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We evaluate third-order bounds due to Mihon and Phan-Thien on the effective shear modulus 
G, of a random dispersion of identical impenetrable spheres in a matrix up to sphere-volume 
fractions near the random close-packing value. The third-order bounds, which incorporate two 
parameters';2 and 'TI2' that depend upon the three-point probability function of the composite 
medium, are shown to significantly improve upon the second-order Hashin-Shtrikman (or, 
more general, Walpole) bounds which do not utilize this information, for a wide range of 
volume fraction and phase property values. The physical significance of the microstructural 
parameter 172 for general microstructures is briefly discussed. The third-order bounds on G, 
are found to be sharp enough to yield good estimates of the effective shear modulus for a wide 
range of sphere-volume fractions, even when the individual shear moduli differ by as much as 
two orders of magnitude. Moreover, when the spheres are highly rigid relative to the matrix, 
the third-order lower bound on the effective property provides a useful estimate of it. The 
third-order bounds are compared with experimental data for the shear modulus of composites 
composed of glass spheres in an epoxy matrix and the shear viscosity of suspensions of 
bituminous partides in water. In general, the third-order lower bound (rather than the upper 
bound) on G, tends to provide a good estimate of the data. 

I. iNTRODUCTION 

In a previous article l (henceforth referred to as l) on the 
study of third-order bounds on the effective shear modulus 
of two-phase disordered composite media, we simplified one 
of the key multidimensional cluster integrals 'TI2 that arises 
for the model of a distribution of identical, impenetrable 
spheres in a matrix. The other cluster integral ;2 which is 
required here (as well as in the third-order bounds on the 
effective conductivity and the bulk modulus), has already 
been simplified and tabulated by Torquato and Lad02 for a 
random suspension of spheres. In this artide we compute the 
microstructural parameter 'TI2 for the same model. The third­
order McCoy3 and the Milton-Phan-Thien4 (MPT) bounds 
on the effective shear modulus G., which depend upon; 2 

and 'TI2' are then evaluated for the aforementioned model. 
The phase volume fractions, bulk moduli, and shear 

moduli are denoted, respectively, by tP. and tP2' K. and K2, 
and G. and G2, where phase 1 is the matrix phase and phase 2 
is the included phase. In Sec. n, we present the MPT bounds 
on G, and the simplified expression for 'TI2 as obtained from 
I. In Sec. III, we calculate 'TI2 for our model up to a sphere­
volume fraction tP2 = 0.60. This important microstructural 
parameter 'TI2' which depends upon a certain three-point 
probability function of the composite, is calculated here and 
compared to the corresponding values for two other models. 
Such comparisons for ;2 were already made by Torquato 
and Lado. 2 Using the results of Sec. III, the third-order 

bounds on G, for a random dispersion of impenetrable 
spheres are computed up to densities near the random close­
packing value. In each of the cases considered, we compare 
the third-order MPT bounds with the second-order (and, 
hence less restrictive) Hashin-Shtrikman5 (HS) or Wal­
pole6 bounds. The former second-order bounds are actually 
special cases of the latter. Here we also compare the third­
order bounds on Ge with experimental data for the shear 
modulus obtained by Smith? for glass-epoxy composites, and 
with data on shear viscosity of suspensions of bituminous 
particles in water obtained by Eilers. s Finally, in Sec. V, we 
make some concluding remarks. 

II. THIRD-ORDER BOUNDS ON THE SHEAR MODULUS 
FOR SUSPENSIONS OF iMPENETRABLE SPHERES 

The third-order McCoy bounds3 on the shear modulus, 
as simplified by Milton,9 depend not only upon the individ­
ual phase properties K., K 2 , G1 , G2 , and volume fraction tP2' 
but also on two different integrals (defined below) involving 
the three-point probability function S3 (r ,s,t) of the medium, 
a quantity that gives the probability of finding the vertices of 
a triangle of sides r, s, and t, in one of the phases, say phase 2 
(as is the convention in this work).10 Milton and Phan­
Thien4 (MPT) obtained new improved third-order bounds 
that depend on the same set of parameters as the simplified 
McCoy bounds. For conciseness, we present here only the 
MPT bounds. which read 

4135 J. Appl. Phys. 62 (10). 15 November 1987 0021-8979/87/224135-07$02.40 © 1987 American Institute of Physics 4135 

Downloaded 27 Sep 2010 to 128.112.70.51. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



(1) 

where 

(E!. +~) + 45(J...) 
KG; G 71 

(2) 

0=_3_(G_)~71_(6_K_+ __ 7G~);~-__ 5(_G_)~~ 
(2K-G);+5(G)71 ' 

(3) 

and where the angular brackets denote the averages of the 
following types for any property b, 

(b) = b.¢. + b2¢2 , 

(b >; = b.b. + b~2' (4) 

(b)71 = b.'YJ. + b2'YJ2' 

(b> = bl¢2 + b2¢1 . 

Here the quantities b; and 'YJ; (i = 1,2) are integrals which 
depend upon the three-point probability function S3: 

b2 = 1 - b. = (912¢J1¢2)I(S3) , (5) 

'YJ2 = 1 - 'YJI = fib2 + (150/7¢.¢2)J(S3) , (6) 

and 
A 

S3(r.2,r13,r23 ) = S3(rI2,r13,r23 ) 

Here S2 is the two-point probability function in the particu­
late phase, rij = Ir; - rj I, lij = r;/rij' and PI' the Legendre 
polynomial of degree I. The form of Eq. (7) ensures the 
absolute convergence of these integrals. 

One can easily show that for b2 = 'YJ2 = 0 (or 
b I = 'YJ. = 1), the third-order bounds (1) coincide and col­
lapse onto the second-order HS lower bound for 
(K1 - K 2 )( G1 - G2 ) > o. Similarly, it may be shown that 
forbz = 'YJz = 1 (orb. = 'YJI = 0), the MPT upper and lower 
bounds coincide and merge with the HS upper bound for 
(K1 - K2) (G1 - Gz) > o. The fact that both bZ and 'YJz (for 
any geometry) must always lie between 0 and 1 implies that 
the third-order bounds always improve upon the second­
order Walpole bounds or, where appropriate, HS bounds. 

In order to compute the bounds on shear modulus as 
described above, one must calculate 1[53 ] andJ[53 ] for the 
microstructure of interest, For the model ofrandom impen­
etrable-spherical inclusions in a matrix, Torquato and Ladoz 

evaluated 1[53 ], In I we simplified the cluster integral J[53 ] 

for this model and found for spheres of radius a that 

J[53] = 8~ ¢~ f dr g(r) W2(r) 

+ 1:~ f dr2dr3[g3(rIZ,rI3,rZ3) 

~1O) 

where 

(11) 

and 

X 1- -(I + 1) ---- -- 1 - -(I + 1) ---- -- PI (cos 0213 ) [ 2 ( 21 - 1)( a )2] [ 2 ( 21 - 1)( a )2] 
5 2/-3 r. z 5 2/-3 r l3 

8 ~ 1 (I - 1) (l - 2) (111 + 15) a21 - 4 + - L.. PI (cos 0213 ) , 
5! 1=3 (2/+3)(2/-3) ~i·~t· 

Here g(r) is the pair distribution function, g3 (rJ2 ,rl3,r23) is 
the three-particle distribution function, and 
cos O2 •3 = l.z,r. 3 , Thus, for impenetrable spherical. suspen­
sions, we may write and 

(13) 
k3 = _1_ f drz dr3[g3(rIZ,rI3,rZ3) - g(r1z )g(r13 }) 

16r 

where 
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III. THREE·POINT PARAMETER 112 FOR 
IMPENETRABLE SPHERES 

A. Calculation of 112 

The three-point microstructural parameter 1]2' just like 
the other three-point parameter ;2' for a suspension ofiden­
tical impenetrable spheres, depends upon the pair and triplet 
distribution functions ll of hard spheres, as given by Eq. 
(10). Here we assume an equilibrium distribution of rigid 
spheres. The pair distribution function for this model is 
available from the accurate fit of Verlet and Weis. 12 How­
ever, this parametrization does not seem to be very reliable 
close to the random close-packing volume fraction value of 
about 0.6413

; thus the highest tP2 reported in this paper is 
0.60, for which the Vedet-Weis results still show their ex­
pected internal consistency. The triplet distribution function 
is more problematical. Lacking any more fundamental alter-

I 

native, we employ the Kirkwood superposition approxima­
tion, 

(16) 

in our calculations. 
To facilitate numerical work, we replace g(r) in the 

expression for k2' Eq. (14), by 1 + h(r). Also, we choose a 
length scale in which the radius of a hard sphere is unity. 
Then one can obtain 

k2= - -ln3+- drrh(r)W2(r) , 7213 Iii'" 
109 350 24 21T 2 

(17) 

where W2 (r) is now given by (11) with a = 1. This form has 
the advantage that the integrand in ( 17) vanishes rapidly for 
large r. In the superposition approximation, k3 of Eq. (15) 

becomes 

k
3
=J±. i: 1(/-1)(1-2)(/-3)(2/-3) lao dr12 g(r12) [1- 2(/+1)(2/-1)(_1_)2] 

5! 1=4 (2/-1)(2/+1) 2 ~23 5(2/-3) r12 

roo dr g(r13 ) [1 _ 2(1 + 1 )(2/- 1) (_1_)2]H (r r ) 
X)2 13 ~33 5(2/- 3) r13 I 12' 13 

8 ~ l(l- 1) (/ - 2)( 111 + 15) ('" d g(r12 ) 100 

d g(r)3) H ( ) 
+5!i~"3 (2/-3)(2/+1)(2/+3) J2 r12 ~21 2 r)3 ~31 I r12,r)3 , 

(18) 

where 

21 + 1 II HI (r12,r)3) = --- d(cos ( 213 )h(r23 ) PI (cos 82l3 ) 
2 -I 

(19) 

and ~3 = ~2 + ~3 - 2r12r13 cos 8213, Using the Fourier 
transform h(k) of h(r), we can write the coefficient HI as 
(see Appendix A of I) 

HI (r I2 ,r13 ) = 2~; 1 So'" dkk 2h(k)jl(kr12 )jl(kr13 ) , (20) 

wherejl is the spherical Bessel function of order I. Using this 
result, we can simplify (18) as 

k3 = _1_ ('" dk k 2h(k) i: (/ - 1)(1- 2)(1- 3) 
2~ Jo 1=4 

X [ 7/(2/- 3) (A (k) _ 2(1 + 1) (2/- 1) B (k»)2 
60(2/- 1) I 5(2/- 3) I 

111 + 4 [B (k) ']2] (21) 
+ 15(2/- 5)(21 + 1) I-I , 

where 

and 
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The integrals in (21 )-(23) were done numerically using up­
per cutoff lengths of r max and k max , respectively, in real and 
Fourier space. r max was chosen such that g (r), as obtained 
from the above-mentioned Verlet-Weis fit, does not differ 
from 1 (for r close to r max) by more than the accuracy re­
quirement we imposed. Then k max was automatically deter­
mined by our choice of Ar (kmax = 1T / Ar), selected to make 
real-space integrals stable up to the desired number of signif­
icant figures (usually up to 4). This also fixed the mesh size 
for the Fourier space integration: Ak = 1T/r max' Finally, a 
choice for Imax , the maximum value for the number of terms 
in the sum over 1 (which, in principle, goes up to 00), is 
needed. This number was found to be about 10 for low vol­
ume fractions and about 12 for high volume fractions for a 
precision requirement of 10 - 5. The numerical procedure de­
scribed here was the same one employed by Torquato and 
Lad02 to compute ;2' 

lB. Results and discussion 

In Table I the three-point parameters;2 and 1]2 are pre­
sented for randomly and isotropically distributed identical, 
impenetrable spheres in a matrix phase for selected volume 
fractions in the range 0<tP2<0.6. The values of;2 are actual­
ly taken from Ref. 2. A study by Beasley and Torquatol4 

indicates that the use of the superposition approximation to 
compute;2 underestimates the exact ;2; however, the errors 
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TABLE I. Three-point parameters ~2 (Ref. 2) and 1/2 for an equilibrium 1.0 r------------~ 
distribution of equal-sized impenetrable spheres in a matrix. 

'2 ~2 1/2 

0.0 0.0 0.0 
0.05 0.0104 0.0244 
0.10 0.0205 0.0493 
0.15 0.0303 0.0746 
0.20 0.0398 0.100 
0.25 0.0492 0.127 
0.30 0.0588 0.154 
0.35 0.0695 0.183 
0.40 0.0836 0.216 
0.45 0.105 0.255 
0.50 0.141 0.306 
0.55 0.205 0.378 
0.60 0.328 0.491 

introduced in using the sUperpoSItIOn approximation 
(which increase as the close-packing volume fraction is ap­
proached) were shown not to be serious. Since the integrals 
associated with {;2 are of the same form as the corresponding 
integrals of 172' it is expected that application of the superpo­
sition approximation (16) in Eq. (15) should not lead to 
large errors in 172' 

The physical significance of the microstructural param­
eters {;2 and 172 have not yet been fully elucidated for arbi­
trary composite media. Torquato and Lad02 have recently 
discussed the significance of {;2 for a number of different 
microstructures. In Fig. 1 the three-point parameter 172 is 
plotted as a function of ¢2 for three different models: a cer­
tain class of granular materials 15 corresponding to the effec­
tive-medium approximation l6 (EMA) for which 172 = ¢2' 
fully penetrable (randomly centered) spheres, I 7 and the 
equilibrium distribution of impenetrable spheres studied 
here. Qualitatively, the comments made in Ref. 2 regarding 
{;2 for the geometries of Fig. 1 apply as well to 172' For exam­
ple, for the three models, 172 is a monotomically increasing 
function of ¢2' We find again that the absence of spatial cor­
relation in the case of fully penetrable spheres leads to a 
parameter 172 which is approximately linear over the entire 
range of ¢2' For the EMA geometry and the related 15 sym­
metric-cell materiaI I8 (with spherical cells) 172 is exactly lin­
ear in ¢2' namely, 172 = ¢2' Comparisons between these latter 
two microstructures and full.y penetrable spheres were de­
scribed in Ref. 2. We note that exclusion-volume effects 
present in the impenetrable-sphere case are responsible for 
both {;2 and 172 lying below the corresponding values for fully 
penetrable spheres at low volume fractions and for the pre­
cipitous increase of these parameters as the close-packing 
volume fraction is approached. As a final point here, we note 
that it is the property of pol.ydispersity in the grain sizes, 
along with the absence of correlation between two types of 
grains, which makes 172 for the models corresponding to the 
EMA even larger. 

Note that 172 for the impenetrable spheres crosses the 172 
for penetrable spheres at ¢2~0.57. Although this crossing 
effect was not expl.icitly observed for the case of {;2 in three 
dimensions, the trend is nonetheless present there (see Ref. 
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FIG. 1. Three-point parameter 1/2 for the class of models corresponding to 
the EMA, for random distribution of equal-sized fully penetrable spheres 
(Ref. 17) and for the equal-sized random impenetrable-sphere model calcu­
lated here. 

2). Such an effect has also been observed 19 for {;2 for circular 
inclusions in 2D (or oriented infinitely long cylinders in 
3D). Thus, there does not seem to be any inconsistency in­
volved here, although it may be against intuition at first 
sight. The physical significance of this effect has been given 
elsewhere. 19 

IV. EVALUATION OF BOUNDS ON THE SHEAR 
MODULUS OF A SUSPENSiON OF IMPENETRABLE 
SPHERES 

Using the results of the previous section (Table I for (;2 
and 172)' we evaluate the third-order MPT bounds on the 
shear modulus for a random distribution of equal-sized im­
penetrable spheres in a matrix for 0<¢2<0.6. For the presen­
tation of our results, it is useful to define the following pa­
rameters: a = K 2/K I,/3 = G2/GI, YI = G)/KI' Y2 = G2/K2. 
Since aY2 = f3YI' only three of these are independent. Also, 
since Y = (3 - 6v)/(2v + 2), where v is the Poisson's ratio 
and since 0.;;;v.;;;0.5, we must have O<Yi';;; 1.5 (i = 1,2). It 
may be mentioned here that we also calculated the third­
order (but less restrictive) McCoy bounds for all the corre­
sponding cases, but the differences between the McCoy and 
MPT bounds were imperceptible (even though the differ­
ences increase at higher ¢2) on the scales of our figures, ex­
cept whenf3:> I.. For example, for f3 = lOS, YI = 0, Y2 = 0.6; 
the McCoy lower bound for GJGI is 6.92 and that for the 
MPT lower bound is 7.04 at a volume fraction ¢2 = 0.6. The 
upper bounds for this case are identical up to four digits for 
aU volume fractions. Hence, we have presented only the 
MPT bounds in all our figures. In all the cases presented 
here, we have compared the third-order bounds with the 
second-order HS bounds, which in fact are special. cases of 
the more general Walpole bounds. In two cases, the bounds 
have been compared with available experimental data. The 
first is that of Smith 7 for the effective shear modulus of glass 
spheres embedded in an epoxy matrix where the ratio of the 
shear moduli is moderately high. The second is that of 
Eilers8 for the effective shear viscosity of bituminous parti­
cles in water which represents a limiting case where the ratio 
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of the shear viscosities is very large and the fluid (matrix) is 
incompressible. 

Before proceeding any further, we would like to make 
some general comments. For any given volume fraction <P2' 
and for fixed YI and Y2' all the nth order lower bounds (with 
a finite n) tend to zero as either a or (3 -0 and all the nth 
order upper bounds tend to infinity as either a or 13- 00 • 

However, these facts do not reduce the importance of the 
bounds because of the following reasons. First of all, as pre­
viously mentioned, the bounds become progressively tighter 
as one goes to higher order. More importantly, Torquato20 

has observed that depending upon whether the composite is 
above or below its percolation threshold, one of the bounds 
will give the estimate of the property, even though the other 
bound diverges from it. For example, the lower-order lower 
bounds (such as second-, third-, and fourth-order lower 
bounds) should yield good estimates of Ge for (3) 1, pro­
vided that <P2 is below the percolation-threshold value <P~ and 
A2 <{.L, where A2 is the mean cluster size21 of phase 2 and Lis 
the scaled characteristic length22 of the sample. Clearly, if 
the latter condition is satisfied, so is the former. Similarly, 
lower-order upper bounds should yield good estimates of the 
effective property for (3) 1, provided that <P2 > <P~ and 
A 1-4.L, where Al is the mean cluster size of phase 1. For our 
equilibrium model, the coordination number (i.e., the aver­
age number of spheres physicaUy touching each sphere) is 
zero for all <P2 except at the random close-packing value. In 
other words, the condition A2 -4.L is satisfied for all <P2 except 
at the percolation point. Hence, the third-order lower bound 
should serve as a good estimate of G e for all f3 > 1 and for all 
<Pz provided that the system is not in the near critical regime 
(cf. subsequent discussion of Fig. 7). 

Figures 2 and 3 compare the second-order HS bounds 
on Ge IG I to the MPT upper and lower bounds (1) for an 
equilibrium distribution ofimpenetrabJe spheres in a matrix 

20 ...----------------, 

cJ>2 =0.2 

16 Y1 =Y2 =0.6 

12 
I 
. 

Ge 
. 

I 
I 

I 

G1 " . 
8 I 

I 
I 

I , 
I 

I 
I 

4 , " , , ---
0 

2 5 10 20 50 100 

~ 
FIG. 2. Upper and lower bounds on the reduced effective shear modulus 
G.lG, for the range 1<8<100 at <1>2=0.2. Second-order HS (Ref. 5) 
bounds (dashed lines); third-order MPT (Ref. 4) bounds for the equal­
sized random impenetrable-sphere model (solid lines). Here 8 = G2/G" 
cr = K21 K, = p, y, = G,IK, = 0.6, and Y2 = G21 K2 = 0.6. On the scale of 
this figure, the third-order lower bound is indistinguishable from the sec­
ond-order lower bound. 
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FIG. 3. As for Fig. 2 with <1>2 = 0.5. 

for 1 </3< 100 (a = 13) at <P2 = 0.2 and cP2 = 0.5, respective­
ly. One can clearly see that for low to moderate concentra­
tions, the improvement in the width of the bounds in going 
from second- to third-order is tremendous even when the 
particles are two orders of magnitude more rigid than the 
matrix and that most of this improvement has occurred in 
the upper bound rather than the lower bounds for reasons 
mentioned above. For f3 = 10 and <P2 = 0.2, Fig. 2 shows 
that the third-order bounds are about ten times narrower 
than the second-order bounds. At the same volume fraction 
for f3 = 100, the third-order bounds are about 9.1 times 
more restrictive than the second-order bounds. For 
cP2 = 0.5, Fig. 3 shows that the third-order bounds are 3.3 
and 2.5 times narrower than the second-order bounds for 
(3 = 10 and 100, respectively. Thus, for 1 </3 < 100, the MPT 
bounds are sufficiently restrictive so as to provide useful esti­
mates of the effective shear modulus for a wide range of <P2' 
Corresponding curves for 0.01 <(3< 1 are not presented be­
cause they are qualitatively similar to Figs. 2 and 3, except in 
this case the improvement is in the lower bound rather than 
the upper bound. 

Figures 4 and 5 show MPT bounds for our equilibrium 
impenetrable-sphere model for a = (3 = 10 and 50, respec­
tively, as a function of the volume fraction up to <P2 = 0.60. 
These bounds are again contrasted with the second-order HS 
bounds. Again one observes the same kind of qualitative fea­
tures as described in the previous paragraph . 

In Fig. 6 we present the second- and third-order bounds 
for a macroscopically homogeneous composite which con· 
sists of glass spheres embedded in an epoxy matrix. The 
preparation of this composite is described in detail by 
Smith. 7 For the fully cured samples about 200 days after 
preparation, the ratios were found to be (3 = 28.5, 
YI = 0.228, and Y2 = 0.660. The computed values of re­
duced effective shear moduli at various volume fractions up 
to 0.5 are shown as solid circles in Fig. 6. As one can easily 
see, the data lie between the third-order bounds, and up to a 
volume fraction ofOA, the third-order lower bound is quite a 
good estimate of the data. At <P2 = 0.5, the experimental val­
ue is still closer to the lower bound than the upper one, but 
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FIG. 4. Upper and lower bounds on the reduced effective shear modulus 
G,IG, as a function of the sphere-volume fraction ata = K2/K, ~ 10 and 
p= G2/G1 = 10. Second-order HS bounds (dashed lines); thlrd-order 
MPT bounds for the equal-sized random impenetrable-sphere model (solid 
lines). Here YI = Y2 = 0.6. 

not as close to the lower bound as at lower volume fractions. 
It is not clear whether this is due to scatter in the data or to 
particle contacts which may be present in the glass-epoxy 
system at such large tP2. However, for the model we are con­
sidering the average coordination number (i.e., the average 
number of spheres physically touching each other) is identi­
cally zero for aU tP2 except at the maximum value corre­
sponding to the random dose-packing volume fraction. 
Thus, if the deviation is not due to scatter in the data, it may 
be explained by the presence of physical contact between 
particles which has the effect of increasing both the param­
eters;2 and 712 compared to our theoretical model system. 

Finally, in Fig. 7, we present the interesting case of rigid, 
impenetrable-spherical particles (fJ = 00) in an incom­
pressible matrix (K1 = 00, G1 is finite, and thus rl = 0). 
This limit is of interest because of the analogy with the fluid 
mechanical problem of determining the effective shear vis-
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FIG. 5. As for Fig. 4 with a = p = 50. 
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FIG. 6. Upper and lower bounds on the reduced effective shear modulus 
G,IG, as a function of <,62 atp= 28.5, y, = 0.228, Y2 = 0.660. HS bounds 
(dashed lines); MPT bounds (solid lines); and filled circles are Smith's 
data (Ref. 7) on effective shear modulus for spherical glass beads in an 
epoxy matrix. 

cosity of a suspension of equal-sized. rigid spheres in an in­
compressible fluid. Einstein23 calculated the shear viscosity 
of such a system through first order in the volume fraction 
tP2' Through linear order in tP2' this problem is mathemat­
ically identical to calculating the reduced shear modulus 
G.fG l for perfectly rigid spheres in an incompressible ma­
trix. This analogy fails to hold for quadratic and higher­
order terms in tP2 since the distributions of the particles in the 
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FIG. 7. Lower bounds on the reduced effective shear modulus G.IG, as a 
function of ;2 for rigid spheres (P = 00) in an incompressible matrix 
(y, = 0) and Y2 = 0.6. HS lower bound (dashed line); MPT low~r bound 
(solid line); and filled circles are Eilers' data (Ref. 8) on effective shear 
viscosity for bituminous particles in water. The upper bounds do not appear 
since they become infinite as p - 00 . 
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two cases are different. In the case of a fluid suspension, the 
bulk motion will strongly affect the sphere configuration, 
whereas in the elasticity problem the infinitesimal applied 
strain has negligible effect on the sphere distribution. It may 
be mentioned here that for the case of effective shear modu­
lus for the model under consideration, Chen and Acrivos24 

have obtained the coefficent of the ifJ~ term exactly, and Tor­
quato, Lado, and Smith25 have evaluated the quadratic term 
for the third-order lower bound for partially penetrable 
spheres. In the results presented in Fig. 7, we give the sec­
ond- and third-order lower bounds for this limiting case for 
any volume fraction (up to 0.6); the upper bounds do not 
appear because they tend to infinity in this limit. (The value 
ifJ2 = 0.6 corresponds to about 94% of the random close­
packing value. 13

) Since no data were available for this limit­
ing case of perfectly rigid spheres in an incompressible ma­
trix, we have presented in Fig. 7 Eilers'S data (filled circles) 
on the relative shear viscosity for the suspension of bitumin­
ous particles in water, i.e., a case of rigid particles in an in­
compressible fluid. Such data points are expected to be 
somewhat higher than analogous shear modulus data. 

V. CONCLUSIONS 

The effective properties of random two-phase compo­
sites depend upon the microstructure of the composite 
through an infinite set of n-point probability functions. 
Apart from a few special cases, the infinite set of statistical 
functions is never known. Rigorous bounds, on the other 
hand, provide a means of estimating effective properties with 
limited but nontrivial microstructural information. In this 
paper, we computed bounds on the effective shear modulus 
of suspensions of random impenetrable spheres which re­
quire not only volume fraction information but the three­
point parameters;2 and 772' The parameter 1/2 was calculated 
here for this model for the first time. The third-order bounds 
are found to be restrictive enough to yield good estimates of 
the bulk properties up to about the random close-packing 
volume fraction even when the spheres are about two orders 
of magnitude more rigid than the matrix. Moreover, it is 
observed by comparison with the experimental data of Smith 
on the effective shear modulus of a glass-epoxy composite 
that the third-order lower bound lies very close to the data 
and serves as a very good estimate of the effective shear mo­
dulus for a volume fraction of up to about 0.45. Also, com­
parison of shear viscosity data of Eilers for bituminous parti­
cles in water indicates that even when the spheres are highly 
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rigid relative to the matrix, the third-order lower bound it­
self serves as a reasonably good estimate of the bulk property 
for an appreciable range of ifJ2' This latter fact is consistent 
with the general observation20 that for /3~ 1, it is the lower 
bound rather than the upper bound which serves as a good 
estimate of the effective property, provided that the mean 
cluster size of phase 2 is much smaller than the scaled char­
acteristic macroscopic length. 
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