(k) is
isotropic and precisely equal to zero for a finite range of wave
numbers 0 � k � kC for some positive critical wave vector,

kC .5 Hyperuniform photonic materials are then constructed
by decorating a hyperuniform stealthy point pattern with
dielectric materials according to the protocol described in
Ref. 1. As a result of the constrained disorder, the HD
photonic materials display an unusual combination of physical
characteristics. Some are associated with typical disordered
structures, such as statistical isotropy and multiple scattering
resulting in localized states. Others, such as the existence of
large and robust band gaps, result from a combination of hyper-
uniformity, uniform local topology (e.g., in two-dimensional, a
network of vertices in which all connections are trivalent), and
short-range geometric order (derived from the stealthiness).1

Following our protocol, dielectric heterostructures with large,
complete (both polarizations) band gaps have been designed.
Recently, these designs have been fabricated on the microwave
scale and successfully tested.6

The structures analyzed in this paper are generated by
decorating hyperuniform point patterns with cylindrical rods
with dielectric constant ε = 11.56 and radius r/a = 0.189;
these values are chosen to optimize the size of the photonic
band gap. Here, the sample comprising N points is contained
in a square box of size L, and we have introduced a length scale
a = L/

√
N , such that the hyperuniform pattern has density of

1/a2. The hyperuniform point patterns are generated using
the collective coordinate method in Ref. 3 with stealthy order
parameter χ = 0.5. It is notable that the photonic band gaps
(PBGs) for these disordered structures are equivalent to the
fundamental band gap in periodic systems; i.e., the spectral
location of the gap is determined by the resonant frequencies
of the scattering centers and always occurs between band
N and N + 1, with N precisely the number of points per
unit cell. A typical PBG size for structures with χ = 0.5 is
�ω/ωC = 37%, where ωC is the central frequency of the gap.
Here, for simplicity, we consider PBGs for transverse magnetic
(TM) polarized radiation.

We use the finite-difference time-domain (FDTD) method7

to calculate the propagation of light inside the HD photonic
structures.2 We employ a computational domain with periodic
boundary conditions in the transverse direction and perfectly
matched layer (PML) condition in the normal direction. The
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FIG. 1. (Color online) Electric field distribution for (a) a confined
cavity mode in a hyperuniform disordered photonic structure intro-
duced into the band gap by removing a dielectric cylinder from the
original structure; to be compared with (b) a localized mode in the
defect-free photonic structure. Note that the cavity mode has a shorter
localization length.

spatial resolution in our numerical experiments is at least
n = 64 mesh points per a, and the temporal resolution is
0.5/n × a/c, where c is the light speed in vacuum. For
transmission calculations, a broadband source is placed at one
end of the computational domain and the transmission signal
is recorded at the other end with a line detector.8 The Fourier
components of the field are then evaluated and the spectra
are averaged and normalized to the transmission profile in
the absence of the structure. For quality factor calculations,9

the modes are excited with a broadband pulse from a current
placed directly inside the cavity and the simulation domain
is surrounded by PML all around. After the source is turned
off, the fields are analyzed, and frequencies and decay rates
of the confined modes are evaluated.8 To calculate photonic
band structures, we employ a supercell approximation and use
the conventional plane-wave expansion method.10,11 In all the
simulations performed in this work, the computational domain
size is

√
Na × √

Na, with N = 500.
In an otherwise unperturbed HD structure, it is possible to

create a localized state of the electromagnetic field by reducing
or enhancing the dielectric constant at a certain point in the
sample. In the two-dimensional structures considered here,
this can be realized by removing one of the cylinders. Due to
the presence of the point-like defect, a localized cavity mode
is created within the photonic band gap at a certain frequency.
Figure 1(a) shows a cavity mode obtained by removing one
of the dielectric cylinders from a HD structure. We note that
the electric field distribution is highly localized around the
defect, extending only up to distances involving 1–2 rows
of cylinders beyond the position of the missing cylinder.
The quality factor of the two-dimensional confined mode
is higher than 108. It is expected the for three-dimensional
slab structures obtained by slab-configurations with a fine
thickness, quality factors of at least 103 can be maintained,
similar to the case of cavities in quasiperiodic photonic
structures.9 The nature of the localization mechanism around
this type of defect in HD materials is rather different from the
Anderson-like localization mechanism naturally present in this
as well as conventional disordered structures. Figure 1 shows
a localized photonic mode in the unperturbed HD structure has

FIG. 2. (Color online) Electric field distribution for various cavity
modes (defined in the text) obtained for different radii of the perturbed
cylinder. From (a) to (f), the dimensionless defect radius rd/r0 takes
the values 0,1.8,2.7,2.4,3.0,3.4, respectively.

a localization length that is 5–6 times larger than that in the
cavity mode.

We next study the evolution of the localized modes
associated with a perturbed cylinder as its radius varies. When
the radius of the cylinder is reduced, a single mode from the
continuum of modes below the lower photonic band edge is
pulled inside the PBG and becomes localized. If the radius
of the cylinder is increased, a number of modes (the precise
number is determined by the relative size of the defect cylinder)
from the continuum of modes above the upper photonic band
edge are pulled inside the PBG. Figure 2 shows the electric field
mode distribution for a few selected localized modes. Note
the nearly perfect monopole (M), dipolar (D), quadrupolar
Q), and hexapolar (H) symmetries associated with certain
modes. Different localized modes are indexed based on their
approximate symmetry (M, D, H, . . .), where the first index
refers to the order of the mode and the second index refers to
the number of modes of a given order (e.g., D1,2 is the second
mode of first order with a dipole-like symmetry).

In Fig. 3 we show the evolution of the localized modes asso-
ciated with a defect cylinder as a function of the dimensionless
defect radius. Let us define the dimensionless defect radius to
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FIG. 3. (Color online) Photonic band structure calculations show-
ing the evolution of localized modes associated with a defect cylinder
as a function of the dimensionless defect radius rd/r0 (where
rd/r0 = 1 corresponds to the unperturbed HD photonic structure).
Different localized modes are labeled based on their approximate
symmetry and order (e.g., D1,2 indicates the second mode of first order
with a dipole-like symmetry). The (green) shaded regions represent
the continuum of modes that bound the PBG frequency range. For
rd/r0 < 1 (the radius of the cylinder is decreased) only a single mode
with a “monopole”is pushed up into the gap. For rd/r0 > 1 (the radius
of the cylinder is increased), higher order modes are descending into
the PBG. The electric field patterns for some of these modes are
shown in Fig. 2.

be rd/r0. For a defect radius rd/r0 = 0.47 (where r0 is the
radius of the unperturbed cylinders), the defect mode reaches
the midpoint of the PBG and is maximally protected from
interactions with the propagating modes from the continua
below and above the photonic band gap. When the radius
of the defect cylinder is increased, it becomes possible to
accommodate more localized modes in the defect region,
distinguished either by their approximate symmetry or/and
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FIG. 4. (Color online) Transmission spectrum of a guided mode
in a hyperuniform disordered photonic structure created by removing
dielectric cylinders along a sinusoidally shaped path.

FIG. 5. (Color online) Electric field distribution for various
guided modes obtained for different radii of the perturbed cylinders.
From (a) to (f), the dimensionless defect radius rd/r0 takes the values
0,0.3,0.4,1.4,3.0,3.4, respectively.

frequency. For rd/r0 = 4, a total of 12 localized modes can
coexist within the same defect. However, it should be noted
that at at these large radii, the defect cylinders start to overlap
with the surrounding cylinders and the confinement decreases.

We now consider waveguide architectures. In photonic
crystals, removing a row of rods generates a channel through
which light with frequencies within the band gap can prop-
agate, a so-called crystal waveguide. Light cannot propagate
elsewhere in the structure outside the channel because there
are no allowed states. The waveguides must be composed of
segments whose orientation is confined to the high-symmetry
directions of the crystal. As a result, the waveguide bends of
60◦ or 90◦ can be easily achieved, but bends at an arbitrary
angle lead to significant radiation loss due to excessively
strong scattering at the bend junction and require additional
engineering to function properly.

The existence of large and robust photonic band gaps in
HD structures suggests that waveguiding should be possible in
these noncrystalline photonic solids. An important difference
is that the distribution of dielectric material around the bend
junction is statistically isotropic. If the defect mode created
by the removal of material falls within the PBG, the bend
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can then be oriented at an arbitrary angle. In Fig. 5(a) we
show an example of a guided mode obtained by removing
dielectric cylinders along a sinusoidally shaped path through
the HD structure. Remarkably, the light propagating through
this unusually shaped waveguide channel is tightly confined
in the transverse direction, penetrating only in the next few
rows of dielectric cylinders. Our calculations show that the
transmission reaches a maximum of about 83%; see Fig. 4.
It is well known that in a photonic crystal, conservation of
momentum due to the translation invariance along a linear
waveguide prevents backscattering of the propagating mode.
Such a mechanism is absent in any waveguide that presents
deviations from linearity be it in a periodic or disordered
structure, but it can be alleviated by optimizing the cylinder
size along the waveguide channel.

The hyperuniform disordered structures analyzed here yield
large photonic band gaps of around 40% of the central
frequency, which in turn suggests that higher order guided
modes can be excited in an appropriately designed waveguide
channel. In Fig. 5, we also show higher order guided modes
that are obtained by varying the radius of the defect cylinders
along the channel path.

In summary, we have introduced architectures for the design
of optical cavities and waveguides in hyperuniform disordered
materials. We have demonstrated that point-like defects can

support localized modes with a variety of symmetries and
multiple frequencies. By exploiting the isotropy of the PBG
unique to hyperuniform disordered structures, we have also
shown that it is possible to design waveguides of essentially
arbitrary shape, along which the light can be guided through the
excitation of localized resonances similar to the ones that we
found in the point-like defects. The ability to localize modes of
different symmetry and frequency in the same physical cavity
and to guide light through modes with different localization
properties can have a great impact on all-optical switching,
single-atom laser and solar cell systems.12–14 The new cavity
and waveguide architectures are promising candidates for
achieving highly flexible and robust platforms for integrated
optical microcircuitry.

While the present study deals only with TM polarized radia-
tion, qualitatively similar results can be obtained for transverse
electric (TE) polarized radiation for structures designed using
the constrained optimization protocol developed in Ref. 1. This
will be the subject of a future investigation.
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