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The small wavenumber k behavior of the structure factor S(k) of overcompressed amorphous hard-
sphere configurations was previously studied for a wide range of densities up to the maximally ran-
dom jammed state, which can be viewed as a prototypical glassy state [A. Hopkins, F. H. Stillinger,
and S. Torquato, Phys. Rev. E 86, 021505 (2012)]. It was found that a precursor to the glassy jammed
state was evident long before the jamming density was reached as measured by a growing nonequi-
librium length scale extracted from the volume integral of the direct correlation function c(r), which
becomes long-ranged as the critical jammed state is reached. The present study extends that work
by investigating via computer simulations two different atomic models: the single-component Z2
Dzugutov potential in three dimensions and the binary-mixture Kob-Andersen potential in two di-
mensions. Consistent with the aforementioned hard-sphere study, we demonstrate that for both mod-
els a signature of the glass transition is apparent well before the transition temperature is reached
as measured by the length scale determined from the volume integral of the direct correlation func-
tion in the single-component case and a generalized direct correlation function in the binary-mixture
case. The latter quantity is obtained from a generalized Ornstein-Zernike integral equation for a cer-
tain decoration of the atomic point configuration. We also show that these growing length scales,
which are a consequence of the long-range nature of the direct correlation functions, are intrinsically
nonequilibrium in nature as determined by an index X that is a measure of the deviation from thermal
equilibrium. It is also demonstrated that this nonequilibrium index, which increases upon supercool-
ing, is correlated with a characteristic relaxation time scale. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4769422]

I. INTRODUCTION

A quantitative understanding of nature of the physics of
the glass transition is one of the most fascinating and chal-
lenging problems in materials science and condensed-matter
physics. A sufficiently rapid quench of a liquid from above
its freezing temperature into a supercooled regime can avoid
crystal nucleation to produce a glass with a relaxation time
that is much larger than experimental time scales, resulting
in an amorphous characteristic state (without long-range or-
der) that is simultaneously rigid.1 A question that has re-
ceived considerable attention in recent years is whether the
growing relaxation times under supercooling have accompa-
nying growing structural length scales. Two distinct schools
of thought have emerged to address this question. One as-
serts that static structure of a glass, as measured by pair cor-
relations, is indistinguishable from that of the corresponding
liquid. Thus, since there is no signature of increasing static
correlation length scales accompanying the glass transition, it
identifies growing dynamical length scales.2–4 The other camp
contends that there is a static growing length scale of thermo-
dynamic origin5, 6 and therefore one need not look for growing
length scales associated with the dynamics.

In the present paper, we employ both theoretical and
computational methods to study two different atomic glass-
forming liquid models that support an alternative view,
namely, the existence of a growing static length scale as the
temperature of the supercooled liquid is decreased that is in-
trinsically nonequilibrium in nature. This investigation ex-
tends recent previous work7 in which this conclusion was first
reached by examining overcompressed hard-sphere liquids up
to the maximally random jammed (MRJ) state.8 (For a hard-
sphere system, compression qualitatively plays the same role
as decreasing the temperature in an atomic or molecular sys-
tem; see Ref. 9.) The MRJ state under the strict-jamming
constraint is a prototypical glass in that it lacks any long-
range order but is perfectly rigid such that the elastic moduli
are unbounded.9, 10 This endows such packings with the spe-
cial hyperuniformity attribute. A statistically homogeneous
and isotropic single-component point configuration at num-
ber density ρ is hyperuniform if its structure factor

S(k) = 1 + ρh̃(k) (1)

tends to zero as the wavenumber k → 0,11 where h(r)
≡ g2(r) − 1 is the total correlation function, g2(r) is the pair
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correlation function, and h̃(k) is the Fourier transform of h(r).
This condition implies that infinite-wavelength density fluc-
tuations vanish.

It was theoretically established that hyperuniform point
distributions are at an “inverted” critical point in that the direct
correlation function c(r), rather than the total correlation func-
tion h(r), becomes long-ranged, i.e., it decays more slowly
than −1/rd in d-dimensional Euclidean space Rd , where r
is the radial distance.11 The Fourier transform of direct cor-
relation function c̃(k) is defined via the Ornstein-Zernike
equation:12

c̃(k) = h̃(k)

1 + ρh̃(k)
= S(k) − 1

ρS(k)
. (2)

It is immediately clear from this definition that the real-space
volume integral of the direct correlation function c(r) diverges
to minus infinity for any hyperuniform system, since the de-
nominator of (2) tends to zero, i.e.,

lim
k→0

c̃(k) =
∫
Rd

c(r)dr → −∞ (3)

MRJ packings of identical spheres possess a special type
of hyperuniformity such that S(k) tends to zero linearly in k as
k → 0, implying quasi-long-ranged negative pair correlations
(anticorrelations) in which h(r) in three dimensions decays as
a power law −1/r4 or, equivalently, a direct correlation func-
tion that decays as c(r) ∼ −1/r2 for large r, as dictated by Eq.
(2).13 These anticorrelations reflect an unusual spatial pattern-
ing of regions of lower and higher local particle densities rel-
ative to the system density. This quasi-long-range behavior of
h(r) is distinctly different from typical liquids in equilibrium,
which tend to exhibit more rapidly decaying pair correlations,
including exponential decays.

Reference 7 examined overcompressed hard-sphere con-
figurations that follow Newtonian dynamics for a wide range
of densities up to the MRJ state. A central result of that study
was to establish that a precursor to the glassy jammed state
was evident long before the MRJ density was reached as mea-
sured by an associated growing length scale, extracted from
the volume integral of the direct correlation function c(r),
which of course diverges at the “critical” hyperuniform MRJ
state. It was also shown that the nonequilibrium signature of
the aforementioned quasi-long-range anticorrelations, which
was quantified via a nonequilibrium index X, emerges well
before the jammed state was reached.

These results for nonequilibrium amorphous hard-sphere
packings suggest that the direct correlation function of su-
percooled atomic models in which the atoms possess both
repulsive and attractive interactions should provide a robust
nonequilibrium static growing length scale as the temper-
ature is decreased to the glass transition and below. Here
we show that this is indeed the case by extracting length
scales associated with standard and generalized direct corre-
lation functions. In particular, we study the single-component
Z2 Dzugutov potential in three dimensions and the binary-
mixture Kob-Andersen potential in two dimensions. The Z2
Dzugutov potential for a single-component many-particle sys-

tem in three dimensions has the following form:14

v(r) =
{

a eηr

r3 cos(2kf r) + b
(σ
r

)n + V0, r < rc,

0, r ≥ rc.
(4)

The first term in (4) models Friedel oscillations for a metal
with Fermi wave vectors of magnitude kF, while the second
term adds a strong repulsion for sufficiently small interparti-
cle separations. The parameters a and b control the relative
strengths of both contributions and define the energy scale.
The cutoff rc is selected to be at the third minimum of the po-
tential, while the constant V0 is present to make the potential
continuous at the cutoff. The parameters η, σ , and n control
the shapes of both functions in (4). The Kob-Andersen model
for a two-dimensional binary mixture is given by a truncated
Lennard-Jones potential:15

vαβ(r) =
⎧⎨⎩ 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]

+ V0αβ, r < 2.5σαβ,

0, r ≥ 2.5σαβ.

(5)
The parameter εαβ controls the strength of the attraction be-
tween two particles of species α and β, while σαβ is equal to
2−1/6 times the distance between both particles at which the
pair potential has a minimum.

It is known that overcompressing a hard-sphere system is
analogous to supercooling a thermal liquid, but to what extent
does this analogy hold? Roughly speaking, a rapid densifica-
tion of a monodisperse hard-sphere system leads to the ter-
minal MRJ state (with packing fraction of about 0.64), which
we have noted is a prototypical glass.9 At this singular state,
the system is never able to relax and hence the associated re-
laxation time is infinite.16 Slower densification rates lead to
other jammed states with packing fractions higher than 0.64.9

Moreover, it has been shown that below 0.64, metastable
hard-sphere systems have bounded characteristic relaxation
times,16, 17 including the range of packing fractions of about
0.58–0.60 (depending on the densification rate) that has been
interpreted to be the onset of a kinetic glass transition.17

Above a particular hard-sphere glass-transition density, the
system is able to support a shear stress on time scales small
compared to a characteristic relaxation time. Clearly, increas-
ing the density of a hard-sphere system plays the same role
as decreasing temperature of a thermal liquid. In a thermal
system, a glass at absolute zero temperature has an infinite
relaxation time classically, and hence this state is the ana-
log of the hard-sphere MRJ state. The glass transition tem-
perature Tg, which depends on the quenching rate and pos-
sesses a bounded characteristic relaxation time, is analogous
to the aforementioned kinetic transition in hard spheres. These
strong analogies between glassy hard-sphere states and glassy
atomic systems lead one to believe that the results of Ref. 7 for
the former extend to the latter. Indeed, here we demonstrate
that the aforementioned length scales grow as the temperature
is decreased to the glass transition Tg and below. Moreover,
we show that the nonequilibrium index X, previously shown7

to increase as a hard-sphere system is densified to the MRJ
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state, also grows for T < 2.2Tg. This nonequilibrium index is
also shown to be correlated with an early relaxation time τ .

In Sec. II, we introduce two generalizations of the direct
correlation function c(r) which apply for two-component sys-
tems. In Sec. III we describe the numerical techniques and pa-
rameters used in our simulations, while in Sec. IV we present
the results we extract from these simulations. The latter
includes the demonstration of the existence of growing
nonequilibrium static length scales upon supercooling the two
atomic-liquid models that we consider. Moreover, we show
that the nonequilibrium index X is positively correlated with
an early relaxation time, both of which increase as the tem-
perature is decreased to the glass transition temperature and
below. We conclude in Sec. V with a summary of our results
and of their impact.

II. STRUCTURAL SIGNATURES OF
LARGE-WAVELENGTH DENSITY FLUCTUATIONS
IN BINARY MIXTURES

It has been shown that for maximally random jammed
binary sphere packings, the standard structure factor S(k), de-
termined from the particle centroids, cannot be used to ascer-
tain whether the system is hyperuniform, unlike the single-
component MRJ sphere packing.18, 19 Instead it was shown
that the spectral density χ̃ (k), defined below, can be em-
ployed to determine whether a binary MRJ packing is hy-
peruniform, since it vanishes as k → 0. We will show be-
low that one must modify the spectral density for particles
interacting with soft (non-hard-core) pair potentials because
particle-shape information is required in order to ascertain
whether the system is hyperuniform or nearly hyperuniform.
For particles interacting with a hard-core repulsion, the par-
ticle shapes are obviously the hard cores, but for non-hard-
core interactions, such as in the Kob-Andersen model studied
in this paper, one must determine a self-consistent procedure
to assign particle shapes to each point particle. In addition,
for such soft binary mixtures, the standard direct correlation
function c(r), applicable to monodisperse systems, must be
generalized.

In this section, we present two generalizations of c(r) for
polydisperse systems: one that is based on the spectral density
(Sec. II A), and another that is based on the matrix version of
the structure factor (Sec. II B).

As indicated in the beginning of the section, we must
obtain a modified version of the direct correlation function
c(r), defined by Eq. (2) for a single-component system, for
binary mixtures in which the particles interact with non-hard-
core pair potentials in order to detect hyperuniformity or near-
hyperuniformity. This function must be defined to be as gen-
eral as possible. In particular, it must be equivalent to the usual
direct correlation function in the case of a single-component
system. We shall therefore start by determining what this
modified function would be in the single-component case in
order to provide insight for the more general case of multiple-
component systems. This will be done by decorating the un-
derlying point configuration with nonoverlapping spheres. We
first describe the single-component case and then the mixture
case.

A. Single-component case

Consider a configuration of N points within a large vol-
ume V in which the minimum pair separation is the distance
R. Now let us decorate this configuration by circumscribing
spheres of radius R around each of the points, leading to a
configuration of N nonoverlapping spheres of radius R. In this
case, the particle phase indicator I(x) in terms of the positions
of the sphere centers r1, r2, . . . , rN is20, 21

I(x) =
N∑

i=1

m(|x − ri |; R), (6)

where m(r; R) is the single-inclusion indicator function given
by

m(r; R) ≡ 
(R − r) =
{

1, r ≤ R,

0, r > R.
(7)

The two-point correlation function S2(r) = 〈I(x)I(x + r)〉 for
such a statistically homogeneous and isotropic distribution of
nonoverlapping spheres, equal to the probability of finding
two points, separated by the distance r ≡ |r|, anywhere in the
region occupied by the spheres, has been shown to be given
by the following sum of two terms:20, 21

S2(r) = ρm(r) ⊗ m(r) + ρ2m(r) ⊗ g2(r) ⊗ m(r) , (8)

where ρ = limV →∞ N/V is the number density, angular
brackets denote an ensemble average, and ⊗ denotes a con-
volution integral. The quantity ρm⊗m is the self-correlation
term, which is equal to the probability of finding two points
inside the same sphere, and ρ2m⊗g2⊗m is the two-body cor-
relation, the probability of finding two points in two different
spheres. The autocovariance function χ (r) is

χ (r) ≡ S2(r) − ρ2v2
1 = ρm(r) ⊗ m(r)

+ ρ2m(r) ⊗ g2(r) ⊗ m(r) − ρ2v2
1,

= ρm(r) ⊗ m(r) + ρ2m(r) ⊗ h(r) ⊗ m(r), (9)

where

v1(R) =
∫

m(r; R)dr = π
d
2 Rd

�(1 + d
2 )

(10)

is the volume of a d-dimensional sphere of radius R [v1(R)
= 4πR3/3 for d = 3 and v1(R) = πR2 for d = 2]. Taking the
Fourier transform of Eq. (9) yields

χ̃ (k) = ρm̃2(k) + ρ2m̃2(k)̃h(k) = ρm̃2(k)S(k), (11)

where S(k) is the structure factor defined in (1). One can see
from this equation that if the decorated “two-phase” nonover-
lapping sphere system is hyperuniform, both S(k) and χ̃ (k) go
to zero as k → 0 (phase in this context does not refer to a
thermodynamical phase, but to either the particle or the void
phase).

In order to manage the extension of the standard direct
correlation function that corresponds to the autocovariance
function χ (k), we present the following analysis. The self-
correlation term in relation (9) must be subtracted because in
its present form χ (r) is not analogous to h(r). Thus, we intro-
duce a modified autocovariance H(r) = S2(r) − ρm(r)⊗m(r),
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given explicitly by

H (r) = ρ2m(r) ⊗ h(r) ⊗ m(r). (12)

Taking the Fourier transform of Eq. (12) leads to

H̃ (k) = ρ2m̃2(k)̃h(k) = χ̃(k) − ρm̃2(k). (13)

We can now define a new direct correlation function C(r) us-
ing H(r):

H (r) = C(r) + Q(r) ⊗ C(r) ⊗ H (r), (14)

where Q(r) is a function which is to be chosen such that
limk→0 C̃(k) diverges for any hyperuniform system, for which
χ̃ (k) → 0 as k → 0:

H̃ (k) = C̃(k) + Q̃(k)C̃(k)H̃ (k), (15)

C̃(k) = χ̃(k) − ρm̃2(k)

1 + Q̃(k)(χ̃(k) − ρm̃2(k))
. (16)

For limk→0 C̃(k) to diverge for hyperuniform systems, we re-
quire that the denominator of the right side of Eq. (16) to be
zero whenever χ̃ (k) = 0, leading to the requirement

Q̃(k) = 1

ρm̃2(k)
. (17)

Inserting Eq. (17) into Eq. (15) gives the one-component dec-
orated Ornstein-Zernike (OZ) equation:

H̃ (k) = C̃(k) + C̃(k)H̃ (k)

ρm̃2(k)
, (18)

C̃(k) = ρm̃2(k) − ρ2m̃4(k)

χ̃ (k)
. (19)

Relation (19) holds for a decorated single-component
system. The generalization of Eq. (19) for a multiple-
component system can be obtained by noting that Q̃−1(k) is
equal to the self-correlation term. For example, for a two-
component system of nonoverlapping spheres, the relations
analogous to (17)–(19) are given by

Q̃(k) = 1

ρAm̃2
A(k) + ρBm̃2

B(k)
, (20)

H̃ (k) = χ̃ (k) − ρAm̃2
A(k) − ρBm̃2

B(k)

= C̃(k) + C̃(k)H̃ (k)

ρAm̃2
A(k) + ρBm̃2

B(k)
, (21)

C̃(k) = ρAm̃2
A(k) + ρBm̃2

B(k) −
(
ρAm̃2

A(k) + ρBm̃2
B(k)

)2

χ̃ (k)
,

(22)

where ρA and ρB are the number densities of species A and
B, respectively, and mA(r) and mB(r) are the corresponding
sphere indicator functions.

B. Mixture case

Consider an M-component system, in which Nα repre-
sents the number of particles of species α, where α = A, B,
. . . . Following Ref. 22, we write the following OZ equation
for the mixture total correlation function hαβ(r) and the direct
correlation function cαβ(r):

hαβ(r) = cαβ(r) +
M∑

γ=1

ργ cαγ ⊗ hγβ(r), (23)

where α, β, and γ represent the different components of
the system. Note that cαβ (r) is different from the “deco-
rated” “two-phase” direct correlation function C(r) defined in
Sec. II A. Equation (23) can be rewritten in matrix form:

√
ραρβhαβ(r) = √

ραρβcαβ(r)

+
∑

γ

√
ραργ cαγ (r) ⊗ √

ργ ρβhγβ(r),

H(r) = C(r) + C(r) ⊗ H(r), (24)

where the components of the matrices H(r) and C(r) are given
by

Hαβ(r) = √
ραρβhαβ(r), (25)

Cαβ(r) = √
ραρβcαβ(r). (26)

Taking the Fourier transform of Eq. (24) gives

H̃(k) = C̃(k) + C̃(k)H̃(k), (27)

C̃(k) = H̃(k)(I + H̃(k))−1, (28)

where I is the identity matrix.
Equation (28) can be simplified by introducing the M

× M multiple-component structure factor matrix S(k), whose
components are denoted as Sαβ(k):

S(k) =

⎛⎜⎜⎝
SAA(k) SAB(k) · · ·
S∗

AB(k) SBB(k) · · ·
...

...
. . .

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 + ρAh̃AA(k)

√
ρAρBh̃AB(k) · · ·

√
ρAρBh̃∗

AB(k) 1 + ρBh̃BB(k) · · ·
...

...
. . .

⎞⎟⎟⎠ ,

= I + H̃(k), (29)

where S∗
αβ(k) denotes the complex conjugate of Sαβ(k). Sub-

stitution of Eq. (29) into Eq. (28) yields the following simpler
expression for C̃(k):

C̃(k) = I − S(k)−1. (30)

This last equation should be used carefully, since the S(k) ma-
trix is rank-1 for a single realization of a system, and hence it
cannot be inverted without first taking an ensemble average.23

Equation (22), valid for the “two-phase” decoration, and
Eq. (28) may not look similar, but their similarities can be
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made apparent by rewriting χ̃ (k) and Sαβ(k) in terms of the
collective coordinates ρ̃α(k):

ρ̃α(k) =
Nα∑
j=1

eik·rα
j , (31)

where k is the wave vector and Nα is the number of particles of
species α. For a single configuration of a multiple-component
system in a volume V , we get the structure factor matrix com-
ponents to be given by

Sαβ(k) = ρ̃α(k)ρ̃∗
β(k)√

NαNβ

− V δk,0. (32)

Since we never compute Sαβ (k = 0) directly, instead relying
on the k → 0 limit, we can drop the Kronecker delta func-
tion in the following steps. For a two-component system, the
spectral density for the decorated system is

χ (r) = ρAmA(r) ⊗ mA(r) + ρBmB(r) ⊗ mB(r)

+ ρ2
AmA(r) ⊗ hAA(r) ⊗ mA(r)

+ ρAρBmA(r) ⊗ hAB(r) ⊗ mB(r)

+ ρAρBmB(r) ⊗ hBA(r) ⊗ mA(r)

+ ρ2
BmB(r) ⊗ hBB(r) ⊗ mB(r), (33)

for which the Fourier transform is given by

χ̃ (k) = ρAm̃2
A(k) + ρBm̃2

B(k) + ρ2
Am̃2

A(k)̃hAA(k)

+ ρAρBm̃A(k)m̃B(k)̃hAB(k)

+ ρAρBm̃A(k)m̃B(k)̃hBA(k) + ρ2
Bm̃2

B(k)̃hBB(k)

= |ρ̃A(k)m̃A(k) + ρ̃B(k)m̃B(k)|2
V

. (34)

Using Eq. (34) to rewrite Eq. (22) leads to

C̃(k) = ρAm̃2
A(k) + ρBm̃2

B(k)

×
(

1 − NAm̃2
A(k) + NBm̃2

B(k)

|ρ̃A(k)m̃A(k) + ρ̃B(k)m̃B(k)|2
)

. (35)

Now, assume that the decoration of the two-
component system is chosen such that ψ(k) = (

√
ρAm̃A(k),√

ρBm̃B(k)) is an eigenvector of S(k). Calculating the
associated eigenvalue of C̃(k) (which shares eigenvectors
with S(k)) leads to

ψ∗(k)C̃(k)ψ(k)

ρAm̃2
A(k) + ρBm̃2

B(k)

= 1 − NAm̃2
A(k) + NBm̃2

B(k)〈|ρ̃A(k)m̃A(k) + ρ̃B(k)m̃B(k)|2〉 , (36)

The similarities between Eqs. (35) and (36) are striking, and
lend credibility to their use. However, it should not be for-
gotten that Eq. (36) is only valid for a very precise choice of
m̃A(k) and m̃B(k), which may or may not be realizable for ar-
bitrary systems. It is therefore more appropriate to use a dec-
oration that uses a priori information about the system (e.g.,
an effective radius of the particles) together with Eq. (35).
In a situation where such information is missing, calculating

the actual eigenvalues of S(k) and C̃(k) is a good alternative
choice, although it requires multiple realizations of the system
in order to get the ensemble-average values.

III. SIMULATION DETAILS

We carry out molecular dynamics simulations in the
NV T ensemble to study the behavior of two different atomic
glass-forming liquid models: a three-dimensional single-
component system in which the particles interact with the Z2
Dzugutov potential and a two-dimensional two-component
system in which the particles interact with the Kob-Andersen
potential. In particular, starting from liquid states, we quench
these two model systems and follow their transitions from flu-
ids, to supercooled fluids and glassy states as a function of
temperature.

The interacting systems consist of N = 100 000 particles
in a two-dimensional (Kob-Andersen) or three-dimensional
(Z2 Dzugutov) periodic box, subject to a Nosé-Hoover
thermostat24 with a mass set to N/1000 = 100. This partic-
ular choice of mass is selected to avoid the numerical insta-
bilities that occur when a small mass is used, while reducing
the time the thermostat takes to equilibrate which increases
with larger masses. The initial configurations are generated
using the random sequential addition (RSA) algorithm,25 and
with an initial temperature that is much larger than the freez-
ing temperature. There are four relevant units in the molecular
dynamics simulations: units of energy, length, mass, and time,
of which three can be chosen independently. The units of en-
ergy and length are selected by the numerical values of the
potentials’ parameters, while the unit of mass is set by let-
ting all particles have unit masses. These choices defined the
natural units, including the unit of time. The system is then
continuously cooled using an exponential rate

T (t) = T0 × 10−t/τ10 , (37)

where T(t) is the temperature when the simulation has been
running for a time t, T0 is the initial temperature, and the time
per decade τ 10 controls the cooling rate. The molecular dy-
namics integration is done using the velocity Verlet scheme.

For the Z2 Dzugutov potential, shown in Eq. (4), we
use the following parameter values: a = 1.04, η = 0.33, kF

= 4.139, b = 4.2 × 107, σ = 0.348, n = 14.5, rc = 2.64488,
and V0 = 0.13391543. The values of rc and V0 are chosen
such that both v(rc) = 0 and dv

dr

∣∣
r=rc

= 0. This choice of pa-
rameters defines the natural units of both energy and length.
Following Ref. 14, the particle density is fixed at ρ = 0.84.
The time per decade τ 10 is set to 500, 200, and 50 natural time
units. Slower cooling schedules are attempted (such as τ 10

= 2000), but they lead to some of the samples crystallizing.
The time step is �t = 5 × 10−3 in the natural time units and
is chosen such that the total energy of the system is conserved
when the thermostat is removed.

For the Kob-Andersen potential, shown in Eq. (5), we
use a composition of particles with number ratio A:B = 65:35
and the following parameters: σ AA = 1.0, εAA = 1.0, σ AB

= σ BA = 0.8, εAB = εBA = 1.5, σ BB = 0.88, and εBB

= 0.5. The values for the V0αβ are chosen such that the poten-
tials are continuous at r = 2.5σαβ cutoffs. These choices of
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FIG. 1. Strictly anharmonic portion of the total average energy (kinetic and
potential) per particle u − 3kBT of the system in term of the thermostat tem-
perature T. This is obtained by averaging over 10 cooling simulations of su-
percooled Z2 Dzugutov systems using τ 10 = 400. 3kBT has been subtracted
from the energy to help identify the glass transition. The glass transition tem-
perature kBTg ∼ 0.88 is estimated by finding the temperature at which the
function slope changes most rapidly. The vertical dashed line is located at T
= Tg. The energy scale is normalized through our choice of potential param-
eters (see Sec. III).

parameters define the natural units of energy (εAA) and length
(σ AA). Following Ref. 2, we set ρ = 1.161662. The time per
decade of temperature decay τ 10 is set to 2000, 400, 100, and
20. The time step is �t = 1 × 10−3.

IV. RESULTS

A. Z2 Dzugutov single-component glass

To estimate the glass transition temperature Tg of the Z2
Dzugutov model, we use the temperature at which the total
energy per particle as a function of temperature changes slope
most rapidly.26 Since the harmonic contribution 3kBT to the
average total energy per particle u has a constant slope, we
subtract it from u to detect any change of slope. As seen in
Fig. 1, we obtain kBTg ∼ 0.88 for the Z2 Dzugutov model.
Comparatively, by observing the highest temperature at which
the supercooled systems crystallized and the temperature at
which such crystals melt, we roughly estimate the melting
temperature to be Tm/Tg ∼ 2.5 ± 0.5. We used a method based
on a static quantity, namely, the energy, to determine Tg. This
is distinctly different from commonly used approaches rely-
ing on dynamical properties, such as the diffusion constant,

a disadvantage of which is that the system is relaxing during
the measurement of those properties.

To calculate the volume integral of the direct correlation
function c(r), we need to find the limit of S(k) for k → 0, and
then substitute it in Eq. (2). Since S(k = 0) cannot be calcu-
lated directly in a finite simulation box of side length L be-
cause the smallest possible wavenumber accessible is 2π /L,
an extrapolation from the available data to zero wavenumber
must be used. Figure 2(a) shows the small-wavelength behav-
ior of S(k) for Z2 Dzugutov model at different temperatures.
It is clear that S(k) is nearly linear in k for k � 1, leading to
a very good fit to a linear function. This linear behavior of
S(k) for small k > 0 implies that the real-space total corre-
lation function h(r) decays, for large but finite r, as a power
law −1/r4 or, equivalently, the direct correlation function de-
cays as c(r) ∼ −1/r2. The numerical value of S(k = 0) only
changes by up to 5% between the cubic fit for k < 2 shown in
Fig. 2(a) and a linear fit for k < 1. Since the linear fit is less
susceptible to overfitting and complex behavior for 1 < k < 2,
we elect to use this linear fit to extrapolate the value of S(k
= 0) for these systems. It is noteworthy that the values of
S(k = 0) for the deeply quenched liquids are about 4 times
smaller than those for the starting equilibrium liquid states.
This demonstrates that a glass should not be viewed struc-
turally as a “frozen liquid”.

From the Fourier transform of the direct correlation func-
tion c̃(k), which has units of volume, we define the following
length scale:

ξc ≡ [−c̃(0)]1/d , (38)

where d is the Euclidean dimension. From Fig. 3(a), there is a
striking evidence that c̃(k = 0) grows to a large negative value
in the supercooled regime, leading to a doubling in the value
of the length scale ξ c.

In the case of a single-component system at equilibrium,
the compressibility relation links its isothermal compressibil-
ity κT = − 1

V
∂V
∂p

|T to its structure factor as follows:

ρκT kBT = S(0). (39)

However, supercooled liquids and glasses are not equilibrium
states and consequently Eq. (39) tends not to be satisfied. Fol-
lowing Ref. 7, we use the deviation from Eq. (39) to measure
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FIG. 2. Structure factors S(k) for Z2 Dzugutov systems supercooled using τ 10 = 500 for various temperatures. The curves have been averaged over 10
realizations. (a) Cubic fits of the small-wavenumber (k < 2) structure factors. The type of fits and their cutoff are chosen such that they accurately reproduce the
features of the structure factors, in particular the positive linear dependence near k = 0. (b) Larger wavenumber structure factors.
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FIG. 3. Growing length scales for Z2 Dzugutov systems generated using various cooling schedules. For each cooling schedule, the results have been averaged
over 10 realizations and fitted to the sum of an exponential and a linear function to smooth out the numerical noise. (a) Limit of c̃(k) for k → 0, calculated
using linear fits of S(k). (b) The static length scale ξ c, defined by relation (38), associated with these systems. Note that the nearest neighbor distance between
particles at T = 0 is 1.0539.

a nonequilibrium index X:

X ≡ S(0)

ρκT kBT
− 1. (40)

The isothermal compressibility κT is computed by the follow-
ing finite difference formula:

κT � −�V

V

1

�P
, (41)

where �V is the change in volume of the simulation box and
�P is the resulting change in pressure of the system after it
is allowed to relax at constant temperature. The pressure is
calculated using the virial relation. It bears mentioning that
since the system is not at equilibrium, it is not in a steady state
even before the change in volume. To minimize the impact of
the uncompressed system relaxation, both the uncompressed
and compressed systems are allowed to relax for the same
amount of time before measuring their pressures.

In the case of the Z2 Dzugutov system, we use a change
of volume �V/V = 0.3% and the pressure is sampled from
t = 5 to t = 10, where t = 0 denotes the time at which the
system is compressed. This sampling time is required to re-
duce the noise in the measured values of S(k) and κT for a
finite system. Since it is still much shorter than the system re-
laxation time, X can still be viewed as an instantaneous non-
equilibrium property of the system. As can be seen in Fig. 4,
X is zero27 for T/Tg > 2, with only slight deviations due to
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FIG. 4. Nonequilibrium index X for Z2 Dzugutov systems supercooled using
various cooling schedules defined in Eq. (40).

noise and numerical inaccuracies. However, as the tempera-
ture is lowered to values approaching the glass transition, X
increases up to a value of ∼0.2 at T/Tg = 1. For T < Tg, the
inability of the system to relax in a time of the order of the
cooling schedule time per decade τ 10 results in nearly con-
stant values of κT and S(0) which leads to the asymptotic be-
havior of X as T → 0.

Is the growing nonequilibrium index X correlated with
the growing relaxation times as the temperature decreases
during the supercooling process? Figure 5 shows a positive
correlation between X and τ , where τ is the timescale associ-
ated with the early relaxation process, extracted from an ex-
ponential fit function ∼e−t/τ of the system total energy. To ob-
serve this process, we start with configurations that have been
supercooled to a given temperature following a specific cool-
ing schedule. These configurations are then allowed to evolve
at constant temperature. It can be clearly seen that X and τ are
strongly and positively correlated.
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FIG. 5. Timescale τ of the early relaxation process of the system versus the
nonequilibrium index X. Both quantities have been averaged over 10 config-
urations. The circles are centered on the averages of X and τ , while the hor-
izontal and vertical lines represent their respective uncertainties, with their
half-length set equal to the average standard deviations. The initial config-
urations which are allowed to relax at constant temperature are generated
from the liquid phase through a cooling schedule employing τ 10 = 50. Each
datum represents a single temperature. Observe that τ and X are positively
correlated. Therefore, since X is a monotonically decreasing function of the
temperature T (see Fig. 4), τ also increases with decreasing T. The values of
T/Tg associated with each datum are, in order of smallest to largest τ are as
follows: 1.80, 1.61, 1.43, 1.28, 1.14, 1.01, and 0.90.
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B. Kob-Andersen A65B35 two-component glass

To calculate the spectral density χ̃(k), we decorate the
systems by circumscribing disks of radius RA and RB cen-
tered around the point particles of species A and B, respec-
tively. Since our derivation in Sec. II requires the disks to be
nonoverlapping, we chose the largest possible radii that sat-
isfy this condition. In the case of a Kob-Andersen glass, A
particles are often located next to one another, while B par-
ticles can be further apart. This leads to our decision to use
the distances between the closest A–A and A–B pairs of par-
ticles to define the particle radii for any particular configu-
ration. Thus, there will be variability in the radii used from
configuration to configuration, but these radii fluctuations are
extremely small. Figure 6 shows part of a glass configuration
decorated using this procedure.

In an identical fashion to the Z2 Dzugutov system, we
use the change in slope of the total energy in terms of the
temperature to estimate the glass transition temperature Tg for
the Kob-Andersen system. Since the Kob-Andersen system
that we analyze is two-dimensional, its harmonic contribution
to the energy is 2kBT, which we subtract from the total average
energy per particle u to detect any change of slope. The result
obtained from Fig. 7 is Tg ∼ 0.31, which is reasonably close
to the previously reported value of Tg = 0.33.28

As in the case of Z2 Dzugutov systems, the spectral den-
sities χ̃ (k) for Kob-Andersen liquids, supercooled liquids, and
glasses have nearly linear behavior for k � 1 (Fig. 8). It is
thus possible to prescribe a linear fit to extrapolate the values
of χ̃ (k = 0), which is required to calculate C̃(k = 0) using
Eq. (22). We again define a length scale based on the C̃(k
= 0):

ξC ≡ [−C̃(0)
]1/d

, (42)

where d is the Euclidean dimension. Figure 9(a) shows the
large change in value of C̃(k = 0) as the Kob-Andersen liq-

FIG. 6. Example of a decorated Kob-Andersen glass configuration (a small
subregion of the configuration only). The larger disks represent the A parti-
cles, while the smaller disks represent B particles. The radii of the disks are
chosen such that the two closest A particles of the whole configuration are in
contact and the closest A–B pair of particles are in contact. The configuration
shown has been generated using τ 10 = 100, and is at a temperature of T/Tg

= 6.7 × 10−5. The particle radii are RA = 0.513720 and RB = 0.329883
(RA/RB = 1.55728).
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FIG. 7. Strictly anharmonic portion of the total average energy (kinetic and
potential) per particle u − 2kBT of the system in terms of the thermostat
temperature T. This is obtained by averaging 10 cooling simulations of su-
percooled Kob-Andersen systems using τ 10 = 400. 2kBT has been subtracted
from the energy to help identify the glass transition. The glass transition tem-
perature Tg ∼ 0.31 is estimated by finding the temperature at which the func-
tion slope changes the most rapidly. The vertical dashed line is located at
T = Tg. The energy scale is normalized through our choice of potential pa-
rameters (see Sec. III).

uids are supercooled, leading to the length scale ξC to increase
by a factor larger than 5 between the fluid states and the zero-
temperature glassy states.

As mentioned in Sec. II B, there is a second generaliza-
tion of the direct correlation function which does not require
any a priori knowledge or about the particle shapes. Instead,
one can use the matrix direct correlation function C(r) and
its Fourier transform C̃(k). As can be observed in Fig. 10,
the qualitative behavior of the smallest eigenvalue of C̃(k) in
the k → 0 limit is strikingly close to the behavior of C̃(k)
in the same limit. This indicates that our decoration choice
is appropriate for detecting long-range density fluctuations in
Kob-Andersen glasses and supercooled liquids.

Since the compressibility relation (39) applies only to
single-component systems, we must generalize the nonequi-
librium index X for mixtures. The compressibility relation for
multicomponent systems at equilibrium, is given by29

κT kBT = |B|∑M
α=1

∑M
β=1 |B|αβ

, (43)
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FIG. 8. Spectral density χ̃(k) versus wavenumber k for Kob-Andersen
A65B35 systems supercooled using τ 10 = 400. The curves have been averaged
over 10 realizations and fitted using fourth degree polynomials. The types of
fits have been chosen for their ability to reproduce accurately the features of
the structure factors for the range presented (0 < k < 3). The disk radii for
the decorations are calculated independently for each configuration.
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FIG. 9. Growing length scales for two-dimensional Kob-Andersen systems. For each cooling schedule, the results have been averaged over 10 realizations and
fitted to the sum of an exponential and a quadratic functions to smooth out the numerical noise. (a) Limit of C̃(k) for k → 0, calculated using the linear fits of
χ̃ (k). (b) The static length scale ξC, defined by relation (42), associated with these systems.

where the components Bαβ of the matrix B are

Bαβ =
√

NαNβ

V
lim
k→0

Sαβ(k), (44)

|B| is the determinant of B, and |B|αβ is the αβ minor of B.
The nonequilibrium index X for multicomponent systems can
now be defined by using the mismatch between the left and
right sides of Eq. (43), that is,

X ≡ |B|
κT kBT

∑M
α=1

∑M
β=1 |B|αβ

− 1. (45)

As for single-component systems, the isothermal compress-
ibility for this multicomponent system is obtained by com-
puting the virial pressure response to an incremental change
in volume using Eq. (41).

For the Kob-Andersen system, we use a change of vol-
ume �V/V = 0.2% and the pressure is sampled from t = 20
to t = 40, where t = 0 denotes the time at which the quench-
ing is halted and the system is compressed. As can be seen in
Fig. 11, X is zero27 for T > 2Tg. Similarly to the phenomenon
observed in the case of the Z2 Dzugutov system (see Fig. 4),
X increases up to a value of a value of ∼0.15 at T = Tg. The
asymptotic behavior of X for T < Tg is again the consequence
of the system’s inability to relax in a time comparable to the
cooling schedule time per decade τ 10.
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FIG. 10. Smallest eigenvalue of limk→0 C(k), calculated using a linear fit of
the matrix structure factor S(k). While the qualitative behavior of this eigen-
value can be compared to C̃(k = 0) (see Fig. 9(a)), their quantitative values
cannot directly be compared because they have different units: C̃(k) has units
of volume, while C̃(k) is dimensionless.

V. CONCLUSIONS AND DISCUSSION

We have demonstrated here that the static structural
length scales ξ c and ξC are able to distinguish subtle struc-
tural differences between glassy and liquid states, which ex-
tends the analogous results for metastable hard spheres7 to
atomic thermal systems. Since these length scales are based
on the volume integral of the direct correlation function c(r)
and its generalization C(r), respectively, their growth as a liq-
uid is cooled past its glass transition is a sign of the pres-
ence of long-range correlations in the glassy state that are
not present in liquids. Additionally, the continuing increase
of ξ c and ξC past the glass transition indicates that, while par-
ticles primarily undergo sequences of local rearrangements,
the glass may still exhibit order on a significantly larger
length scale as the system continues to cool. Our results using
two-dimensional Kob-Andersen binary mixtures and three-
dimensional Z2 Dzugutov single-component systems, as well
as the previous results for MRJ packings as evidence, we pos-
tulate that these length scales are relevant in various glasses.
This includes not only atomic systems possessing pair poten-
tials with steep repulsions and short-range attractions, but net-
work glasses as well. For example, in a recent computational
study,30 which is supported by recent experimental results,31

it was shown that realistic models of amorphous silicon can
be constructed to be nearly hyperuniform, which implies that
such glassy tetrahedrally coordinated networks are character-
ized by a large static length scale ξ c. We also have shown
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FIG. 11. Nonequilibrium index X for Kob-Andersen systems supercooled
using various cooling schedules defined in Eq. (45).
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that the nonequilibrium index X is positively correlated with
a characteristic relaxation time scale, since they both increase
as a system is supercooled. Our results also show that a glass
cannot be viewed structurally as a “frozen liquid.”

An interesting issue concerns the explication of the un-
derlying geometrical reasons for the negative algebraic tail
in the pair correlation function,13 which also has been ob-
served in hard-sphere systems.7 The local geometric diver-
sity of particle arrangements in an amorphous solid medium
inevitably creates short-range density fluctuations. In partic-
ular, this is true for the nearly hyperuniform cases examined
in this study. Without being too specific, one can formally di-
vide a “jammed” particle configuration into two equal subsets
containing particles experiencing either lower or higher local
densities than the overall system average. The fact that the
pair correlation functions display negative algebraic tails with
increasing separation r has basic implications for the relative
spatial distributions of these low and high local density par-
ticles. In particular, it indicates that large numbers of either
particle type cannot fit together to form arbitrarily large clus-
ters that dominantly exclude the other particle types. Instead,
their spatial patterns evidently involve interpenetrating perco-
lating networks in three dimensions and highly non-convex
clusters in two dimensions. The detailed statistical geometric
description of these patterns and why they generate algebraic
pair correlation function tails constitutes an important area for
future investigation.

The quantity X introduced earlier in Eq. (40) as a mea-
sure of deviation from thermal equilibrium can be usefully
interpreted in terms of system occupancy on the many-body
potential energy landscape.32 Specifically, this focuses on the
comparative behaviors of isothermal compressibility at high-
temperature thermal equilibrium in the liquid phase as op-
posed to the measured isothermal compressibility in the non-
equilibrium glass phase in the T → 0 limit. In the former
case, an incremental pressure change and accompanying vol-
ume change will include shifts in occupancy probabilities for
the separate basins that tile the landscape; these shifts involve
interbasin local particle rearrangements that act to enhance
the volume change induced by the pressure perturbation. In
contrast, at very low temperatures, the system is trapped in
its initial basin; intrabasin vibrational motions have insuffi-
cient amplitude to allow the system to take advantage of the
previous kinds of local particle rearrangements. The resulting
absence of enhanced volume change due to those interbasin
transitions reduces the isothermal compressibility, causing X
to increase above zero.
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