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We study third-order upper and iower bounds on the shear modulus of a model composite
made up of equisized, impenetrable spherical inclusions randomly distributed throughout a
matrix phase. We determine greatly simplified expressions for the two key multidimensional
cluster integrals (involving the three-point distribution function for one of the phases) arising
in these bounds. These expressions are obtained by expanding the orientation-dependent terms
in the integrand in spherical harmonics and employing the orthogonality property of this basis

set. The resulting simplified integrals are in a form that makes them much easier to compute.
The approach described here is quite general in the sense that it has application in cases where
the spheres are permeable to one another (models of consolidated media such as sandstones
and sintered materials) and to the determination of other bulk properties, such as the bulk
modulus, thermal/electrical conductivity, and fluid permeability.

I. INTRODUCTION

The problem we are generally concerned with is the
theoretical prediction of the effective properties (transport,
elastic, electromagnetic, etc.) of disordered composite me-
dia. This problem is of considerable fundamental and practi-
cal interest'~’ and is exactly soluble, given the phase proper-
ties and the infinite set of n-point correlation functions®'°
that statistically characterize the composite medium. The
complete set of statistical functions is almost never known in
practice, however. Under such circumstances one can either
opt for some sort of approximate self-consistent scheme''~"?
or methods that enable us to place bounds on the effective
property. Both of these methods have their own advantages
and disadvantages and have been discussed elsewhere.>°

We shall focus our attention on rigorous bounding tech-
niques, since they provide a means of estimating the bulk
property, given limited microstructural information on the
heterogeneous material. Rigorous bounds are useful because
(1) they enable one to test the merits of a theory; (2) one of
the bounds can typically provide a relatively accurate esti-
mate of the property’; and (3) as successively more micros-
tructural information is included, the bounds become pro-
gressively tighter. The specific problem of interest in the
present study is the determination of bounds (described be-
low) on the effective shear modulus (G, ) of a suspension of
impenetrable equisized spherical inclusions.

Bounds on the effective elastic moduli that depend upon
the n-point probability function S, of the medium have been
derived.'*"” The S, (x") (X" =X,,X,,...,X, ) give the prob-
ability of finding # points at positions x” all in one of the
phases, for example, phase 2. For statistically homogeneous
media S, is simply equal to the volume fraction of phase 2,
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@,. The second-order bounds on the elastic moduli of Hashin
and Shtrikman'* depend on S, and, in a trivial way, on S,.
McCoy'’ obtained sharper third-order bounds (that were
later simplified by Milton'®), which involve information
about S, S,, and S,. Subsequently, Milton and Phan-Thien"’
{(MPT) derived third-order bounds, which improve upon
the McCoy bounds, and new fourth-order bounds. Practical
application of third- and fourth-order bounds on the effec-
tive elastic moduli has been very slow because of the diffi-
culty involved in ascertaining S, and S, either theoretically
or experimentally.

Employing the formalism of Torquato and Stell®'® to
systematically represent and compute the .S,, third-order
bounds on the effective elastic moduli have been recently
computed for suspensions of fully penetrable spheres'® and
for dilute dispersions of spheres distributed with an arbitrary
degree of penetrability.'® More recently, third-order bounds
on the effective bulk modulus of a composite with impen-
etrable spherical inclusions have been calculated.?

In this paper we consider the evaluation of the third-
order McCoy and MPT bounds on the effective shear modu-
lus G, of a random distribution of impenetrable equisized
spheres in a matrix. In Sec. 11 we present the MPT bounds
and some relevant discussions. In Sec. 111 we invoke the dia-
grammatic notation® for the termsinvolved in S, and present
the two key integrals that operate on these terms. The com-
plicated multidimensional cluster integrals are then simpli-
fied as far as possible by using expansions of the orientation-
dependent quantities in spherical harmonics and the
orthogonality of this basis set. The final resuit presented at
the end of Sec. I1I is still nontrivial, but in a form that is now
tractable on a computer. The computation, which is under
progress, will be the subject of a subsequent paper. In passing
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we may reiterate the fact that the method of attack presented
here is quite general in the sense that it can be (and has been)
readily and systematically applied to cases in which spheres
are permeable to one another'® and to the determination of
other bulk properties, such as the conductivity and bulk mo-
dulus of composites,”® and fluid permeability of porous me-
dia.?! Finally, in Sec. IV we present our conclusions.

if. BOUNDS

For any two-phase isotropic composite, McCoy'® has
derived bounds on the effective shear modulus G, , given the
shear moduli G,, G,, and the bulk moduli K, and K, of the
respective phases, the volume fraction of one of the phases
(say ¢, =1~ ¢@,), and several integrals involving deriva-
tives of certain three-point correlation functions. Milton'®
later showed that the third-order McCoy bounds can be
written in terms of ¢, and only two multifold integrals £, and
7, (defined below) involving the three-point probability
function S;. Subsequently, MPT"’ derived improved third-
order bounds on G, that also depend upon ¢, {,, and %,. For
conciseness we present here only the MPT bounds, which
read

(<G> _ 66,6, —Gz>2)

6(G)+ ="
66.6,(G, — G,)?
G G) — = , 1
< “<(( ) 6(G)+ 6 ) (D
where

_ 5(1/G ) (6/K —1/G ), + (1/G ), (2/K +21/G ),
(128/K +99/G ), + 45(1/G ),

14

(2)
_ 3(G), (6K +7G), — 5(G)}
(2K —G), +5(G),

é

, (3)

and where the angular brackets denote the averages of the
following types for any property b:

b) =b1¢| + by,

(b >g =b5, + b4,

(b >n =07, + by,

(b) =bip, + by, . (4)

Here the quantities ¢; and 7, (i = 1,2) are the integrals (de-
fined below) over the three-point probability function S,. To
be specific, S, denotes the probability of finding » points in
the particulate phase (here the impenetrable spheres). Then
we have

La=1=¢,=(9/2,6)15,], (5)

M= I "771=1§|§2+ (}-50/7¢\¢2)J{.33] ’ (6)
and

Sy(rst) = Sy(rs,t) — S5(r)S,(5)/S, , N
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where the integral operators [ and J are defined as

Py (R 10F43)

, (8)
ri2ris

I1f] ==,

=43 J dry drs f(r1,3723)

and
P4(f'12’f'13)

, (9
N2

JLf] =§I?jdr2dr3f("12,"13"’23)

P, being the Legendre polynomial of degree /. It may be
mentioned that we operate the J and J on §; defined in (7)
instead of S; because it ensures the absolute convergence of
these integrals.

It may further be noted that {; (i = 1 or 2) is the only
parameter needed for the third-order bounds on electrical
conductivity or bulk modulus. The calculation of this pa-
rameter, and hence the evaluation of 7] S, ], has already been
considered in great detail in two previous papers.*® The pa-
rameter £, is thus well tabulated for our needs, and hence we
concern ourselves with the evaluation of the integral J[S;]
or the parameter 77, only, The reader interested in the details
of the &, calculation is referred to the above-mentioned pa-
pers.?’

The evaluation of the bounds (1) becomes quite diffi-
cult partly because the three-point function S; was not avail-
able theoretically or experimentally until recently and partly
because of the complexity of the integral J [Eq. (9) 1. Thus,
to our knowledge, this is the first paper to deal with those
bounds for the effective shear modulus for the case of a dis-
persion of equisized impenetrable spheres at arbitrary con-
centration in a matrix phase.

ill. SIMPLIFICATION OF J [§3] FOR DISPERSIONS OF
IMPENETRABLE SPHERES

Torquato and Stell® have shown that the #-point prob-
ability function for the matrix phase of dispersions of impen-
etrable spheres reduces to a finite series expansion in the
density p, ending at the nth-order term. For our purposes we
will use the notation of Ref. 9, except for the fact that S, now
will describe the n-point probability function for the particle
phase, i.e., the quantity denoted by S, in the Introduction.??
As shown by Torquato and Stell,® given the n-point prob-
ability functions (S,,S,,...,S, ) for one of the two phases, one
can get any other z#-point probability function and, in partic-
ufar, the n-point probability function for the other phase.
Thus, taking the expressions for the one-, two-, and three-
point matrix probability functions,” we can write the three-
point probability function in the particulate phase as

S, =8¢, + Sl + 543, (10)

where @, = pV, is the particle volume fraction, V, = 4ma*/3
is the spherical volume of one inclusion, a is the radius of the
sphere, and S'§” stand for the following diagrams:

1

I ’
Si =

Vl d
\

\

oo -2

o] ' (11a)
3
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(2 . _~ _ 1+ 1 L S A !
ST=77100 & 60 6 oo o) (W
"\t2 3 13 2 23 |
S§3’=—1—3- |§,|. (11c¢)
Vi 60696

123

Here the solid circles stand for dummy position vectors (of
some spheres) that are to be integrated over the entire infi-
nite volume,** the labeled open circles represent the position
Vectors ry, I, and r, appearing in .S,, the broken line repre-
sents the bond

m(n = "< (12)

0, r>a,

between the two positions involved, the solid line stands for
the pair distribution function g,=g of the spheres, and the
crosshatched triangle for their triplet distribution function
&3

For the calculation of shear modulus, we have to evalu-
ate the functional (9) [evaluation of the other functional
(8) has already been done®°], which may be rewritten as

@0 o 1
J{f] :f dar, i’_"i.’. d (cos 8,,5)
(4] Fia (4] —1

T3
X Py(c0s 0513) f(ripri3r2a) - (13)

We have to evaluate the above for each of the diagrams in
(11). P, is the Legendre polynomial of degree 4, and
cos Gy = (BT ).

A. Evaluation of J{S{"]

The only diagram of (11a) may be evaluated by fixing
the origin of coordinates at r; and aligning the z axis along
f,,, as follows:

a

LN 2N

5&0b Efdr.,m("m)m(ru)m(rn)
| 23

=J; dr, riy m(r) “dwzm m(ry)m(rs,) ,

(14)

where dw, ,=d(cos 0,,,)dd. Following Barker and Mon-
aghan,** we expand the angle-dependent functions in Le-
gendre polynomials (more generally, in spherical harmon-
ics). Thus, for example, for m(r,,) we write

m(ry) = m[ ('212 + iy — 2rry, COS 9214)”2]
= Z M, (7135714} Py (08 B414) (15)
=o

where the expansion coefficients are given by (see Appendix

A)

U+ 1
277

My riang) = 250 [ diek i os G o)
(16)

m(k) is the Fourier transform of m(r), and j,(x) is the
spherical Bessel function of order /. For the Fourier trans-
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form f(k) of a function f (), we will always use the defini-
tion

T (k) =fdrf(r) exp(ikr) . (17)
Similarly, we write m(rs,) as
m(ry,) = Z M, (ry3,7r14) P (cOs 0344)
1

(ri371) Y 3 (0243) Y (0714)

(18)

using the addition theorem for spherical harmonics® in the
second equality to bring out the specific angular vanables
needed. Employing the orthogonality of the spherical har-
monics, we get

jdwzu m(ry)m(ry,)
21 (Fi271)M (713,74 P (€08 8,13)
(19)
and hence
J /.\ f drrlm(r)(f B M (sr))
g o b
| 23 20)

To calculate the second integral above, we may use (16) and
the fact that

(k) = (4ma*/k)j,(ka) Q1)
to obtain M,. Thus, we find
-@M(sr)zl’i"_f dkk;,(ka)h(kr)f —-14(ks)
{¢]
1242

_ L2 [ dk kj, (ka)ja(kr)

STt Jbo

() -2 e, e

where H(x) is the Heaviside unit function
H(x)y=0, x<0,
=1, x>0, (23)
and the integrals involving the j,’s may be found in Ref. 26.
Now we can see that the contribution of the diagram in

(11a) to J is zero because (20) has conflicting step-function
requirements in its two integrals. Thus, we find that

J{S{P]=0. (24)

B. Evaluation of J{S{"]

To simplify the contribution of the diagrams in (11b),
we utilize the freedom afforded by the homogeneity and iso-
tropy of the system to conveniently choose the origin and
orientation of the coordinate frame. If we first choose the
origin at r,, then we find for the first term of ${* in (11b)
that
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]
]
?i

J[— Y ' =
Vi 60 o riari
12 3 1
= -gj-jdgg(f‘.s)wl(’%s) ,
where

P,(cos 8,,5)

1
W, (r )=————fdr dr,dr
1i7as V% 1 2 3 "132"?3

m("14)m(r24)m(’35) .

87’-le2 fdrl dl‘2 dl'3 P,(cos 9213) fdrsm(r14)m("24)g(’45)m(735)
1

(25)

(26)

Using (18) for the expansion of m(r,,) and m (r35), and then using the completeness relation for the ¥, ’s, we get

Wi(r,s) =——J-drl dr2m(r,4)m(r24) f
2 Im 21+ 1

dri,

i3

M, (ry3,r5) fdwzu Py(cos 0,13) Y I, (0313) Yy (002)5)

=_..fdrlm(r14) (4”f Ef—M‘,(xrlS))fd Z_P_(E’_S_gﬂi m(754)

=——fdrlm(rl4)P (COS 0415)( dx M(

0 X

m

x’ls)) (4# f dyM (.VJ'M))

———fdrlH(a—r,4)P4(cos B15) {‘—’77'[( 2 )3“1(_) ]H("ls*‘a)]
Fis 5 \rys

GG -G e

because of the conflicting demands of the step functions on
714- In deriving (27), we have made use of (22). Thus

(27)

r
such is not the case for the last diagram of (11b). Proceeding

as above, one obtains

H .
d V12 é“o cb =0 2% = o =“l*fdrg(r YWy(res)
: vz 6b 0 gr2 ) CTRITEIeD
23 | (29)
Now interchanging labels 2 and 3 in the procedure
above gives the same integral, and hence the contribution of
the second diagram of (11b) to J [S{*’] is also zero. But  where
J
1 P,(cos 6,,,)
W,(r )=—-—fdr dr, dr, —2" 237 i (p Ym(r,,)m(ray)
2( 45 V% 1 2 3 7?2)313 15 24 34
4 [ aV 7T(a\)? 3
= d"u"ﬁ My(r\ares) || —| ——|— H(r,—a). (30)
0 LAY 5\r,
—
In obtaining (30) above we have made repeated use of (22). i {17
Next, using the inverse expansion of (15) to write M, and =
making a change of variables back to r 5, we get 4 4 | 2 [ 1 et
Bt={5 —f dr{-—,}f dssm(s) . (33)
C ! a r lr—r|
1 (! —a 1
Mo(ripres) = — d(cos 9) 25 —
AN B3 3 b . L’BJ

Xm[ (’%4 + ’%s — 21 aFss COS 9)”2}

l Tia t Fus

=— drys m(ris) . (31)
2 Jir=ral FiaTas
Use of (31) in (30) leads to
W,(t)=A—-B+C, (32)
where
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Now, if we perform the two integrals in (33), we finally

obtain
J[S§] =;‘—f drPg(ryWy(r), (34)
7 Jo
where for r>o
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W,(r) Combining (36) and (39) in (38), one finds that

4 ( e 14 & 63 4 f1=0.482 74, w}gch is the result quoted in the previously
=— s T T T34 5e (2 s mentioned paper’” on the third-order bounds on shear mo-
3 (- ag) 5 (P —a’) N 25 (=) dulus in the dilute limit.
196 a 168 a )
35 X i 3)
+ 55 ('2_02)6+ 5 F_a) (35 ¢ Eva!u.ataortof.l[.s:‘3 ]. . | |
Here o = 2a is the sphere diameter and we have used the fact To simplify the contribution of the diagram in (11c), we
that g(») = O for r < 0. It may be noted that in the low-den-  employ the same technique used in the previous subsection.
sity limit p—0, g(#) — 1 for r > o, and then (34) reduces to Thus, choosing the origin at r,, we find that
limJ [S{] =B —4n3. (36) J[S§3’] =—1‘de5 dre g3(FasiTaesl'se)
p—~0 1677'2
The 1mpqnance of this result lies in the fact that if we write a X O(FasiFaolse) » (40)
low-density expansion of the parameter 7, as where
= 2y .
T =/ida+ 004) ; (7 Q(FassTaeslse) = —2— g‘d' dr, dry m(r,)m(rys)
one can then show that viJ
P 6
fi=lmGI[SP] +lim12 ] [SO]. (38) Xm(ryg) L4808 o) (41)
p-0 p—0 ) ’}12 ’Jl 3
In a previous paper”’ it has been shown that The integrals over r, first and then r, are done by foilow-
ing the same method as applied to simplify (26) to the form
L‘f‘; I{S¥]=4—%In3. (39) (27). The result in this case is
B
J‘drz m(rzs) J‘dra m( 36) M
r, s
2 2
=VfH(r,5-—a)H(rl(,——a){1———7—(—‘1—)]{1—-1(-—0—)]%—?—%&—. (42)
5\ 5\r rsfs
I

In Egs. (40) and (41), 4 <a and r,, > 2a because of the m respect to this figure, we use the identity
and g functions involved. Thus H (7,4 — a) is redundant in
(42). Similarly, because r, <a and r,>2a, the use of
H(r;s — a) is redundant as well. Thus, we drop these H

€08 Oy == COS 8,5 COS O, + sin O4y5 5in B4y cos ¥,  (44)

where ¢ is the angle between the planes 541 and 641, to write

functions, and Eq. (41) is simplified to the addition theorem expansion for P,(cos 5,,) as
2 [, 7(a\? . (4-—m',,
Q(raslaerse) = '71 f dr; m(ry,) {1 3 (71:) ] P,(cos bs,¢) = m'goa “(mTP (cos b415)
< Il 7 (_q_)z] P,(cos 85,¢) (43) X P (cos b4y6)cos(my)) , (45)
5 \r nsris where
The difficulty in simplifying this expression any further lies a,=1, m=0,

in explicitly bringing out the orientation dependence of the 0 46
integrand for the final integration over r,. For this we shall =2, m>0. (46)
use the coordinate frame arrangement shown in Fig. 1. WithJ Using (45) in (43), we find that

2 < 4—m)! * P(cos 8,,5) 7 2
et o e Lo [ 22 ]

y {£_<__2_.>, 1= 2 (2] st “
e 3 \ne/ 4.

We show in Appendix B that each of the expressions within Jarge brackets in (47) can be expanded in terms of the correspond-
ing opposite angles at the base of the coordinate frame, giving

2 ¢ (4—m)!
Q("45”46:"56) =——’7]-m20am (4+m)!J:drM ’%4 J-dw(,aﬂ

na’ 7 .8t
XZ( — S Vim = @ 7 Vim | PT (008 B54)
45 45 5 re!
rJ -4 ’J‘—Z 7 ’Jl;—4
X(r’l?“ i ’Jl:‘_“ Yiom ——g-az———rl, — v, | P71 (cos Bgyy)cos(mib) (48)
46 46 46
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z _ U= = DI+ 11)
0 242 + 3) ’
y ,_ _U=20=D{I+9)
| . 6(2/ +3) ’
(/—=2)(714+3)
AL A (50
5 Tz 2(21+ 3) )
f 17U =1)
i Y Vis = 2043 "
Vie = 7
14 — >
X 21+ 3
: and
! FIG. 1. Coordinate system for Eq. (43). 2 —1
| v =(Z=L0n (5
7
where . .
To be able to do the angular integral in (48), we rotate
Bio = U=3)d-u-n! , the coordinate frame of Fig. 1 by an angle 8, about an axis
24 -1) perpendicular to the (f,, £4,) plane with a temporary reas-
1A=l -HU-1D signment of the coordinate frame so that t,, is in the (x,2)
P = - 62— 1) ’ plane as in Fig. 2. The unit vector f,5 has an orientation
70— 3)(I—2) (Os46,¢) With respect to the (x,y,z) frame and (8s4,,¥) with
B = a0 (49) respect to the rotated (x',)',2') frame, because ¢ is the angle
@i—1) between the (x,z) plane and the (&,,,fs,) plane. The Euler
B= — Jd=3 , angles of rotation between the frames are (0,6¢,,,0). Thus
2l -1 the transformation theorem for this special case is**
_ 7
Bu=751 Yim Bsapth) =T d! . (Bes)Y,, . (Bsae) - (52)

_J

Writing out the spherical harmonics on both the sides in terms of the associated Legendre functions, we get

N ) — mN\2 .
PT(cos 954,)cos(m¢)=(—$——*'—r’:—;;—) S a, (D" -m(%:—’-%') d' . (Beur)P] (cOS Osgg)cos(m'd) . (53)
- . m’ =0 .

Using this, we find the angular integral in (48) to be

A7 (I +m)!

fd(cos G¢s1) d¢[P;'l(cos 654,)cos(m¢)]P7'(cos Bear) = —2—1:—1— 0! P, (cos Bs46)5,., , (54)
and thus (48) reduces to
2 & (4 — m)! 47 (I +m)! (r’lz‘ N’ 7 ,rat )
s/ 465 = - I - - — 2 -
Q(rssiTse5"s6) v, mz‘;oa @1 m)! o LEVRAT 01 U —m)! rﬁ,;’ﬁl '145+l ! 5‘7 ri;lv,
rit ni’ 7 it
x("_‘;g_fﬂlm -‘;J:g:—l?’/m -5 FrE Vlm>PI(COS Os46) - (35)

Next we compute the integral over |, to obtain

2 & (4 — m)! ar d+m [ ¥ ( Yim 14 VipVim 49 Vi, )
(F4ssT s ) =— a — +
Qe aoss AriAsv\2r—1 " s 20—3 ' 25 21—5

V, o (4+m)!2 2A4+1 (I—m)

- 1 i B Vim 7 BinVim a3 Bin
—a¥ 3( )( — + P (cos Os,) . 56
r'f,}"rf,;' +r145—1rl46+1 2] -3 + 5 21—5 ":5']"145_1 U5 1( 546) (56)

In the above we complete the sum over m, using (46) and (49)—(51), and then after a considerable amount of algebra,

find that
O esT st ss) =-lg‘!‘_§:‘1(1* 1 —2)(I—3) gj: ?; d‘;i;'
-2 E - o B i
%;3 1(1“(222,2(;&”; =) ,5:::;4;‘ Py(cos fs,g) . (57)
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FIG. 2. Coordinate system for Eq. (52).

The result (57), when substituted in (40), provides the
final simplified form of J{§ {*]. Since the only orientation
dependence in Q(r,s,74,7ss) comes through P, (cos Os,4),
thatis, through the angle betweenr 5 and r, it is clear that if
we replace g, in (40) by g(r.)g(rs), then the integr_al!

r’g(r)
(rr—a??3

A —_2- 2 3 bl L
115, _3¢2aL dr 1Wzlu

=2

IV. CONCLUSIONS

For the mode! of impenetrable equisized spherical inclu-
sions randomly distributed throughout a matrix, we have
now simplified expressions for the two key integrals [ [S;
and J [S ] that arise in the third-order McCoy and MPT
bounds on the effective shear modulus G, . It may again be
noted that the simplification of 7{ S, was done in a previous
paper.*° Both of these tasks were accomplished by expand-
ing orientation-dependent terms in the two integrands in
spherical harmonics and utilizing the orthogonality proper-
ties of this basis set. The resulting simplified integrals are
shown to depend upon the one-, two-, and three-body distni-
bution functions. We believe that this is the first time that the
key integral J[.S;], required for the third-order bounds on
G, , has been simplified to this extent. In a subsequent paper
we shall employ this simplified form for J to compute the
McCoy and MPT bounds for a wide range of sphere volume
fractions.
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exp(iker,;) = exp(iker;)exp( — ikr,, cos )

(4772 i, Ckry3) Y% (605,500, (9,¢)) (2(21’ + 1)~ D', (kryy)P,, (cos 9)) .
<
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™ J- dr, drs[g3(riaria:ras) — 8(r12)8(ry3) ]

would vanish identically. But, whereas the integral (40) is
conditionally convergent, depending upon the coordinate
system and the order of performing the integration, the sub-
traction of the g(r,5)g(r,) term from g, before doing the
integral makes it absolutely convergent. This fact was al-
ready remarked upon following Eq. (9).

If we combine the results from the previous three sub-
sections, namely, (24) and (34) along with (35), and (40)
along with (57), then the key integral J[S;] takes, the form

J{S 1= Jdrg(r)Wz(r)

dry[g5(ri2rsrzs)

— 8(r)g(ri) 19(r 2323} (58)

where the function @ is given in (57) and where W,(r) is
given in (35). Finally, for completeness, we end this section
by giving the simplified form of the other key integral 1 [S3]
as obtained by Lado and Torquato®:

P(cos 8,,3)

Ay Nt
(59)

!
APPENDIX A

As already used in (15), and following Barker and
Monaghan,* we expand angle-dependent functions f(r,5),
which are well behaved (i.e., functions with a finite number
of finite discontinuities), in Legendre polynomials:

flrn) = i Fi(r2,r3) Py c08(60,11) , (A1)
=0

where the orthogonality of the Legendre polynomials lead to
the inverse expansion

Fi(rpry) =241 f (005 B313) f (r2)Py(c0S O13) ,
o (A2)
and
Toa =iy 4+ Fiy — 273r3 €08 055 . (A3)
But f (,,) may also be expanded in plane waves as
flrs) = a#fdk?(k)exp(ik-rzs) , (A4)

where the Fourier transform £ (k) is given by an expression
similar to (17). If we now arrange that r, is the origin, t,, is
along the z axis, the (#,,,F3) planeis the (x,z) plane, and let
(6,¢) be the angular coordinates of the wave vector k in this
frame, then the well-known expansion of plane waves in
spherical waves gives®®

(A5)
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Then, using (AS) in the plane-wave expansion of f (r,;), one
gets

l o
S(ry) =‘272‘ 12'0 (21 + 1) P/ (cos 6,;3)

xf dk k2 F(k)j, (kryp)ji (kry) . (A6)
(1]

Comparison of (A6) with (A1) gives
2041 ~ .
Fitrarg) = 2251 |7 die k270, ke i) (AT)
0
a result we made use of in (20).

APPENDIX B

This appendix deals with the specific task of rewriting
P2 (cos ¢)/t*and P7(cos ¢)/t° (see Fig. 3) interms of 7, 5,
and cos @ for m = 0,1,2,3, and 4, and the condition s < r, We
start with the generating function of the Legendre polynomi-
315,29

2\ - 172 o i
;___(1__250059 +f’5.) :]go(—i-)P,(cosﬁ).(Bla)

Successive differentiation of (Bla) with respect to cos 8, de-
noted by primes, gives

FIG. 3. General geometry considered in Appendix
B for transforming the arguments of the Legendre
polynomials from cos ¢ to cos 6.

(=3l rremn. o
Next the law of sines gives

sin ¢ = (r/1)sin 6, (B2a)
and this along with 2 = /* 4 s> — 2rs cos 8 gives

cos ¢ = (r/t)(s/r —cos 8) . (B2b)

For brevity, from now on we will write x = cos ¢ and drop
the argument x on P, and its derivatives; their presence will
be assumed implicitly unless otherwise stated [as in

(5)3 = Z (f)l~ l P;(cos 6), (B1b) PT7(cos 8)]. Also, we will freely use Legendre’s equation
t T \r (along with its two higher-order derivatives ) and recurrence
NS s\V-2 relations®® for simplification. Similar relations for the asso-
(;) =3 Z (’r’) Py (cos 9), (Ble)  (iated Legendre functions,
4 -3 Pr=(1—x?)"?d™P,(x)/dx™, (B3)
() -Ls() rremn, Blay o= 1)
t 15 ¢ \r K will also be used whenever necessary.
(i) m =0case
For the m = O case we have
3 7 5 3
(-’-) P,(cos #) =-3-5—(5) sin* 6 — 5 (5) sin? 6 + (5)
t 8 \z t t
{3 7
=3 () T (La-erer-Sa-mpr, i)
i
V=3 1 d-1)(U-2)
= bl —_— T+ DHP — (I =3)(T1+4)P,_
Z,’(r) 24 2+ 1) (704 D = (=30 =11
I—4 7101 - _ 1—2 — —
=Z[(£) (=1 —=2)(~3) __(_s_) Id—1nd 2)(71+”)}PI (B4)
T L\r 2421 - 1) r 24(21 + 3)
and
5 9 7 s
(5) P,(cos @) = 33 (:) sin*@—5 (f) sin’ @ + (C)
11 8 \¢z 14 !
/-_'3 1 e l ”e 1 ”
=3() (Go-rem-ga-Sere )
i
sV-% 1
=z(-) L nu—2u-3p,. (BS)
T \r 24
Thus we have from (B4) and (B5)
P,(cos @) (s’”‘ HI—-1)(1—-2)(1—-3) §7? 1(1-.1)(1—2)(71+11))
ol A b A - P,(cos 8), B6
r3 2\ 2421 - 1) Pt 24(21 + 3) {eos &) (59
and
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P4(cos¢)

2 T 1(1——1)(1—2)(1—3)P,(cosB) (B7)

(ii) m =1case
For the m = 1 case we have

(5)3P}, (cos ) = —5—sin 0 (i — cos 9) [4 (C)S -7 (-’:)7 sin? 9]
t 2 r t t

I=374 4 7 7
=-§—(1—X2)”22(§) (3P;, 2—-3—XP,_1—-F(1'—X2)P;”_1+FX(1—XZ)P;”)
5 1~3 (l ’
=Z(;) m[(71+2)(1—3)1)1_1—71(1—1)P1+1]
7
zz{(i)“‘ (=DU-DH{I=2)(-3) _(5)'—2 (= DU=1D—=2)(7+9) ]P; (BS)
7 r 6(2/—-1) r 6(21+43)

and

(%)SPA (cos @) =—§—sin0(§’:—— cos 0) [4 (%)7 -7 (-:—)9 sin? 6]

1-13
xZ)I/ZE (i) (_3_ Prn i xP;l ___(1 —x )Pun _g_x(l —'xz)P;'_:_ll)
1 r

3
I—-4
=38 (- 3)u-pu-vu-ne (89)
] r
Thus (B8) and (B9) give the desired relations
P(cosg) *2(1 fIU-DUI=U=3) 2 (1—1)(1~2)(71+9))P,(0059) (B10)
IE) 621 — 1) RN 6(2/ + 3) !
and
pl( s d) =2
—-‘%‘5’—"’——~ ~2’J+1%(z_1)(1—2)(1—3)f> (cos 9) . (B11)

(ili) m =2 case
For the m = 2 case we have

3 5 7
(5) P2 (cos @) =—1—5—sin2€{6(:) —7(5) sin"0]
! 2 ! t
15 s\ -3 Y 7
=T““"2’2,:(7) (2ris -5 a2 pr)

-3
=z(§) _zﬁl_fﬁ(m DU ~2)P2,, — (=4[ - 3)PI_))
{

sV =470 =2)(1=3) (s)'—2 (I—=2)(71+3) } 2
= e —_ A 2 RANLA RSN Y -
> {(r) 2021 — 1) r 2021+ 3) ! (B12)
and
7 9
( ) P2 (cos §) _—5—sm20{6(:) —7(5) sinza]
2 ! !
s 1-3
=(1—x2)2(—) (3P;"— (1—x)HPy7, )
1
s\ -4 1
=Z(r) ——(1—2)(1-3)P2 (B13)
{
Thus
P3(cos ¢) (s’—‘* TW=U—-3) =2 UA=2(T+3)
= — P%(cos 6) , B14
E AU 2020-1) AU 22+ 3) ) 1(cos ) (Bl4)
and
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sS-* 1

P; (cos¢)
_ZHH"‘”—Z)U—”P 7(cos 8) .

(iv) m = 3 case
For the m = 3 case we have

r\? . s
(—-) P} (cos @) = 105 sin® 9(——cos6
t r

)¢)
2)3/221(::_)1 (P —xP[")

=3 7(1-2)

o

=T7(1 —x
()
r

-2

!

"P13+l)

-

l—l

=4 7(1—3)
2l -1

=27 —1)
2/ +3

(B15)

(B16)

|

-

= 105sin> @ (i —~cos 8
r

)

243/2 ._S: P”"_
()¢
sl—4
~z(-) (I —3)P}.
1 r

1" e
{+1

(B17)

st sTHIU=3)

s’*2 7(/-1)

FETReye )P?(cose) (B18)

and
P} (cos ¢)

sl—4
= -3 (I —3)P3(cos 0) .
{

(v) m=4case
For the m = 4 case we have

(%)3 P2 (cos¢) = 105 (%)7 sin®
13
__:7 1__ 232 (i) PIII
(1~x%) 2 ,
sYV-3* 7
2;(?) 2+ 1
(s /-4 7
1)

2I-1)
s {2
-¢)
and

)
(5)5 P?% (cos @) = 105 (§)9 sin® 6

21+3
— 232 51“4 "”ee
——(I-—x)E; P,
!

(B19)

4
I+

(P 1)

P (B20)

(B21)
Thus
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P (cos d)

i1—2

7 s 7

=2

) P}(cos B)
(B22)

(=

rF-ra—1 r’+'21+3

and

P} (cos &)

4
P‘,‘(cos 0) . (B23)
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