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We show analytically that the [0,1], [1,1], and [2,1] Padé approximants of the mean cluster number S(p) for
site and bond percolation on general d-dimensional lattices are upper bounds on this quantity in any Euclidean
dimension d , where p is the occupation probability. These results lead to certain lower bounds on the percolation
threshold pc that become progressively tighter as d increases and asymptotically exact as d becomes large. These
lower-bound estimates depend on the structure of the d-dimensional lattice and whether site or bond percolation
is being considered. We obtain explicit bounds on pc for both site and bond percolation on five different lattices:
d-dimensional generalizations of the simple-cubic, body-centered-cubic, and face-centered-cubic Bravais lattices
as well as the d-dimensional generalizations of the diamond and kagomé (or pyrochlore) non-Bravais lattices.
These analytical estimates are used to assess available simulation results across dimensions (up through d = 13
in some cases). It is noteworthy that the tightest lower bound provides reasonable estimates of pc in relatively
low dimensions and becomes increasingly accurate as d grows. We also derive high-dimensional asymptotic
expansions for pc for the 10 percolation problems and compare them to the Bethe-lattice approximation. Finally,
we remark on the radius of convergence of the series expansion of S in powers of p as the dimension grows.
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I. INTRODUCTION

There has been a long-standing interest to understand the
effect of dimensionality on the structure and bulk properties
of models of condensed phases of matter, especially lattice
models [1–8]. More recently, the high-dimensional behavior
of interacting many-particle systems has received considerable
attention and led to insights into low-dimensional systems.
This includes studies of models of liquids and glasses [9–17],
hyperuniformity of many-particle configurations and their
local density fluctuations [18,19], covering and quantizer
problems [20] and their relationships to classical ground states
[21], densest sphere packings [22,23], and Coulombic systems
[24]. The preponderance of studies aimed at elucidating the
dependence of dimensionality across all dimensions have
been carried out for Ising-spin and lattice-percolation models;
see, among the multitude of such investigations, Refs. [2–8].
Virtually all of such work has been carried out on the
d-dimensional hypercubic lattice Zd . The present paper is
concerned with the prediction of Bernoulli nearest-neighbor
site and bond percolation thresholds on general d-dimensional
lattices in Euclidean space Rd .

While it is well known that critical exponents first take
on their mean-field dimension-independent values when d =
6, independent of the lattice, the percolation thresholds pc

generally depend on the structure of the lattice and are believed
to achieve their mean-field values only in the limit of infinite
dimension [1]. Whereas thresholds are known exactly for
only a few lattices in two dimensions [25], there are no such
exact results for d � 3 for finite d. Thus, most studies of
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the determination of lattice thresholds in any finite dimension
have relied on numerical methods or approximate theoretical
techniques [6,7,26–41].

It has recently been shown that the [0,1], [1,1], and
[2,1] Padé approximants of the density-dependent mean
cluster number S for prototypical d-dimensional continuum
percolation models provide lower bounds on the corresponding
thresholds [42]. Specifically, these results apply to overlapping
(Poisson distributed) hyperspheres as well as hyperparticles
of nonspherical shapes with some specified orientational
distribution function. The sharpness of these bounds showed
that previous simulations for the thresholds were inaccurate
in higher dimensions, which then led to studies that reported
improved estimates for the thresholds of overlapping hyper-
spheres [43] as well as for overlapping hyperparticles with a
variety of specific shapes [44] that apply in any dimension d.

Using the same techniques as was employed in Ref. [42], we
obtain analogous lower bounds on pc for site and bond percola-
tion for general d-dimensional lattices in Rd . We demonstrate
that these general lower bounds become progressively tighter
as d increases and exact asymptotically as d becomes large.
Employing these general results, we derive explicit expres-
sions for lower bounds on pc for site and bond percolation
on five distinct lattices: d-dimensional generalizations of the
simple-cubic, body-centered-cubic, and face-centered-cubic
Bravais lattices as well as the d-dimensional generalizations of
the diamond and kagomé (or pyrochlore) non-Bravais lattices.
Our analytical lower-bound estimates of these 10 different
percolation problems are then employed to assess available
simulation results across dimensions (up through d = 13 in
some cases). We show that the tightest lower bound provides
reasonable estimates of pc in relatively low dimensions and
becomes increasingly accurate as d grows. Our investigation
also sheds light on the radius of convergence of the series
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expansion of the mean cluster number S(p) in powers of the
occupation probability p across dimensions.

The rest of the paper is organized as follows: We provide
fundamental definitions in Sec. II and derive lower bounds on
the percolation threshold pc in Sec. III. In Sec. IV, we describe
the d-dimensional lattices that will be considered here as well
as obtain series expansions of S(p) and asymptotic expansions
of the lower bounds on pc. In Sec. V, we explicitly evaluate
the bounds on pc across dimensions and compare them to
available simulation results. We close with concluding remarks
and discussion in Sec. VI.

II. DEFINITIONS AND PRELIMINARIES

A. Bravais and non-Bravais lattices

A d-dimensional Bravais lattice in Rd is the set of points
defined by integer linear combinations of a set of basis vectors,
i.e., each site is specified by the lattice vector

p = n1a1 + n2a2 + · · · + nd−1ad−1 + ndad , (1)

where ai are the basis vectors for the fundamental cell, which
contains just one point, and ni spans all the integers for
i = 1,2, . . . ,d. Every Bravais lattice has a dual or reciprocal
Bravais lattice in which the sites of the lattice are specified by
the dual (reciprocal) lattice vector q such that q · p = 2πm,
where m = ±1,±2,±3, . . . ; see Conway and Sloane [20] for
additional details. The concept of a Bravais lattice can be
naturally generalized to include multiple points within the
fundamental cell, defining a periodic crystal or non-Bravais
lattice. Specifically, a non-Bravais lattice consists of the union
of a Bravais lattice with one or more translates of itself; it
therefore can be defined by specifying the lattice vectors for
the Bravais lattice along with a set of translate vectors that
define the basis (number of points per fundamental cell).

B. Connectedness criterion

Consider a d-dimensional lattice � inRd in which each site
is occupied with probability p in the case of site percolation or
in which each bond is occupied with probability p in the case
of bond percolation. The lattice � can either be a Bravais or
non-Bravais lattice. We consider Bernoulli percolation with a
nearest-neighbor connectivity criterion for either site or bond
percolation on � in which the coordination number z� is the
number of nearest neighbors of a lattice site. The following
indicator function defines this connectivity criterion:

f (rij ) =
⎧⎨
⎩

1 if sites (or bonds) i and j are
occupied nearest neighbors

0, otherwise
(2)

where rij is the displacement vector between sites (or bonds)
i and j . In the case of site percolation,∑

j=1

f (r1j ) = zs = z�, (3)

where z� is the coordination number for the lattice �. In the
case of bond percolation,∑

j=1

f (r1j ) = zb = 2(z� − 1) = 2(zs − 1), (4)

where it is to be noted that generally zb > zs for any d � 2.

C. Connectedness functions

The mean cluster number (or mean cluster size) S is the
average number of sites (bonds) in the cluster containing a ran-
domly chosen occupied site (bond). The pair-connectedness
function P2(r) is defined such that p2P2(r) gives the probability
that a site (center of a bond) at the origin and a site (bond
center) j located at position r are both occupied and belong to
the same cluster. Essam showed that the mean cluster number
is related to a sum over the pair-connectedness function [3],

S = 1 + p
∑

r

P2(r). (5)

This relation can be equivalently expressed in terms of the
Fourier transform P̃ (k) of P (r),

S = 1 + p P̃ (k = 0). (6)

Using the Ornstein-Zernike equation [45] that defines the
direct connectedness function C(r),

P̃ (k) = C̃(k) + p C̃(k)P̃ (k), (7)

where C̃(k) is the Fourier transform of C(r), we also can
express the mean cluster number as follows:

S = [1 − p C̃(0)]−1. (8)

Since P (r) becomes long ranged (i.e., decays to zero for
large r slower than 1/rd ), S diverges in the limit p → p−

c ,
and, hence, we have from (8) that the percolation threshold is
given by

pc = [C̃(0)]−1. (9)

It is instructive to note that the real-space equation correspond-
ing to relation (7) is

P (r12) = C(r12) + p
∑
j=1

C(r1j )P (r2j ). (10)

The sum operation here is the analog of the convolution integral
in Rd .

It is believed that S obeys the power law

S ∝ (pc − p)−γ , p → p−
c , (11)

in the immediate vicinity of the percolation threshold. In
this expression, γ is a universal exponent for a large class
of lattice and continuum percolation models in dimension d,
including not only Bernoulli lattice and spatially uncorrelated
continuum models but also correlated continuum systems
[30,31,46]. For example, γ = 43/18 for d = 2 and γ = 1.8
for d = 3. It is believed that when d � dc = 6, where dc is the
“critical” dimension, the lattice- and continuum-percolation
exponents take on their dimension-independent mean-field
values [30,31,46], which means, in the case of (11), that
γ = 1. These mean-field values are obtainable exactly from
percolation on an infinite tree, such as the Bethe lattice for
which Fisher and Essam [1] showed that the threshold is
given by

pc = 1

z� − 1
. (12)

The dimensionality of the Bethe lattice is effectively infinite
and therefore it is generally assumed that pc for (periodic)
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lattices approach the Bethe-lattice approximation (12) in the
limit d → ∞. We will see in Sec. IV C that this assumption
is generally not exactly true. Note that for the large class
of periodic lattices in which the coordination number z�

grows monotonically with d, the high-dimensional Bethe
approximation becomes

pc ∼ 1

z�

(d → ∞). (13)

D. Cluster statistics

A k-mer is a cluster that contains k sites or bonds. The
cluster-size distribution nk is the average number of k-mers
per site (bond). Thus, the probability that an arbitrary site
(bond) is part of a k-mer is knk and, hence,

∞∑
k=1

knk = p, p < pc. (14)

Since the quantity knk/�kknk is the probability that the cluster
to which an arbitrary occupied site (bond) belongs contains
exactly k sites (bonds), the mean cluster number S can be
alternatively expressed as

S =
∑∞

k=1 k2nk∑∞
k=1 knk

, p < pc. (15)

E. Series expansion for mean cluster number S

As indicated in the Introduction, our ensuing analysis
requires partial knowledge of the series expansion of the mean
cluster number S(p; d) for any dimension d in powers of p:

S(p; d) = 1 +
∑
m=1

Sm+1(d) pm. (16)

The d-dependent coefficients Sk+1(d), which account for (k +
1)-mer cluster configurations (k = 1,2,3, . . . ), can be obtained
in a number of different ways. A common way is to first
obtain explicit formulas for the cluster size distribution nk

and then employ (15) to get the p expansion of S and thus
the coefficients Sm+1 of series (16) [3,26,37,47]. The cluster
size distribution can generally be represented by the following
relation:

nk =
∑
k=1

gkm pk(1 − p)m, (17)

where gkm is the number of cluster configurations (lattice ani-
mals) with size k and perimeter m associated with that cluster
size [30]. The basic calculation reduces to the determination of
gkm. In Appendix A, we provide an algorithm that enables one
to obtain the explicit analytical expressions for the n1, n2, n3,
and n4 in arbitrary dimension for both site and bond percolation
for various d-dimensional lattices. We note that mean-field
theories of lattice animals have been used to ascertain the
statistics of dilute branched polymers [48].

Another procedure that has been employed to ascertain the
series (16) is to make use of the Mayer-type expansion of the
pair connectedness function P (r) in terms of the connectivity
function f (r) defined by (2) [45]. In order to make contact with
the techniques used in Ref. [42] for continuum percolation, it is

useful here to map those results for the Mayer-type expansion
of P (r) into the appropriate results for lattice percolation.
For this purpose, this mapping, which amounts to replacing
integrals given in Ref. [42] with appropriate sums, yields the
following expansion of P (r) to first order in p for lattice
percolation:

P (r12) = f (r12) + p [1 − f (r12)]
∑

j

f (r1j )f (r2j ) + O(p2).

(18)

Substitution of (18) into (5) yields, after comparison to (16),
the dimer coefficient as

S2(d) =
∑
j=1

f (r1j ) = zα, (19)

where α = s or b for site or bond percolation, respectively,
and is related to the coordination number z� of the lattice �

via either (3) or (4). Similarly, the trimer coefficient is given
by

S3(d) =
∑

k

∑
j

[1 − f (r1k)]f (r1j ) f (rkj ), (20)

where the indices j and k run through all sites (bonds). The
expressions (19) and (20) for the dimer and trimer coefficients
are the lattice analogs of Eqs. (24) and (25) given in Ref. [42]
for continuum percolation. In Appendix B, we illustrate how to
apply Eq. (20) by explicitly computing S3 for site percolation
on the triangular lattice in R2 (i.e., A∗

2).

III. LOWER BOUNDS ON THE
PERCOLATION THRESHOLD

It has recently been shown that the [0,1], [1,1], and [2,1]
Padé approximant of the mean cluster number S, a function
of the particle number density, for prototypical d-dimensional
continuum percolation models provide lower bounds on the
corresponding thresholds [42]. Specifically, these results apply
to overlapping (Poisson distributed) hyperspheres as well as
hyperparticles of nonspherical shapes with some specified
orientational distribution function. Using the same techniques
as was employed in Ref. [42], we obtain here analogous
lower bounds on pc for site and bond percolation for general
d-dimensional lattices in Rd .

Let us denote the [n,1] Padé approximant of the series
expansion (16) of the mean cluster number S by S[n,1]. This
rational function for any d is given explicitly by

S ≈ S[n,1]

=
1 + ∑n

m=1

[
Sm+1 − Sm

Sn+2

Sn+1

]
pm

1 − Sn+2

Sn+1
p

, for 0 � p � p
(n)
0 ,

(21)

where p
(n)
0 is the pole of the [n,1] approximant, which is given

by

p
(n)
0 = Sn+1

Sn+2
, for n � 0, (22)

and S0 ≡ 1. Here we use the convention that the sum in (21)
is zero in the single instance n = 0. The claim that we make
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is that the pole p
(n)
0 for n = 0,1, and 2 bounds the threshold

pc for general d-dimensional lattice percolation (site or bond)
from below for any d, i.e.,

pc � p
(n)
0 = Sn+1

Sn+2
, for n = 0,1,2. (23)

For the [n,1] Padé bounds to become progressively better as n

increases from 0 to 1 and then to 2, it is clear that the following
conditions must be obeyed:

S2
2 � S3, S2

3 � S2S4. (24)

A. Proof in the one-dimensional case

For the one-dimensional integer lattice Z, it is trivial to
show that all [n,1] Padé approximants of S (n = 0,1,2,3, . . .)
provide lower bounds on the percolation threshold. To see this,
note the mean cluster number S in this one-dimensional case
is given exactly by

S = 1 + p

1 − p
, (25)

and, hence, the percolation threshold is trivially pc = 1.
Expanding this relation in powers of p and comparing to (16)
yields

Sm = 2, for m � 2. (26)

We see from (22) that

p
(n)
0 =

{
1/2 for n = 0,

1, for n � 1. (27)

and, hence, these poles always bound from below or equal the
actual threshold pc = 1.

Remark: For sufficiently small d � 2, all [n,1] Padé
approximants of S (n = 0,1,2,3, . . .) cannot be nontrivial
positive upper bounds on S. For example, it is known that
for d = 2, Sm can be negative for some sufficiently large
m [49].

B. [0,1] Padé bounds

We will begin by proving that the [0,1] Padé approximant
of the mean cluster number,

S ≈ S[0,1] = 1

1 − S2 p
= 1

1 − p

zα

, for 0 � p � z−1
α , (28)

provides the following rigorous lower bound on the percolation
threshold pc for all d,

pc � p
(0)
0 = 1

zα

, (29)

where we have used the identity S2 = zα [cf. (19)] and zα is
given by z� [cf. (3)] and 2(z� − 1) [cf. (4)] for site and bond
percolation, respectively. It follows that in the high-d limit, the
pole p

(0)
0 for site percolation is twice that for bond percolation

on some d-dimensional lattice, as reflected in the asymptotic
expansions given in Sec. IV C for specific lattices.

Here we follow the analogous proof given for continuum
percolation given in Ref. [42] using the aforementioned
mapping between the continuum and lattice problem. In

particular, bounds (100) and (101) for the pair connectedness
function P (r) given in that paper become for lattice percolation

P (r12) � f (r12), (30)

P (r12) � f (r12) + p [1 − f (r12)]
∑

j

f (r1j )P (r2j ). (31)

Note the similarity of the lower bound (31) to the low-p
expansion (18); except here P replaces f in the sum and
inequality (31) is valid for arbitrary p. Note that since
1 − f (r) � 1, we also have from (31), the weaker upper bound

P (r12) � f (r12) + p
∑

j

f (r1j )P (r2j ). (32)

Summing inequality (32) over site (bond) 2 and using the
definition (6) for the mean cluster number S yields the
following upper bound on the latter:

S � 1

1 − S2 p
. (33)

Now since this lower bound has a pole at p = S−1
2 = z−1

α ,
it immediately implies the new rigorous lower bound on the
percolation threshold (29) for any d. It is important to note that
this lower bound is valid for any d-dimensional lattice �.

Note that a stronger rigorous upper bound on P (r) can be
obtained by using the lower bound (30) in the inequality (31),
namely

P (r12) � f (r12) + p [1 − f (r12)]
∑

j

f (r1j )f (r2j ). (34)

Summing inequality (34) over site 2 and use of (6) and (20)
gives the following upper bound:

S �
1 + (

S2
2 − S3

)
p2

1 − S2 p
. (35)

Although this lower bound on S is sharper than (33), it has
the same pole and therefore does not provide a tighter upper
bound on the percolation threshold than (29).

C. [1,1] and [2,1] Padé bounds

The [1,1] Padé approximant of S, given by (21) with n = 1,
is more explicitly given by

S � S[1,1] =
1 + [

zα − S3
zα

]
p

1 − S3
zα

p
, for 0 � p � p

(1)
0 , (36)

and provides the following putative lower bound on the
threshold pc in all Euclidean dimensions:

pc � p
(1)
0 = zα

S3
, (37)

where p
(1)
0 is the pole defined by (22) and we have made use

of the identity S2 = zα .
Aizenman and Newman [50] used completely different

methods to prove, for the special case of bond percolation
on the hypercubic lattice Zd , the following upper bound on S:

S � 1

1 − 2d p
(38)
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and, hence,

pc � 1

2d
. (39)

It is instructive to compare these bounds (that apply only for
Zd ) to the [1,1] estimates. Using the fact that S2(d) = zb =
2(2d − 1) and S3(d) = 2(2d − 1)2 for bond percolation on the
hypercubic lattice (see results of Sec. IV), the [1,1] estimates
(36) and (37) reduce to

S � 1

1 − (2d − 1)p
, (40)

pc � 1

2d − 1
. (41)

It is seen that the [1,1] estimates (40) and (41) for the special
case of bond percolation on Zd provide sharper bounds than
(38) and (39) in any finite dimension and tend to the same
asymptotic bound in the limit d → ∞.

Similarly, the [2,1] Padé approximant of the mean cluster
number S, given by (21) with n = 2, is more explicitly given
by

S � S[1,1]

=
1 + [

zα − S4
S3

]
p + [

S3 − zαS4
S3

]
p2

1 − S4
S3

p
, for 0 � p � p

(2)
0 ,

(42)

and provides the following putative lower bound on the
percolation threshold pc in all d:

pc � p
(2)
0 = S3

S4
, (43)

where p
(2)
0 is the pole defined by (22). Since the expansion of

upper bound (42) in powers of p is exact through order p3,
we deduce, after comparison to the exact expansion (16), the
following upper bound on the fifth-order coefficient S5(d) for
any d-dimensional lattice �:

S5(d) � S2
4 (d)

S3(d)
. (44)

With considerably extra effort, one can rigorously prove
that (37) and (43) are indeed lower bounds on the threshold
pc. However, this is beyond the scope of the present paper and
will be reserved for a future work. Nonetheless, it is noteworthy
that high-dimensional asymptotic expansions of (37) and (43)
for both site and bond percolation on the hypercubic lattice Zd

provide lower bounds on the corresponding exact asymptotic
expansions, as explicitly shown in Sec. IV C1. Moreover, in
Sec. V, we will see that available high-precision numerical
estimates of pc for different lattices across dimensions support
the proposition that (37) and (43) are rigorous lower bounds
on pc.

D. [n,1] Padé approximant

We expect that higher-order [n,1] Padé approximants
(n� 3) of S also provide lower bounds on pc for d � 2 for
n � 3 and relatively low d provided that certain conditions
are met. One such necessary conditions is that successive
coefficients Sn+1 and Sn+2 remain positive. For example, we

have directly verified that both S[3,1] and S[4,1] yield lower
bounds on pc for d = 2 and d = 3 for a variety of site and
bond problems on a variety of lattices [3,26,37,47]. However,
as noted earlier, because we expect Sn to become negative at
some sufficiently large value of n for d = 2 and d = 3, S[n,1]

cannot always yield lower bounds on pc for relatively low
dimensions such that d � 2. In the limit d → ∞, we have
shown that the Sn are all positive and, hence, it is possible that
in sufficiently high but finite d, S[n,1] gives lower bounds on
pc for any n. The reader is referred to a related discussion in
Sec. VI.

IV. SERIES EXPANSIONS OF S FOR VARIOUS
d-DIMENSIONAL LATTICES

A. Definitions of the d-dimensional lattices of interest

In this work, we consider the d-dimensional generalizations
of the simple-cubic lattice or simply hypercubic lattice Zd as
well as d-dimensional generalizations of the face-centered-
cubic, body-centered-cubic, diamond, and kagomé lattices for
d � 2. While the first three are Bravais lattices, the last two
are non-Bravais lattices, as defined more precisely below. It is
noteworthy that generalizations of these lattices are not unique
in higher dimensions.

1. d-Dimensional Bravais lattices

The hypercubic lattice Zd is defined by

Zd = {(x1, . . . ,xd ) : xi ∈ Z} for d � 1, (45)

where Z is the set of integers (. . . −3,−2,−1,0,1,2,3 . . .)
and x1, . . . ,xd denote the components of a lattice vector. The
coordination number of Zd is zZd = 2d.

A d-dimensional generalization of the face-centered-cubic
lattice is the checkerboard lattice Dd defined by

Dd = {(x1, . . . ,xd ) ∈Zd : x1 + · · · + xd even} for d � 3.

(46)

Its coordination number is zDd
= 2d(d − 1). Note that D2 is

simply the square lattice in R2. The checkerboard lattice Dd

gives the densest sphere packing for d = 3 and the densest
known sphere packings for d = 4 and 5 but not for higher
dimensions [20–22]. It also provides the optimal kissing-
number configurations for d = 3–5, but not for d � 6 [51].

In order to define the generalization of the body-centered-
cubic lattice that we will consider in this paper, we must first
introduce another generalization of the face-centered-cubic
lattice, namely the root lattice Ad , which is a subset of points
in Zd+1, i.e.,

Ad = {(x0,x1, . . . ,xd )

∈ Zd+1 : x0 + x1 + · · · + xd = 0} for d � 1. (47)

The coordination number of Ad is zAd
= d(d + 1). Note that

D3 = A3, but Dd and Ad are not the same lattices for d � 4.
It is important to stress that the fundamental cell for the lattice
Ad is a regular rhombotope, the d-dimensional generalization
of the two-dimensional rhombus or three-dimensional rhom-
bohedron.

The d-dimensional lattices Zd
∗ , D∗

d , and A∗
d are the corre-

sponding dual lattices of Zd , Dd , and Ad . While both D∗
3 and

A∗
3 are the body-centered cubic lattice, they are not the same
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lattices for d � 4. Indeed, D∗
d has an unusual coordination

structure for d � 4 in that the coordination number does not
increase monotonically with d. By contrast, the coordination
number of A∗

d is zA∗
d
= 2(d + 1). For this reason, we choose

to consider the lattice A∗
d as a d-dimensional generalization

of the body-centered-cubic lattice. The lattice vectors ei of
A∗

d can be obtained from the associated Gram matrix G =
{Gij } =< ei ,ej >, where < , > denotes the inner product of
two vectors in Rd . Following Conway and Sloane, we set
Gii = d and Gij = −1 (i 
= j ). We note that A∗

2 ≡ A2 is the
triangular lattice in R2. (We say that two lattices are equivalent
or similar if one becomes identical to the other by possibly
rotation, reflection, and change of scale, for which we use the
symbol ≡.) The lattice A∗

d provides the best known covering
of Rd in dimensions 1–5 and 10–18 [20,21]. We note that
while A∗

3 apparently minimizes large-scale density fluctuations
(among all point configurations in R3), this is not true for the
corresponding problem for d = 4, where D4 ≡ D∗

4 is the best
known solution [21].

2. d-Dimensional non-Bravais lattices

The generalizations of the diamond and kagomé lattices
considered here were introduced in Ref. [19]. Specifically,
since the fundamental cell for the lattice Ad is a regular
rhombotope, the points {0} ∪ {aj } (j = 1, . . . ,d), where aj

denotes a lattice vector of Ad , are situated at the vertices of
a regular d-dimensional simplex. The d-dimensional diamond
lattice Diad can be obtained by including in the fundamental
cell the centroid of this simplex, i.e.,

ν = 1

d + 1

d∑
j=1

aj , (48)

which leads to a lattice with two basis points per fundamental
cell. By construction, the number of nearest neighbors to
each point in Diad is zDiad

= d + 1, corresponding to one
neighbor for each vertex of a regular d-simplex (d-dimensional
generalization of the tetrahedron). Note that Dia2 is the usual

honeycomb lattice, in which each point is at the vertex of a
regular hexagon.

Similarly to the construction of the d-dimensional diamond
lattice, the d-dimensional kagomé lattice Kagd can be obtained
by placing lattice points at the midpoints of each nearest-
neighbor bond in the lattice Ad [19]. With respect to the
underlying lattice Ad , these lattice points are located at

x0 = ν/2,
(49)

xj = ν + pj /2,

where pj = aj − ν. By translating the fundamental cell such
that the origin is at x0, we can also represent Kagd as
Ad ⊕ {vj }, where vj = aj /2 (j = 1, . . . ,d). Kagd has d + 1
basis points per fundamental cell, growing linearly with
dimension. Each lattice site is at the vertex of a regular
simplex obtained by connecting all nearest neighbors in the
lattice, implying that each point possesses 2d nearest neighbors
in Rd , i.e., zKagd

= 2d. We note that our d-dimensional
kagomé lattice is equivalent to the construction discussed in
Ref. [34].

B. Analytical formulas for the coefficients
S2(d), S3(d), and S4(d)

Here we provide [using the cluster-size distribution function
nk expressions given in Appendix A and Eq. (15)] explicit
analytical formulas for the d-dimensional coefficients S2(d),
S3(d), and S4(d) associated with the series expansion of S in
powers of p [cf. (16)] for general dimension d in the cases of
the Zd , Dd , A∗

d , Diad , and Kagd lattices for both site and bond
percolation. For 7 of these 10 problems, such d-dimensional
expansions have heretofore not been given. These coefficients
together with the general lower bounds given in Sec. III
give corresponding explicit lower bounds on pc for these 10
percolation problems.

For the hypercubic lattice Zd , the series expansion of S in
powers of p for site and percolation, through third order in p,
are given respectively by

S = 1 + 2dp + 2d(2d − 1)p2 + 2d(4d2 − 7d + 4)p3 + O(p4), (50)

S = 1 + 2(2d − 1)p + 2d(2d − 1)2p2 + 2(8d3 − 12d2 + 3d + 2)p3 + O(p4). (51)

The results (50) and (51) agree with earlier ones reported in Refs. [4] and [5], respectively.
For the d-dimensional checkerboard lattice Dd (the generalization of the fcc lattice), the series expansion of S for site and

bond percolation are given respectively by

S = 1 + 2d(d − 1)p + 2d(d − 1)(2d2 − 6d + 7)p2 + 2d(d − 1)(4d4 − 24d3 + 57d2 − 53d + 12)p3 + O(p4), (52)

S = 1 + 2(2d2 − 2d − 1)p + 2(4d4 − 8d3 + 9)p2 + 2(8d6 − 24d5 + 12d4 − 8d3 + 27d2 + 131d − 218)p3 + O(p4). (53)

For A∗
d (our d-dimensional generalization of the bcc lattice), the series expansion of S for site and bond percolation are given

respectively by

S =

⎧⎪⎨
⎪⎩

1 + 6p + 18p2 + 48p3 + O(p4), d = 2,

1 + 8p + 56p2 + 248p3 + O(p4), d = 3,

1 + 2(d + 1)p + 2(d + 1)(2d + 1)p2 + 2(d + 1)(4d2 + d + 1) + O(p4), d � 4,

(54)
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S =

⎧⎪⎨
⎪⎩

1 + 10p + 46p2 + 186p3 + O(p4), d = 2,

1 + 14p + 98p2 + 650p3 + O(p4), d = 3,

1 + 2(2d + 1)p + 2(2d + 1)2p2 + 2(8d3 + 12d2 + 3d + 1)p3 + O(p4), d � 4.

(55)

For the d-dimensional diamond lattice Diad , the series
expansion of S for site and bond percolation are given
respectively by

S = 1 + (d + 1)p + d(d + 1)p2 + d2(d + 1)p3 + O(p4),

(56)

S = 1 + 2dp + 2d2p2 + 2d3p3 + O(p4). (57)

For the d-dimensional kagomé lattice Kagd , the series
expansion of S for site and bond percolation are given
respectively by

S = 1 + 2dp + 2d2p2 + 2d3p3 + O(p4), (58)

S = 1 + 2(2d − 1)p + 2(4d2 − 5d + 2)p2

+ (16d3 − 39d2 + 43d − 18)p3 + O(p4). (59)

The expansion for site percolation agrees with the one first
reported in Ref. [34].

The d-dependent coefficients Sk(d) are also summarized in
Tables I and II for site and bond percolation, respectively, for
various d-dimensional lattices. We note that the coefficients
S2(p), S3(p), and S4(p) for all of the d-dimensional lattices
summarized in these tables satisfy the conditions (24) and,
hence, the [0,1], [1,1], and [2,1] lower bounds on pc progres-
sively improve as the order increases. Since nearest-neighbor
sites in Kagd correspond exactly to nearest-neighbor bonds
in Diad , it is not surprising that the coefficients Sk(d) for site
percolation on Kagd and those for bond percolation on Diad

are identical, as shown here.

C. Exact high-d asymptotics for the percolation threshold pc

Here we obtain the high-dimensional asymptotic expan-
sions of the lower bounds on pc that were obtained from
the [0,1], [1,1], and [2,1] Padé approximants of S for the
hypercubic latticeZd as well as d-dimensional generalizations
of the face-centered-cubic (Dd ), body-centered-cubic (A∗

d ),
diamond (Diad ), and kagomé (Kagd ) lattices. While we show
that 9 of the 10 asymptotic expansions agree with the high-
dimensional Bethe approximation (13), the corresponding
result for site percolation on Kagd does not.

1. d-Dimensional Bravais lattices Zd , Dd, and A∗
d

In the case of site percolation on the hypercubic lattice
Zd , the high-dimensional asymptotic expansions of the lower
bounds (29), (37), and (43) on pc obtained from the [0,1],
[1,1], and [2,1] Padé approximants of S are respectively given
by

pc � 1

2d
, (60)

pc � 1

2d
+ 1

4d2
+ 1

8d3
+ O

(
1

d4

)
, (61)

pc � 1

2d
+ 5

8d2
+ 19

32d3
+ O

(
1

d4

)
. (62)

This is to be compared to exact asymptotic expansion obtained
by Gaunt, Sykes, and Ruskin [4] to the same order:

pc = 1

2d
+ 5

8d2
+ 31

32d3
+ O

(
1

d4

)
. (63)

The tightest lower bound is exact up through order 1/d2 and
its third-order coefficient 19/32 bounds the exact third-order
coefficient 31/32 from below, as expected. It is noteworthy
that the leading-order term in the exact asymptotic expansion
is inversely proportional to the coordination number zZd =
zs = 2d. This is consistent with the high-dimensional Bethe
approximation (13). Moreover, the leading-order term in the
asymptotic expansion, obtained from the [0,1] lower bound
(i.e., pc � 1/S2), always agrees with the Bethe approximation
since S2 = zZd [cf. Eq. (19)]. In the instance of bond
percolation on the Zd , the asymptotic expansions of the [0,1],
[1,1], and [2,1] Padé lower bounds respectively yield

pc � 1

4d
+ 1

8d2
+ 1

16d3
+ 1

32d4
+ O

(
1

d5

)
, (64)

pc � 1

2d
+ 1

4d2
+ 1

8d3
+ 1

16d4
+ O

(
1

d5

)
, (65)

pc � 1

2d
+ 1

4d2
+ 5

16d3
+ 1

4d4
+ O

(
1

d5

)
. (66)

These results are to be compared to the exact asymptotic
expansion obtained by Gaunt and Ruskin [5] to the same

TABLE I. The d-dependent coefficients Sk(d) for site percolation. For A∗
d , the expressions apply in dimensions 4 and higher. For all of the

other lattices, the expressions apply in dimensions 2 and higher.

Lattice S2(d) S3(d) S4(d)

Zd 2d 2d(2d − 1) 2d(4d2 − 7d + 4)
Dd 2d(d − 1) 2d(d − 1)(2d2 − 6d + 7) 2d(d − 1)(4d4 − 24d3 + 57d2 − 53d + 12)
A∗

d 2(d + 1) 2(d + 1)(2d + 1) 2(d + 1)(4d2 + d + 1)
Diad d + 1 d(d + 1) d2(d + 1)
Kagd 2d 2d2 2d3
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TABLE II. The d-dependent coefficients Sk(d) for bond percolation. For A∗
d , the expressions apply in dimensions 4 and higher. For all of

the other lattices, the expressions apply in dimensions 2 and higher.

Lattice S2(d) S3(d) S4(d)

Zd 2(2d − 1) 2(2d − 1)2 2(8d3 − 12d2 + 3d + 2)
Dd 2(2d2 − 2d − 1) 2(4d4 − 8d3 + 9) 2(8d6 − 24d5 + 12d4 − 8d3 + 27d2 + 131d − 218)
A∗

d 2(2d + 1) 2(2d + 1)2 2(8d3 + 12d2 + 3d + 1)
Diad 2d 2d2 2d3

Kagd 2(2d − 1) 2(4d2 − 5d + 2) (16d3 − 39d2 + 43d − 18)

order:

pc = 1

2d
+ 5

4d2
+ 19

16d3
+ 1

d4
+ O

(
1

d5

)
. (67)

Observe that the tightest lower bound in the case of bond
percolation is exact up through order 1/d (in contrast to the
corresponding site percolation bound that is exact through
order 1/d2) and its second-order coefficient 1/4 bounds the
exact second-order coefficient 5/4 from below, as it should.
As in the case of site percolation on Zd , the leading-order term
of the exact asymptotic expansion of pc for bond percolation
on this lattice agrees with the Bethe approximation (13) [i.e.,
pc ∼ 1/zZd = 1/(2d)].

In the instance of site percolation on the checkerboard
lattice Dd , the asymptotic expansions obtained from the [0,1],
[1,1], and [2,1] Padé lower bounds on pc, respectively, yield

pc � 1

2d2
+ 1

2d3
+ 1

2d4
+ O

(
1

d5

)
, (68)

pc � 1

2d2
+ 3

2d3
+ 11

4d4
+ O

(
1

d5

)
, (69)

pc � 1

2d2
+ 3

2d3
+ 29

8d4
+ O

(
1

d5

)
. (70)

These results lead to the conclusion that the asymptotic
expansion of the tightest lower bound is exact at least through

order 1/d3 and, hence,

pc = 1

2d2
+ 3

2d3
+ O

(
1

d4

)
. (71)

For bond percolation on Dd , the asymptotic expansions of the
lower bounds yield

pc � 1

4d2
+ 1

4d3
+ 3

8d4
+ 1

2d5
+ O

(
1

d6

)
, (72)

pc � 1

2d2
+ 1

2d3
+ 3

4d4
+ 3

2d5
+ O

(
1

d6

)
, (73)

pc � 1

2d2
+ 1

2d3
+ 3

4d4
+ 2

d5
+ O

(
1

d6

)
. (74)

Thus, we see that these results lead to the conclusion that the
asymptotic expansion of the tightest lower bound is exact at
least through order 1/d4, implying

pc = 1

2d2
+ 1

2d3
+ 3

4d4
+ O

(
1

d5

)
. (75)

Note that the exact leading-order terms of the asymptotic
expansions of pc for both site and bond percolation on Dd

agree with the Bethe approximation (13) [i.e., pc ∼ 1/zDd
=

1/(2d2)].
In the case of site percolation on A∗

d , the asymptotic
expansions of the lower bounds obtained from the [0,1], [1,1],

TABLE III. Comparison of numerical estimates of the site percolation thresholds on the hypercubic lattice Zd to corresponding lower
bounds on pc. Simulation results for d = 2, d = 3, and d = 4–13 are taken from Refs. [36], [39], and [38], respectively. Here and in subequent
tables, error bars in the last digit or digits are shown by numbers in parentheses.

Dimension pc pL
c from Eq. (43) pL

c from Eq. (37) pL
c from Eq. (29)

1 1.0000000000. . . 1.0000000000. . . 1.0000000000. . . 0.5000000000. . .

2 0.59274621(13) 0.5000000000. . . 0.3333333333. . . 0.2500000000. . .

3 0.3116004(35) 0.2631578947. . . 0.2000000000. . . 0.1666666666. . .

4 0.1968861(14) 0.1750000000. . . 0.1428571429. . . 0.1250000000. . .

5 0.1407966(15) 0.1304347826. . . 0.1111111111. . . 0.1000000000. . .

6 0.109017(2) 0.1037735849. . . 0.09090909090. . . 0.08333333333. . .

7 0.0889511(9) 0.08609271523. . . 0.07692307692. . . 0.07142857143. . .

8 0.0752101(5) 0.07352941176. . . 0.06666666666. . . 0.06250000000. . .

9 0.0652095(3) 0.06415094340. . . 0.05882352941. . . 0.05555555555. . .

10 0.0575930(1) 0.05688622754. . . 0.05263157895. . . 0.05000000000. . .

11 0.05158971(8) 0.05109489051. . . 0.04761904762. . . 0.04545454545. . .

12 0.04673099(6) 0.04637096774. . . 0.04347826087. . . 0.04166666666. . .

13 0.04271508(8) 0.04244482173. . . 0.04000000000. . . 0.03846153846. . .
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TABLE IV. Comparison of numerical estimates of the bond percolation thresholds on the hypercubic lattice Zd to corresponding lower
bounds on pc. Simulation results for d = 3 and d = 4–13 are taken from Refs. [32] and [38], respectively.

Dimension pc pL
c from Eq. (43) pL

c from Eq. (37) pL
c from Eq. (29)

1 1 1 1 1/2
2 0.5000000000. . . 0.3750000000. . . 0.3333333333 0.1666666666. . .

3 0.2488126(5) 0.2100840336. . . 0.2000000000. . . 0.10000000000. . .

4 0.1601314(13) 0.1467065868. . . 0.1428571429. . . 0.07142857143. . .

5 0.118172(1) 0.1129707113. . . 0.1111111111. . . 0.05555555556. . .

6 0.0942019(6) 0.09194528875. . . 0.09090909091. . . 0.04545454545. . .

7 0.0786752(3) 0.07755851308. . . 0.07692307692. . . 0.03846153846. . .

8 0.06770839(7) 0.06708407871. . . 0.06666666666. . . 0.03333333333. . .

9 0.05949601(5) 0.05911229290. . . 0.05882352941. . . 0.02941176471. . .

10 0.05309258(4) 0.05283957845. . . 0.05263157895. . . 0.02631578947. . .

11 0.04794969(1) 0.04777380565. . . 0.04761904762. . . 0.02380952381. . .

12 0.04372386(1) 0.04359650569. . . 0.04347826087. . . 0.02173913043. . .

13 0.04018762(1) 0.04009237283. . . 0.04000000000. . . 0.02000000000. . .

and [2,1] Padé approximants of S respectively yield

pc � 1

2d
− 1

2d2
+ O

(
1

d3

)
, (76)

pc � 1

2d
− 3

4d2
+ O

(
1

d3

)
, (77)

pc � 1

2d
+ 1

8d2
+ O

(
1

d3

)
. (78)

These results lead to the conclusion that the asymptotic
expansion of the tightest lower bound is exact at least through
order 1/d or, more precisely,

pc = 1

2d
+ O

(
1

d2

)
. (79)

For bond percolation on A∗
d , the asymptotic expansions of the

lower bounds yield

pc � 1

4d
− 1

8d2
+ 1

16d3
+ O

(
1

d4

)
, (80)

pc � 1

2d
− 1

4d2
+ 1

8d3
+ O

(
1

d4

)
, (81)

pc � 1

2d
− 1

4d2
+ 5

16d3
+ O

(
1

d4

)
. (82)

Thus, we see that these results lead to the conclusion that the
asymptotic expansion of the tightest lower bound is exact at
least through order 1/d2 and, hence,

pc = 1

2d
− 1

4d2
+ O

(
1

d3

)
. (83)

As in all of the previous cases, we see that the exact leading-
order terms of the asymptotic expansions of pc for both site
and bond percolation on A∗

d agree with the high-d Bethe
approximation (13) [i.e., pc ∼ 1/zA∗

d
= 1/(2d)].

2. d-Dimensional non-Bravais lattices Diad and Kagd

In the instance of site percolation on the d-dimensional
diamond lattice Diad , all three lower bounds yield the same

asymptotic expansion,

pc = 1

d
+ h.o.t., (84)

where h.o.t. indicates indeterminate higher-order terms. For
bond percolation on Diad , the asymptotic expansions of the
lower bounds obtained from the [0,1], [1,1], and [2,1] Padé
approximants of S respectively yield

pc = 1

2d
+ O

(
1

d4

)
, (85)

pc = 1

d
+ O

(
1

d4

)
, (86)

pc = 1

d
+ O

(
1

d4

)
. (87)

We know the order of the correction to the leading term since
this problem is identical to site percolation on Kagd described
below. The exact leading-order terms for both site and bond
percolation on Diad agree with the Bethe approximation (13)
[i.e., pc ∼ 1/zDiad

= 1/d].
For site percolation on the d-dimensional kagomé lattice

Kagd , the asymptotic expansions of the lower bounds obtained

3 4 5 6 7 8 9 10 11 12 13
d

0

0.1

0.2

pc

simulation data
lower bound (29)
lower bound (37)
lower bound (43)

bond percolation on Zd

FIG. 1. (Color online) Percolation threshold pc versus dimension
d for bond percolation on hypercubic lattice as obtained from the
lower bounds (29), (37), and (43) as well as the simulation data.
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TABLE V. Comparison of numerical estimates of the site percolation thresholds on the checkerboard Dd and A∗
d lattices to the corresponding

best lower bounds on pc. Simulation results for d = 3 and d = 4–6 in the case of the lattice Dd are taken from Refs. [33] and [35], respectively.
Simulation results for d = 3 in the case of the A∗

d or bcc lattice is taken from Ref. [33].

Dd A∗
d

Dimension pc pL
c from Eq. (43) pc pL

c from Eq. (43)

3 0.1992365(10) 0.1666666666. . . 0.2459615(10) 0.2258064516. . .

4 0.0842(3) 0.07500000000. . . 0.1304347826. . .

5 0.0431(3) 0.04017857143. . . 0.1037735849. . .

6 0.0252(5) 0.02462772050. . . 0.08609271523. . .

7 0.01655281135. . . 0.07352941176. . .

8 0.01186579378. . . 0.06415094340. . .

9 0.008914728682. . . 0.05688622754. . .

10 0.006939854594. . . 0.05109489051. . .

11 0.005554543799. . . 0.04637096774. . .

12 0.004545825179. . . 0.04244482173. . .

13 0.003788738790. . . 0.03913043478. . .

from the [0,1], [1,1], and [2,1] Padé approximants of S

respectively yield

pc = 1

2d
+ O

(
1

d4

)
, (88)

pc = 1

d
+ O

(
1

d4

)
, (89)

pc = 1

d
+ O

(
1

d4

)
. (90)

We know the order of the correction to the leading term is
O(1/d4), which we determined from the exact p expansion
of S through order p5 obtained by van der Marck [34]. In the
case of bond percolation on Kagd , the asymptotic expansions
of the three lower bounds yield

pc � 1

4d
+ 1

8d2
+ O

(
1

d3

)
, (91)

pc � 1

2d
+ 3

8d2
+ O

(
1

d3

)
, (92)

pc � 1

2d
+ 19

32d2
+ O

(
1

d3

)
. (93)

Note that these results lead to the conclusion that the
asymptotic expansion of the tightest lower bound is exact at
least through order 1/d and, hence,

pc = 1

2d
+ O

(
1

d2

)
. (94)

While the asymptotic expansions of pc for bond percolation
on Kagd agree with the corresponding Bethe approximation
[i.e., pc ∼ 1/zKagd

= 1/(2d)], this is not the case for site
percolation [i.e., pc ∼ 1/d 
= 1/zKagd

= 1/(2d)]. The latter
observation was first made by van der Marck [34], but no
explanation for it was given. We will discuss this issue in
Sec. VI.

V. EVALUATION OF BOUNDS ON pc AND S, AND
COMPARISON TO SIMULATION RESULTS

Here we explicitly evaluate the [0,1], [1,1], and [2,1]
lower bounds on pc [i.e., inequalities (29), (37), and (43)]
for the hypercubic lattice Zd as well as d-dimensional

TABLE VI. Comparison of numerical estimates of the bond percolation thresholds on the checkerboard Dd and A∗
d lattices to the

corresponding best lower bounds on pc. Simulation results for d = 3 and d = 4–5 in the case of the lattice Dd are taken from Refs. [33]
and [35], respectively. Simulation results for d = 3 in the case of the A∗

d or bcc lattice is taken from Ref. [33].

Dd A∗
d

Dimension pc pL
c from Eq. (43) pc pL

c from Eq. (43)

3 0.1201635(10) 0.09965928450. . . 0.1802875(10) 0.1467065868. . .

4 0.049(1) 0.04534377720. . . 0.1129707113. . .

5 0.026(2) 0.02619245990. . . 0.09194528875. . .

6 0.01715448442. . . 0.07755851308. . .

7 0.01213788668. . . 0.06708407871. . .

8 0.009053001692. . . 0.05911229290. . .

9 0.007016561297. . . 0.05283957845. . .

10 0.005600098814. . . 0.04777380565. . .

11 0.004574393818. . . 0.04359650569. . .

12 0.003807469357. . . 0.04009237283. . .

13 0.003218849539. . . 0.03711056811. . .
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TABLE VII. Comparison of numerical estimates of the site percolation thresholds on the Kagd and Diad lattices to the corresponding
best lower bounds on pc, denoted by pL

c . Simulation results for d = 3–6 for the lattice Kagd are taken from Ref. [34]. Simulation results for
d = 2 and d = 3–6 for the lattice Diad are taken from Refs. [40] and [35], respectively. Note that in the case Kag2, pc = 1 − 2 sin(π/18) =
0.6527036446 . . . is an exact result [25].

Kagd Diad

Dimension pc pL
c from Eq. (43) pc pL

c from Eq. (43)

2 0.6527036446. . . 0.5000000000. . . 0.6970413(10) 0.5000000000. . .

3 0.3895(2) 0.3333333333. . . 0.4301(2) 0.3333333333. . .

4 0.2715(3) 0.2500000000. . . 0.2978(2) 0.2500000000. . .

5 0.2084(4) 0.2000000000. . . 0.2252(3) 0.2000000000. . .

6 0.1677(7) 0.1666666666. . . 0.1799(5) 0.1666666666. . .

7 0.1428571429. . . 0.1428571429. . .

8 0.1250000000. . . 0.1250000000. . .

9 0.1111111111. . . 0.1111111111. . .

10 0.1000000000. . . 0.1000000000. . .

11 0.09090909090. . . 0.09090909090. . .

12 0.08333333333. . . 0.08333333333. . .

13 0.07692307692. . . 0.07692307692. . .

generalizations of the face-centered-cubic (Dd ), body-
centered-cubic (A∗

d ), kagomé (Kagd ), and diamond lattices
(Diad ) up to dimension 13 using the results for the cor-
responding coefficients S2(d), S3(d), and S4(d) listed in
Tables I and II. We also employ these results to ascertain the
accuracy of previous numerical simulations, especially in high
dimensions.

In Tables III and IV, we compare the lower bounds (29),
(37), and (43) on the percolation threshold pc for site and bond
percolation on the hypercubic lattice Zd up through dimension
13 to the corresponding simulation data. It can be clearly seen
that the [n,1] Padé bounds get progressively better as the order
n increases. Specifically, the [2,1] Padé provides the tightest
lower bound on pc, which becomes asymptotically exact in
the limit d → ∞. The numerical values of pc for both site and
bond percolation lie above the associated best lower bound
and approach the lower bound as d increases, indicating that

these data are of high accuracy, as shown in Fig. 1. Assuming
the level of accuracy claimed in the simulations, our tightest
lower bound (43) is already accurate up to three significant
figures for d � 10.

We summarize in Table V evaluations of the best lower
bound (43) on the percolation threshold pc for site percolation
on the Bravais lattices Dd and A∗

d up through d = 13
and compare them to corresponding simulation data when
available. Observe that (43) already provides a tight bound
on the numerical estimates of pc for Dd in relatively low
dimensions (e.g., d = 5 and 6). Our tightest lower bound (43)
estimates for this lattice should provide sharp estimates of
pc for d � 6 (where no numerical estimates are currently
available), which become progressively better as d grows and,
indeed, asymptotically exact in the high-d limit. In the case
of A∗

d , only three-dimensional simulation results are available
for comparison.

TABLE VIII. Comparison of numerical estimates of the bond percolation thresholds on the Kagd and Diad lattices to the corresponding
best lower bounds on pc. Simulation results for d = 3–5 for the lattice Kagd are taken from Ref. [35]. Simulation results for d = 2 and d = 3–6
for the lattice Diad are taken from Refs. [41] and [34], respectively. Note that in the case Dia2, pc = 1 − 2 sin(π/18) = 0.6527036446 . . . is an
exact result [25].

Kagd Diad

Dimension pc pL
c from Eq. (43) pc pL

c from Eq. (43)

2 0.524404978(5) 0.4000000000. . . 0.6527036446. . . 0.5000000000. . .

3 0.2709(6) 0.2395833333. . . 0.3893(2) 0.3333333333. . .

4 0.177(1) 0.1660649819. . . 0.2715(3) 0.2500000000. . .

5 0.130(2) 0.1260229133. . . 0.2084(4) 0.2000000000. . .

6 0.1012216405. . . 0.1677(7) 0.1666666666. . .

7 0.08445595855. . . 0.1428571429. . .

8 0.07240119562. . . 0.1250000000. . .

9 0.06333107956. . . 0.1111111111. . .

10 0.05626598465. . . 0.1000000000. . .

11 0.05061061531. . . 0.09090909090. . .

12 0.04598313360. . . 0.08333333333. . .

13 0.04212768882. . . 0.07692307692. . .
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FIG. 2. (Color online) Percolation threshold pc versus dimension
d for site and bond percolation on the d-dimensional lattices Zd , Dd ,
A∗

d , Diad , and Kagd as obtained from the lower bound (43). (a) Site
percolation. Note that lower bounds for Diad and Kagd are identical.
(b) Bond percolation.

The best lower bounds on pc for bond percolation on
the lattices Dd and Ad are compared to available simulation
data in Table VI. Note that the lower bound value for the
lattice D5 already agrees very well with the corresponding
numerical estimate. This again illustrates the utility of tight
bounds as accurate estimates for the actual threshold value pc,
especially in higher dimensions than three. We will see that the
lower-bound estimate of pc for both site and bond percolation
on Dd converges to the corresponding numerical estimates
most rapidly among all of the d-dimensional lattices that we
have studied in this paper. The reasons for this behavior are
discussed in Sec. VI.

In Table VII, we present evaluations of the best lower bound
(43) on the percolation threshold pc for site percolation on
the non-Bravais lattices Diad and Kagd up through dimension
13 and compare them to corresponding simulation data when
available. The results for bond percolation on these lattices are
given in Table VIII. Again, it can be seen that (43) already
provides a tight bound on the numerical estimates of pc in
relatively low dimensions (e.g., d = 5 and 6). Again, as in the
cases of the lattices Dd and A∗

d described above, it is reasonable
to expect that our tightest lower bound (43) provides sharp
estimates of pc for d � 7, especially in high dimensions. These
results are particularly useful in the absence of numerical
evaluations of pc for such higher dimensions.

It is clear that the tightest lower bound (43) on pc is
accurate enough to enable us to compare the relative trends
of the thresholds for different lattices in any fixed dimension
d. Figure 2 shows the best lower bound (43) on pc for site and
bond percolation on the five different d-dimensional lattices
Zd , Dd , A∗

d , Diad , and Kagd . For any fixed dimension, we see,
not surprisingly, that the threshold on Dd is minimized among
all of these lattices for either site or bond percolation due to
the fact that it possesses the largest coordination number zDd

.
Similarly, the local coordination structure of the other lattices
explains the trends in their relative threshold values. Observe
that in the case of site percolation, the lower bound on pc

for Diad is identical to that for Kagd , since the two percolation
problems are exactly equivalent to one another (see Sec. IV B).

Figure 3 shows the lower bounds on the inverse of the mean
cluster number S−1 as a function of p as obtained from the
upper bounds on S (28), (36), and (42) for site percolation on
the hypercubic lattice Zd for d = 3,8, and 13. The zero of S−1

gives the threshold and we also include in Fig. 3 the associated
numerical estimates of pc. These plots clearly illustrate that the
lower bounds on S−1 become increasingly more accurate as the
space dimension increases. This is not surprising, since all of
these lower bounds become asymptotically exact as the space
dimension becomes large. The best lower bound, as obtained
from (42), gives a highly accurate estimate of the inverse mean
cluster size already for d = 8 and essentially should coincide
with the exact result as evidenced by the very near proximity
of the zero of the lower bound with the numerically estimated
threshold pc.

VI. CONCLUSIONS AND DISCUSSION

We have shown that [0,1], [1,1], and [2,1] Padé ap-
proximants of the mean cluster number S for site and
bond percolation on general d-dimensional lattices are upper
bounds on this quantity in any Euclidean dimension d. These
results immediately lead to lower bounds on the threshold
pc. We obtain explicit bounds on pc for several types of
lattices: d-dimensional generalizations of the simple-cubic,
body-centered-cubic, and face-centered-cubic Bravais lattices
as well as the d-dimensional generalizations of the diamond
and kagomé (or pyrochlore) non-Bravais lattices. We have
calculated the lower bounds for these lattices and compared

0 0.1

(a) (b) (c)

0.2 0.3p
0

0.5

1

S-1

from Ineq. (28)
from Ineq. (36)
from Ineq. (42)
simulation data

site percolation on Z3

0 0.03 0.06p
0

0.5

1

S-1

from Ineq. (28)
from Ineq. (36)
from Ineq. (42)
simulation data

site percolation on Z8

0 0.02 0.04p
0

0.5

1

S-1

from Ineq. (28)
from Ineq. (36)
from Ineq. (42)
simulation data

site percolation on Z13

FIG. 3. (Color online) The lower bounds on the inverse of the mean cluster number S−1 versus p for site percolation on hypercubic lattice
Zd for (a) d = 3, (b) d = 8, and (c) d = 13 as obtained from the upper bound on S (28), (36), and (42). Included in this figure are the percolation
thresholds (black circles) obtained from the accurate numerical study of Ref. [36].
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them to the available numerical estimates of pc. The lower
bounds on pc obtained from [1,1] and [2,1] Padé approximants
become asymptotically exact in the high-d limit. The best
lower bound, obtained from the [2,1] Padé approximant, is
relatively tight for 3 � d � 5 and generally provides excellent
estimates of pc for d � 6. While the [0,1] estimate of pc

was proven to be a lower bound here, rigorous proofs of that
the [1,1] and [2,1] estimates are indeed lower bounds will be
reserved for a future publication. However, we have presented
very strong evidence that the latter are indeed lower bounds
for the class of d-dimensional lattices considered in this paper.
Note that one can exploit the accuracy of the best lower bound
(43) to devise an efficient simulation method to estimate lattice
percolation thresholds across many dimensions, as we did
in the case of various d-dimensional models of continuum
percolation [43,44].

We have seen in Sec. V that the estimate of pc obtained from
the best lower bound (43) for both site and bond percolation
on Dd converges to the corresponding numerical estimates
in relatively low dimensions most rapidly among all of the
five d-dimensional lattices that we have studied in this paper.
This is due to the highly connected nature of Dd ; it possesses
the largest coordination number zDd

among all of the five
lattices studied here. In addition, we have shown that the
asymptotic expansions of the lower-bound estimates are exact
through at least 1/d3 and 1/d4, respectively, for site and
bond percolation on Dd , and therefore more accurate than the
corresponding asymptotic expansions for the other lattices.
This observation is consistent with the principle that high-
dimensional results encode information about percolation
behavior in low dimensions, as is also the case in continuum
percolation [42–44].

Among all of the 10 percolation problems that we consid-
ered in the paper, the only case in which the high-d limit of
the threshold pc does not agree with the corresponding Bethe
approximation (12) is for site percolation on the d-dimensional
kagomé lattice Kagd . The usual arguments explaining the
tendency of a lattice to behave like an infinite Bethe tree [1]
apply in all of the other nine cases. For example, consider
bond percolation on Diad , which gives pc ∼ 1/d (i.e., the
Bethe approximation). This is the only specific instance in
which a bond percolation problem can be exactly mapped to
a site percolation problem, namely that on the kagomé lattice
Kagd . Therefore, while the coordination number of the latter
zKagd

= 2d, the threshold pc for site percolation on Kagd must,
in any dimension, agree with that for bond percolation on Diad

and, hence, pc must tend to 1/d [not 1/zKagd
= 1/(2d)] in the

high-d limit.
It was once hypothesized that the percolation threshold of a

lattice corresponded to the radius of convergence of the series
expansion for S [26]. This hypothesis rested on the assumption
that S had no singularities on the positive real axis for p less
than the critical value, i.e., the coefficients S2,S3, . . . were all
positive. It was shown that at sufficiently high order (e.g., 19th
order), the coefficients are sometimes negative for d = 2. This
implies that the critical concentration does not correspond to
the radius of convergence of the series expansion for S for
d = 2, strongly suggesting that there is a closer singularity on
the negative real axis [49].

In analogy with the continuum percolation results of
Ref. [42], our present results offer evidence that, in sufficiently
high dimensions, the radius of convergence of (16) for
Bernoulli lattice percolation corresponds to pc. The fact that
the putative lower bound on pc [cf. Eq. (37)] obtained from the
[1,1] Padé approximant of S(p) [cf., Eq. (36)] is asymptotically
exact through second-order terms implies that Eq. (36) is also
asymptotically exact, i.e.,

S(p) ∼ 1

1 − S3
S2

p
, d → ∞, (95)

with critical exponent γ = 1 [cf. (11)], as expected. This
in turn implies that the radius of convergence in the high-
dimensional limit corresponds to the percolation threshold
pc = S2/S3 because all of the coefficients of the resulting
expansion of S(p) [cf. Eq. (16)] are all positive. Recall that for
d = 1, S is given by (25), and, hence, all of the coefficients
Sm are positive. Thus, it appears that the closest singularities
for the occupation probability p expansion of S(p) shift from
the positive real axis to the negative real axis in going from
one to two dimensions, remain on the negative real axis for
sufficiently low dimensions d � 3, and eventually move back
to the positive real axis for sufficiently large d.
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APPENDIX A: ANALYTICAL DETERMINATION OF
CLUSTER STATISTICS FOR d-DIMENSIONAL LATTICES

In this Appendix, we describe the algorithm that we have
used to obtain analytical expressions for the coefficients S2(d),
S3(d), and S4(d) in the series expansion of the mean cluster
number S in powers of the site (bond) occupation probability
p for any lattice in high dimensions presented in Sec. IV B. As
discussed in Sec. II, S can expressed in terms of the cluster-size
distribution function nk [cf. Eq. (15)]. Therefore, it is sufficient
for us to determine the expressions of nk [cf. Eq. (17)], from
which the series expansion of S can be obtained in any specific
d. The general d-dimensional coefficient Sk(d) can then be
determined using the fact that it is a polynomial in d, i.e.,

Sk(d) =
∑
n=1

κnd
n. (A1)

The coefficients κn are determined by solving a set of linear
equations in the first several dimensions (e.g., 2 � d � 5) such
that they satisfy the explicitly known forms for Sk in these
relatively low dimensions.

Our algorithm enables us to obtain analytically the poly-
nomials nk by directly enumerating all of the distinct k-mer
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FIG. 4. (Color online) Two pairs of distinct trimer configurations associated with site percolation on the square lattice Z2. Note that the
numbers indicate cluster site labels rather than ordered labels of the sites of Z2. (a) Two distinct trimer configurations that cannot be mapped
to one another by any translation or rotation. (b) Two distinct trimer configurations that can be mapped to one another by a simple translation.

configurations associated with a site (bond) located at, without
loss of any generality, some chosen origin. We note that two
k-mer configurations are distinct if they contain one or more
distinct sites (bonds); see Fig. 4 for simple examples. To
the best of our knowledge, such an algorithm has not been
applied before to obtain explicit expressions for the nk’s.
Our algorithm works as follows: For a given d-dimensional
lattice, the vectors connecting a site (bond) to all of its nearest
neighbors are determined. All of the k-mer configurations
associated with a selected site (bond) are then generated.
Specifically, a k-mer configuration is generated from a (k − 1)-
mer configuration (k � 2) by adding a site (bond) that is a
nearest neighbor of one of the sites (bonds) in the (k − 1)-mer
configuration. The total number of k-mer configurations for a
site [(k − 1)-mer configurations for a bond] generated in this
way is (k − 1)!z(k−1)

� , where z� is the coordination number of
the given lattice �. Although, in principle, this algorithm can
be employed to obtain cluster statistics for arbitrary k, we are
only interested in the cases where 1 � k � 4 here but for any
dimension d.

The k-mer configurations are then compared to one another
to obtain the set of distinct k-mer configurations. For site
percolation, we find that the set of vector displacements
between any two sites is sufficient to distinguish a pair of
k-mer configurations. For bond percolation, a k-mer contains
k bonds and γ associated sites (e.g., γ = k + 1 is the k-mer
does not contain closed loops). The latter is simply a γ -mer in
the site context. A k-mer configuration containing k bonds can
be mapped into a configuration of k points by placing the points
at the midpoints of any bond. Note that these midpoints are not
sites of the given lattice but rather a new “site” decoration of the
lattice. The vector-displacement sets for both the γ -mer config-
urations of the sites and the configuration the mapped k points
are required to distinguish two k-mer configurations of bonds.
In particular, a displacement matrix Mαβ is used to distinguish
a pair of k-mer configurations, α and β. The components
of the matrix M

αβ

ij are the vector displacements between
two sites (points) i and j , one in each k-mer configuration
(point configuration). Two k-mer configurations are identical
if every row of Mαβ has at least one component that is a zero
vector.

Figure 4 shows two simple examples of how the vector-
displacement matrix Mαβ can be applied to distinguish a
pair of trimer configurations (i.e., clusters of three sites) for
site percolation on the square lattice Z2. Figure 4(a) shows
two distinct trimer configurations that cannot be mapped to
one another by any translation or rotation. The associated

displacement matrix is given by

Mαβ =
⎡
⎣ (0,0) (−1,0) (1,0)

(1,0) (0,0) (2,0)
(0,−1) (−1,−1) (1,−1)

⎤
⎦ , (A2)

which does not satisfy the condition that every row has at least
one zero vector. Note that we have set the distance between
two nearest-neighbor sites to be unity and the entry M

αβ

11 is
always zero since it is associated with the common origin for
any k-mer configuration. Figure 4(b) shows two distinct trimer
configurations that can be mapped to one another by a simple
translation. The associated displacement matrix is given by

Mαβ =
⎡
⎣ (0,0) (1,0) (1,1)

(1,0) (2,0) (2,0)
(0,−1) (1,−1) (1,0)

⎤
⎦ . (A3)

While the matrix does not have zero vectors in every row, the
vector (1,0) is contained in every row, which is the translation
vector that maps the two trimer configurations to one another.
It is clear that if the translation vector is a zero vector, the two
trimer configurations are then identical.

Finally, for each distinct k-mer configuration, the number
of vacate sites (bonds) that are nearest neighbors of the sites
(bonds) in the k-mer configuration is determined, which gives
the value of the associated m (i.e., the exponent associated with
1 − p term in Eq. (17). Since distinct k-mer configurations
that can be obtained from one another by simple rotation
or translation have the same vacancy configuration, they
contribute identical terms to the polynomials for nk . The
total number of such k-mers gives the value of the associated
coefficient gkm.

For 5 of the 10 percolation problems considered in this
paper, the expressions for the nk’s can be explicitly written
as a function of dimensionality d, which are provided here.
Explicit expressions for n1, n2, n3, and n4 in dimensions 2 to
5 for all of the 10 percolation problems are provided in the
Supplemental Material [52].

For site percolation on hypercubic lattice Zd , the nk’s are
given by

n1 = p(1 − p)2d ,

n2 = dp2(1 − p)4d−2,

n3 = 2d(d − 1)p3(1 − p)6d−5 + 2d(d − 1)p3(1 − p)6d−4,

n4 = 4
3d(d − 1)(d − 2)p4(1 − p)8d−9

+ 1
2d(d − 1)(8d − 7)p4(1 − p)8d−8

+4d(d − 1)p4(1 − p)8d−7p4 + dp4(1 − p)8d−6. (A4)
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For bond percolation on hypercubic lattice Zd , the nk’s are
given by

n1 = p(1 − p)4d−2,

n2 = (2d − 1)p2(1 − p)6d−4,

n3 = 2d(d − 1)p3(1 − p)8d−7

+ 1
3 (16d2 − 24d + 11)p3(1 − p)8d−6,

n4 = 1
2 (d − 1)p4(1 − p)8d−8 + 16(d − 1)2p4(1 − p)10d−9

+ 1
12 (200d3 − 552d2 + 574d − 210)p4(1 − p)10d−8.

(A5)

For site percolation on d-dimensional diamond lattice Diad ,
the nk’s are given by

n1 = p(1 − p)d+1,

n2 = 1
2 (d + 1)p2(1 − p)2d ,

(A6)
n3 = 1

2d(d + 1)p3(1 − p)3d−1,

n4 = 1
6d(3d2 − d + 4)p4(1 − p)4d−2.

For bond percolation on d-dimensional diamond lattice Diad ,
the nk’s are given by

n1 = p(1 − p)2d ,

n2 = dp2(1 − p)3d−1,
(A7)

n3 = 1
3d(4d − 1)p3(1 − p)4d−2,

n4 = 1
12d(5d − 1)(5d − 2)p4(1 − p)5d−3.

For site percolation on d-dimensional kagomé lattice Kagd ,
the nk’s are given by

n1 = p(1 − p)2d ,

n2 = dp2(1 − p)3d−1,
(A8)

n3 = 1
3d(4d − 1)p3(1 − p)4d−2,

n4 = 1
12d(5d − 1)(5d − 2)p4(1 − p)5d−3.

Note that these expressions of nk’s are identical to those for
bond percolation on Diad .

APPENDIX B: EXPLICIT CALCULATION OF S3 USING
EQ. (20) FOR SITE PERCOLATION IN A∗

2

In this Appendix, we explicitly calculate S3 using Eq. (20)
for site percolation on the triangular lattice (i.e., A∗

2) as an
instructive illustration of how to obtain Sk directly from the

FIG. 5. (Color online) Three-site clusters (3-mers) of the tri-
angular lattice that contribute to the coefficient S3. (a) The lineal
configuration in which sites 1 (red or dark gray) and k (blue or light
gray) are connected by a single common nearest neighbor j (empty
circles). (b) The nonlineal configurations in which sites 1 (red or dark
gray) and k (blue or light gray) can be connected by two common
nearest neighbors j (empty circles).

connectivity function f . Since the function f is only nonzero
for a pair of bonds that are nearest neighbors of one another
[see Eq. (20)], it is clear that only when site k is not a nearest
neighbor of site 1 and when site j is a mutual nearest neighbor
of sites 1 and k does the product in the double sum have
nonzero value (i.e., unity). This also suggests that site k can be
at most two bonds away from site 1, otherwise it cannot share
a common nearest neighbor with site 1.

Figure 5 shows two configurations of sites 1 and k that
contribute to Eq. (A-1). In the first configuration [Fig. 5(a)],
sites 1 and k form a straight line and can be connected by the
common nearest neighbor j in between. Due to the symmetry
of the lattice, there are six such lineal configurations, each
contributing 1 to S3. In the second configuration [Fig. 5(b)],
each pair of sites 1 and k can be connected by two common
nearest neighbors j , which form a folded line. Again, due
to the symmetry of the lattice, there are 12 such nonlineal
configurations, each contributing 1 to S3. Thus, we have

S3 = 6 × 1 (lineal configurations)

+ 12 × 1 (nonlineal configurations) = 18. (B1)

We note that both the lineal and nonlineal configurations
are three-site clusters. One might initially think that a simple
counting of all three-site clusters would lead to the same
result. Although such a counting procedure would lead to the
correct result for some special cases, such as site percolation
on the square lattice, it is generally is not valid. For example,
the equilateral-triangle three-site clusters do not contribute
to S3 here. This naive counting procedure would lead to an
overestimation of S3.
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