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We study third-order upper and lower bounds on the shear modulus of a model composite 
made up of equisized, impenetrable spherical inclusions randomly distributed throughout a 
matrix phase. We determine greatly simplified expressions for the two key multidimensional 
cluster integrals (involving the three-point distribution function for one of the phases) arising 
in these bounds. These expressions are obtained by expanding the orientation-dependent terms 
in the integrand in spherical harmonics and employing the orthogonality property of this basis 
set. The resulting simplified integrals are in a form that makes them much easier to compute. 
The approach described here is quite general in the sense that it has application in cases where 
the spheres are permeable to one another (models of consolidated media such as sandstones 
and sintered materials) and to the determination of other bulk properties, such as the bulk 
modulus, thermal/electrical conductivity, and fluid permeability. 

I. INTRODUCTION 

The problem we are generally concerned with is the 
theoretical prediction of the effective properties (transport, 
elastic, electromagnetic, etc.) of disordered composite me­
dia. This problem is of considerable fundamental and practi­
cal interest l-7 and is exactly soluble, given the phase proper­
ties and the infinite set of n-point correlation functions8

-
lo 

that statistically characterize the composite medium. The 
complete set of statistical functions is almost never known in 
practice, however. Under such circumstances one can either 
opt for some sort of approximate self-consistent schemel 1-13 

or methods that enable us to place bounds on the effective 
property. Both of these methods have their own advantages 
and disadvantages and have been discussed elsewhere.5.6 

We shaH focus our attention on rigorous bounding tech­
niques, since they provide a means of estimating the bulk 
property, given limited microstructural information on the 
heterogeneous material. Rigorous bounds are useful because 
(1) they enable one to test the merits of a theory; (2) one of 
the bounds can typically provide a relatively accurate esti­
mate of the property 7; and (3) as successively more micros­
tructural information is included, the bounds become pro­
gressively tighter. The specific problem of interest in the 
present study is the determination of bounds (described be­
low) on the effective shear modulus (Ge ) of a suspension of 
impenetrable equisized spherical inclusions. 

Bounds on the effective elastic moduli that depend upon 
the n-point probability function Sn of the medium have been 
derived. 14--17 The S" (x") (x" =XI'X2' ... ,X" ) give the prob­
ability of finding n points at positions x" aU in one of the 
phases, for example, phase 2. For statistically homogeneous 
media SI is simply equal to the volume fraction of phase 2, 

¢2' The second-order bounds on the elastic moduli of Rashin 
and Shtrikman l4 depend on SI and, in a trivial way, on S2' 
McCoyl5 obtained sharper third-order bounds (that were 
later simplified by Milton I6 ), which involve information 
about S I' S2' and S3' Subsequently, Milton and Phan-Thien 17 

(MPT) derived third-order bounds, which improve upon 
the McCoy bounds, and new fourth-order bounds. Practical 
application of third- and fourth-order bounds on the effec­
tive elastic moduli has been very slow because of the diffi­
culty involved in ascertaining S3 and S4 either theoretically 
or experimentally. 

Employing the formalism of Torquato and Ste1l9
.
10 to 

systematically represent and compute the SII' third-order 
bounds on the effective elastic moduli have been recently 
computed for suspensions of fully penetrable spheres 18 and 
for dilute dispersions of spheres distributed with an arbitrary 
degree of penetrability. 19 More recently, third-order bounds 
on the effective bulk modulus of a composite with impen­
etrable spherical inclusions have been calculated.20 

In this paper we consider the evaluation of the third­
order McCoy and MPT bounds on the effective shear modu­
lus G. of a random distribution of impenetrable equisized 
spheres in a matrix. In Sec. XI we present the MPT bounds 
and some relevant discussions. In Sec. III we invoke the dia­
grammatic notation9 for the terms involved in S3 and present 
the two key integrals that operate on these terms. The com­
plicated multidimensional cluster integrals are then simpli­
fied as far as possible by using expansions of the orientation­
dependent quantities in spherical harmonics and the 
orthogonality of this basis set. The final result presented at 
the end of Sec. III is still nontrivial, but in a form that is now 
tractable on a computer. The computation, which is under 
progress, will be the subject of a subsequent paper. In passing 
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we may reiterate the fact that the method of attack presented 
here is quite general in the sense that it can be (and has been) 
readily and systematically applied to cases in which spheres 
are permeable to one another l8 and to the determination of 
other bulk properties, such as the conductivity and bulk mo­
dulus of composites,20 and fluid permeability of porous me­
dia.21 Finally, in Sec. IV we present our conclusions. 

it BOUNDS 

For any two-phase isotropic composite, McCoyl5 has 
derived bounds on the effective shear modulus G., given the 
shear moduli GI, G2, and the bulk moduli KI and K2 of the 
respective phases, the volume fraction of one of the phases 
(say ¢2 = 1 - ¢I)' and several integrals involving deriva­
tives of certain three-point correlation functions. Milton 16 

later showed that the third-order McCoy bounds can be 
written in terms of ¢2 and only two multifold integrals;2 and 
112 (defined below) involving the three-point probability 
function S3' Subsequently, MPTl7 derived improved third­
order bounds on Ge that also depend upon¢2' ;2' and 112' For 
conciseness we present here only the MPT bounds, which 
read 

(1) 

where 

_ 5(lIG>~(6IK -1!G>~ + (lIG >", (21K + 211G>~ 
.::. = (I 281K + 991G >~ + 45(lIG >." 

(2) 

(3) 

and where the angular brackets denote the averages of the 
following types for any property b: 

(b> = bl¢1 + b2¢z , 

(b)~ =bl;l +b£2' 

(b >." = bl1l1 + b2112 , 

(6) = bl¢2 + b2¢1 . (4) 

Here the quantities;; and 11; (i = 1,2) are the integrals (de­
fined below) over the three-point probability function S3' To 
be specific, SIt denotes the probability of finding n points in 
the particulate phase (here the impenetrable spheres). Then 
we have 

;2 = 1 -;1 = (9/2¢1¢2)1 [S:d , (5) 

112 = ! -111 =';';2 + (l50/7¢1¢2)J [S31 , (6) 

and 

(7) 

3504 J. Appl. Phys .• Vol. 62. No.9. 1 November 1987 

where the integral operators 1 and J are defined as 

(8) 

and 

(9) 

PI being the Legendre polynomial of deg]ee /. It may be 
mentioned that we operate the 1 and J on S3 defined in (7) 
instead of S3 because it ensures the absolute convergence of 
these integrals. 

It may further be noted that;; (i = 1 or 2) is the only 
parameter needed for the third-order bounds on electrical 
conductivity or buJ.k modulus. The c~culation of this pa­
rameter, and hence the evaluation of I[S31, has already been 
considered in great detail in two previous papers.20 The pa­
rameter;2 is thus well tabulated for our needs. and hence "we 
concern ourselves with the evaluation of the integral J[S3] 
or the parameter 112 only. The reader interested in the details 
of the; 2 calculation is referred to the above-mentioned pa­
pers.20 

The evaluation of the bounds (I) becomes quite diffi­
cult partly because the three-point function S3 was not avail­
able theoretically or experimentally until recently and partly 
because of the complexity of the integral J [Eq. (9) J. Thus, 
to our knowledge, this is the first paper to deal with those 
bounds for the effective shear modulus for the case of a dis­
persion of equisized impenetrabl.e spheres at arbitrary con­
centration in a matrix phase. 

A 

III. SIMPLIFICATION OF J[S3] fOR DISPERSIONS Of 
iMPENETRABLE SPHERES 

Torquato and SteU9 have shown that the n-point prob­
ability function for the matrix phase of d.ispersions ofimpen­
etrabIe spheres reduces to a finite series expansion in the 
density p, ending at the nth-order term. For our purposes we 
will use the notation of Ref. 9, except for the fact thatS" now 
will describe the n-point probability function for the particle 
phase, i.e., the quantity denoted by SIt in the Introduction.22 

As shown by Torquato and Stell.8 given the n-point prob­
ability functions (SI'S2 .... 'S" ) for one of the two phases, one 
can get any other n-point probability function and, in partic­
ular, the n-point probability function for the other phase. 
Thus. taking the expressions for the one-, two-, and three­
point matrix probabil.ity functions, 9 we can write the three­
point probability function in the particulate phase as 

( 10) 

where ¢2 = P VI is the particle volume fraction, VI = 417"a3/3 
is the spherical volume of one inclusion. a is the radius of the 
sphere, and S ~;) stand for the fonowing diagrams: 

S
(1) __ 1_ 
3 -

VI 

IIl\ 
I , , 

deb 
\ 2. 3 

(ita) 
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S
(2) _ I 1\ ( 

, 
3 --2 00 

VI I 2 

S(3) _ 1 
3 -V"J" 

I 

(lIc) 

Here the solid circles stand for dummy position vectors (of 
some spheres) that are to be integrated over the entire infi­
nite volume,23 the labeled open circles represent the position 
vectors r l , rz, and r3 appearing in S3' the broken line repre­
sents the bond 

mer) = {I, r<a, 
0, r>a, 

(12) 

between the two positions involved, the solid line stands for 
the pair distribution function gz 3:g of the spheres, and the 
crosshatched triangle for their triplet distribution function 

gJ' 
For the calculation of shear modulus, we have to evalu­

ate the functional (9) [evaluation of the other functional 
(8) has already been done20

], which may be rewritten as 

J [f] = (00 dr12 roo drlJ II d (cos 0213) 
Jo rl2 Jo r13 ~ I 

(13 ) 

We have to evaluate the above for each of the diagrams in 
( II ). P4 is the Legendre polynomial of degree 4, and 
cos Ojlk 3: (rijor1k ). 

A_ Evaluation of J[ Sl31)] 

The only diagram of (11a) may be evaluated by fixing 
the origin of coordinates at r I and aligning the z axis along 
rlz, as follows: 

-I I , 

dob 
123 

== f dr4 m(rI4)m(r24)m(r34) 

= 100 
drl4 ~4 m(rI4 ) J dWZ 14 m(r24 )m(r34 ) , 

(14) 

where dW2 14 3:d(cos OZ14)d¢J. Following Barker and Mon­
aghan,24 we expand the angle-dependent functions in Le­
gendre polynomials (more generally, in spherical harmon­
ics). Thus, for example, for m(rZ4 ) we write 

00 

= L M{(r'2,r'4)P{(COS OZI4) , 
{=o 

(15) 

where the expansion coefficients are given by (see Appendix 
A) 

M{ (r'2,rI4 ) = 2~~ 1 Loo dk k zm (k)j{ (kr1Z)j{ (krI4 ) . 

(16) 

m(k) is the Fourier transform of mer), and h (x) is the 
spherical Bessel function of order I. For the Fourier trans-
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forml(k) of a function! (r), we will always use the defini­
tion 

7 (k) = f dr! (r) exp(ikor) . 

Similarly, we write m (r34 ) as 

m(r34 ) = L M[ (r13,r14 )P{ (cos 0314 ) 
[ 

(17) 

using the addition theorem for spherical harmonics25 in the 
second equality to bring out the specific angular variables 
needed. Employing the orthogonality of the spherical har­
monics, we get 

f dWZ14 m(rZ4 )m(r34 ) 

41T 
= L ---M[ (r12>rI4 )M, (r I3,r'4)P' (cos 0213 ) , 

J 21 + 1 

and hence 

J 10 \ =- drrm(r) -M4(s,r) 
d 6 b 81 0 0 s 

(19) 

( 

• ) 81T 100 (loo ds )2 

I 2 3 (20) 

To calculate the second integral above, we may use ( 16) and 
the fact that 

m(k) = (41Tazlk)jl(ka) (21) 

to obtain M 4 • Thus, we find 

(00 ds M 4(s,r) = 18a2100 dk kjl(ka)j4(kr) [00 ds j4(ks) 
Jo s 1T 0 ~O s 

12az [00 
= -- dk kjl(ka)j4(kr) 

51T -,0 

where H(x) is the Heaviside unit function 

H(x) =0, x<O, 

=1, x>O, (23) 

and the integrals involving the j[ 's may be found in Ref. 26. 

Now we can see that the contribution of the diagram in 
(lla) to J is zero because (20) has conflicting step-function 
requirements in its two integrals. Thus, we find that 

J(Sjl)] =0. (24) 

B. Evaluation of J[ 5'3
2
)] 

To simplify the contribution of the diagrams in (11 b), 
we utilize the freedom afforded by the homogeneity and iso­
tropy of the system to conveniently choose the origin and 
orientation of the coordinate frame. If we first choose the 
origin at r 4' then we find for the first term of S ~2) in (II b) 
that 
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1 

I 
:1 

\1 

where 

I , 

6b 
I 2 

(25) 

W I fd d d P4(cos8213 ) () I (r45 ) = - r l r z r3 m(rI4 )m r24 m(r3S ) . 
Vi riZri3 

(26) 

Using (18) for the expansion of m(r24 ) and m (r35 ), and then using the completeness relation for the Y'm 's, we get 

WI (r45 ) = _l_J dr l dr2 m(rI4 )m(r24 ) _1_ I ~ (CO dr13 M,(r13,r I5 ) J dW213 P4(COS ( 213 )Yt., (W213) Y'm (WZ1S) 
Vi riz I.m 21 + 1 Jo rl3 

=0, 

because of the conflicting demands of the step functions on 
rl4' In deriving (27), we have made use of (22). Thus 

( ~ .,) 
J :2 6 b 6 =0. 

I I 2 :3 

(28) 

Now interchanging labels 2 and 3 in the procedure 
above gives the same integral, and hence the contribution of 
the second diagram of (lIb) to J [S ~2) ] is also zero. But 

I 

In obtaining (30) above we have made repeated use of (22). 
Next, using the inverse expansion of (15) to write Mo and 
making a change of variables back to r 15' we get 

Use of (31) in (30) leads to 

W2 (t) =A -B+C, 

where 
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(31) 

(32) 

(27) 
I 
such is not the case for the last diagram of ( 11 b). Proceeding 
as above, one obtains 

J _1_ 1\ ( ~ 
V 2 6 b 

I 2:3 

where 

m~ 
14 2 -a 
5 

49 4 -a 
25 

(30) 

1 
,s 

21T f.00 L+t - dr 
r7 dssm(s) , (33) 

t a Ir-II 

1 
,-9 

Now, if we perform the two integrals in (33), we finally 
obtain 

(34) 

where for r>o-
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4 (a3 14 a5 63 a7 

= 3" 1T (,-2 _ a2 )3 -"5 (,-2 _ a2 )4 - 25 (,-2 _ a2 )5 

196 a9 168 all ) +- +- . (35) 
25 (,-2_a 2 )6 25 (r_a 2 )7 

Here (T = 2a is the sphere diameter and we have used the fact 
that g(r) = 0 for r < (T. It may be noted that in the low-den­
sitylimitp ..... O,g(r) ..... 1 forr>(T,andthen (34) reduces to 

limJ [S~2)] = IM~350 - -b In 3. (36) 
p-O 

The importance ofthis result lies in the fact that if we write a 
low-density expansion of the parameter 'TI2 as 

'TI2 =/JtPz + O(tP~) ; (37) 

one can then show that 

h=lim~I[SjZ)] +lim~J[Sf)]. 
p-o p-O 

In a previous paper7 it has been shown that 

(38) 

(39) 

I 

In Eqs. (40) and (41), r l4 <a and r46 > 2a because of the m 
and g functions involved. Thus H(r16 - a) is redundant in 
(42). Similarly, because r l4 <a and r45>2a, the use of 
H(r1S - a) is redundant as well. Thus, we drop these H 

functions, and Eq. (41) is simplified to 

Q(r45,r46,rS6) =.2.. r dr J m(rI4 ) [1 _ 2. (~)2] 
VI ., 5 r l5 

X [1 _ 2. (~)2] P4 (cos ( 516). (43) 
5 r)6 r?Sr?6 

The difficulty in simplifying this expression any further lies 
in explicitly bringing out the orientation dependence of the 
integrand for the final integration over r l . For this we shall 
use the coordinate frame arrangement shown in Fig. ]. With 

I 

Combining (36) and (39) in (38), one finds that 
II = 0.482 74, which is the result quoted in the previously 
mentioned paperJ9 on the third-order bounds on shear mo­
dulus in the dilute limit. 

C. Evaluation of J( ~3)] 

To simplify the contribution of the diagram in (lIe), we 
employ the same technique used in the previous subsection. 
Thus, choosing the origin at r4 , we find that 

J[Sj3J] = l~f drsdr6g3(r4S,r46,rS6) 

(40) 
where 

Q(r45,r46,rS6) = V23 r dr) drz dr3 m(rI4 )m(rZ5 ) 

I .J 

X ( ) P4(COS 82 \3) 
m r16 . 

- r?Zr?3 
(41) 

The integrals over r3 first and then rz are done by follow­
ing the same method as applied to simplify (26) to the form 
(27). The result in this case is 

P4 (cos ( 516 ) 

riSr?6 

respect to this figure, we use the identity 

(42) 

cos 8516 = cos 8415 cos 8416 + sin 8415 sin 8416 cos ¢, (44) 

where ¢ is the angle between the planes 541 and 641, to write 
the addition theorem expansion for P4 (cos ( 5 )6) as 

4 (4-m)! m 
P4 (cos ( 516 ) = L am P 4 (cos ( 415 ) 

,"=0 (4+m)! 

xP'; (cos ()416)cos(m¢) , (45) 

where 

m=O, 

=2, m>O. (46) 

Using (45) in (43), we find that 

X{P;'(COS8416
) [1_2(~)2]} cos(m¢). 

r?6 5 r l6 , 

(47) 

We show in Appendix B that each of the expressions within :large brackets in ( 47) can be expanded in terms of the correspond­
ing opposite angles at the base of the coordinate frame, giving 

( 

_1' 4 _1' 2 _1' 4 ) r l4 - rl4 - 7 2 r l4 - m 

X --PI' ---rl , --a --I VI' PI,(cos864I)cos(mr/t) , 
_1'-1 m ~'+I m 5 ';'" m 
r46 46 46 

(48) 
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z (1- 2) (1- 1)/(71 + 11) 
rio = 24(21 + 3) , 

(/ - 2) (/ - 1 )(71 + 9) 
rlI = - 6(21 + 3) , 

(1- 2)(71 + 3) 
rn = 2(21 + 3) , 

(50) 

~-------y 
7(1- 1) 

rl3 = - 21 + 3 ' 

7 

x 
rl4 = 21 + 3 ' 

and 
FIG. 1. Coordinate system for Eq. (43). 

(
2/- 1) 

Vim = -7- 131m , (51) 

where 

a _ 7(1-3)(/-2)(1-1)1 
P 10 - 24(2/- 1) , 

a _ 7(/-3)(/-2)(/-1) 
Pll - - 6(2/- 1) , 

a _ 7(1-3)(1-2) 
PI2- 2(2/-1) , 

7(/-3) 
13 /3 = - 21 _ 1 ' 

(49) 

To be able to do the angular integral in (48), we rotate 
the coordinate frame of Fig. 1 by an angle 8M1 about an axis 
perpendicular to the (r 46' r 41) pJ.ane with a temporary reas­
signment of the coordinate frame so that r41 is in the (x,z) 
plane as in Fig. 2. The unit vector r 45 has an orientation 
((JS46'¢) with respect to the (x,y,z) frame and (8S41,r/J) with 
respect to the rotated (x' ,y' ,z') frame, because t/J is the angle 
between the (x,z) plane and the (r41 ,r51 ) plane. The Euler 
angles of rotation between the frames are (0,8M1 ,O). Thus 
the transformation theorem for this special case is25 

7 
PI4 = 2/- 1 ' Ylm(8S4I,r/J) = Ld~'m(8Mt)Ylm,(8546'¢)' 

m' 

Writing out the spherical harmonics on both the sides in terms of the associated Legendre functions, we get 

m ((l+m)!)'12 I m'_m(U-m')!)1I2 I m' , 
PI (cos8S4 ,)cos(mr/J) = "'" a ,( -1) d , (8M ,)P 1 (Cos(i546)cos(m¢). 

(1- m)! m~o m (/ + m')! m m 

Using this, we find the angular integral in (48) to be 

I d(COS 8Mt) d¢[ P~ (cos 8S4 t)cos(mr/J) ]P7'(cos 8M,) = ~ (/ + m)! PI (cos 8S46 )h
l
'I' 

21 + 1 (l- m)! 

(52) 

(53) 

(54) 

(55) 

(56) 

In the above we complete the sum over m, using (46) and (49)- (51 ), and then after a considerable amount of algebra, 
find that 

14 00 (2/ _ 3) a21 - 8 

Q(r4S,r46,rS6) = -r L /(1- 1) (1- 2) (1- 3) ,: - 1':- t 
5. 1=4 (2/- l) 45 46 

X [1 - 3.. (/ + 1) (21 - 1 ) (~)2J [I _ 3.. (/ + 1) (21 - 1 ) (~)2] PI (cos ( 546) 
5 2/-3 r45 5 2/-3 r46 

+~ ~ 1(1-1)(1-2)(11/+ 1.5) a21
-

4 

5! 1~3 (21 + 3)(2/- 3) !{t l!{; 1 PI (cos ( 546 ), (57) 
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z 

5 

*------:-.-y y' 

x 

FIG. 2. Coordinate system for Eq. (52). 

The result (57), when substituted in (40), provides the 
final simplified form of J[S PT Since the only orientation 
dependence in Q(r45,r46,r56) comes through P, (cos (J546), 

that is, through the angle between r 45 and r 46' it is clear that if 
we replace g3 in (40) by g(f4S )g(r46 ), then the integral 

I 

IV. CONCLUSIONS 

For the model of impenetrable equisized spherical inclu­
sions randomly distributed throughout a matrix, we have 
now si~plified expressions for the two key integrals I[S}] 
and J[S3) that arise in the third-order McCoy and MPT 
bounds on the effective shear modulus Ge . It may again be 
noted that the simplification of I[S3] was done in a previous 
paper. 20 Both of these tasks were accomplished by expand­
ing orientation-dependent terms in the two integrands in 
spherical harmonics and utilizing the orthogonality proper­
ties of this basis set. The resulting simplified integrals are 
shown to depend upon the one-, two-, and three-body distri­
bution functions. We believe that this is the first time that the 
key integral J[S}J. required for the third-order bounds on 
Ge , has been simplified to this extent. In a subsequent paper 
we shaH employ this simplified form for J to compute the 
McCoy and MPT bounds for a wide range of sphere volume 
fractions. 
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exp(lkor 23 ) = exp(lk-r13 )exp( - ikfl2 cos 8) 
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would vanish identically. But, whereas the integral (40) is 
conditionally convergent, depending upon the coordinate 
system and the order of performing the integration, the sub­
traction of the g(r45 )g(r46 ) term from g3 before doing the 
integral makes it absolutely convergent. This fact was al­
ready remarked upon following Eq. (9). 

If we combine the results from the previous three sub­
sections, namely, (24) and (34) along with (35), and (40) 
along with (57), then the key integral J[S3] takes, the form 

ifJ3 f + 16:r . dr2 dr3[g3(f12,f13,r23) 

- g(f12 )g(r13 ) ]Q(r12,rI3,r23 ) , (58) 

where the function Q is given in (57) and where W2 (r) is 
given in (35). Finally, for completeness, we end this section 
by giving the simplified form of the other key integral I[S3] 
as obtained by Lado and Torquat02o

: 

(59) 

APPENDIX A 

As already used in (15), and following Barker and 
Monaghan,24 we expand angle-dependent functions!(rz3 ), 

which are well behaved (i.e., functions with a finite number 
of finite discontinuities), in Legendre polynomials: 

00 

!(r23 ) = I F/(f12,f13 )P/ cos(82 \3) , 
'=0 

(Al) 

where the orthogonality of the Legendre polynomials lead to 
the inverse expansion 

21 + 1 (1 F/ (r I2 ,rI3 ) = --- d(cos (J2\3)! (r23 )P, (cos 82l3 ) , 
2 ~-I 

(A2) 

and 

~3 = t72 + t73 - 2r12f 13 cos (J213 . (A3) 

But! (r23 ) may also be expanded in plane waves as 

I J -!(r23 ) = --3 dk!(k)exp(ikor 23 ), 
(21T) 

(A4) 

where the Fourier transform] (k) is given by an expression 
similar to (17). If we now arrange that r 1 is the origin, r 12 is 
along the z axis, the (r12,i13 ) plane is the (x,z) plane, and let 
«(J,ifJ) be the angular coordinates of the wave vector k in this 
frame, then the wen-known expansion of plane waves in 
spherical waves gives28 

(A5) 
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Then, using (A5) in the plane-wave expansion of/ (r23 ), one 
gets 

1 '" 
/(r23 ) = ---"2 I (21 + 1 )P, (cos em) 

27r- '=0 

xL"" dkk 2 fCk)j,Ckr J2 )j,(kr13 )· 

Comparison of (A6) with (A 1) gives 

(A6) 

FI (r I2 ,r\3) = 2~~ 1 IO dk k 2 fCk)j, (krdj, (kr13 ) , (A 7) 

a result we made use of in (20). 

APPENDIX B 

This appendix deals with the specific task of rewriting 
P'.;( cos tP )It 3 and P '.;( cos t/J )It 5 (see Fig. 3) in terms of r, s, 
and cos e for m = 0, I ,2,3, and 4, and the condition s < r. We 
start with the generating function of the Legendre polynomi­
als,29 

~ = (1 - 2 ~ cos e + S2) -·112 = i (~)'p, (cos e) . (BIa) 
t r r '=0 r 
Successive differentiation of (B la) with respect to cos e, de­
noted by primes, gives 

(r)3 (S)'- I ; =~; Pi(cose), 

(r)5 1 (s)' -2 ; = 3" ~; p ;' (cos e) , 

(r)7 I (S)'- 3 - =-I - p/"(cose) , 
t 15, r 

(i) m=Ocase 
For the m = 0 case we have 

(BIb) 

(BIc) 

(BId) 

I 

(;Y P4 (cos tP) = 3: (;r sin
4 e - 5 (;Y sin

2 e + GY 

r 
t 

FIG. 3. General geometry considered in Appendix 
B for transforming the arguments of the Legendre 
polynomials from cos tjJ to cos 8. 

(~)9 = _1_ I (~)'_4 Pi"'(cos e) . (BIe) 
t 105, r 

Next the law of sines gives 

sin tP = (riO sin e, (B2a) 

and this along with t 2 = r + ? - 2rs cos e gives 

cos ¢J = (rlt) (sir - cos e) . (B2b) 

For brevity, from now on we will write x = cos e and drop 
the argument x on PI and its derivatives; their presence will 
be assumed implicitly unless otherwise stated [as in 
p 7' (cos e) ]. Also, we will freely use Legendre's equation 
(along with its two higher-order derivatives) and recurrence 
relations30 for simplification. Similar relations for the asso­
ciated Legendre functions, 

P7'=C1-x2
)

m12d mp,(x)ldx'" , 

will also be used whenever necessary. 

(B3) 

= I (~)'-3 (:!.... (l_X2)2 PI" _2. (I_Xl) P;'_I +Pi-2) 
I r 24 3 

=,,(~)'-3_I_(/-l)(l-2) (7I(1+l)P -(l-3)(7/+4)P_ J "7- r 24 (21 + 1) I + I , I 

= I [(~)'-4 7/(/-1)(/-2)(1-3) _(~)'-2/(l-I)(l-2)(7/+ 11) 1p , 
I r 24(2/- l) r 24(21 + 3) 

(B4) 

and 

(B5) 

Thus we have from (B4) and (B5) 

P4(costP) =,,(SI-4 71(1-1)(1-2)(/-3) _s'-2 IU-1)(/-2)(7/+11»)p(cose), 
(3 .,... r'- I 24(2/- 1) r'+ I 24(21 + 3) I 

(B6) 

and 
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P4(cos¢) =2: l-4 _1_J(l-l)(l-2)(1-3)PI(coSO). 
(5 I ,J + I 24 

(B7) 

(ii) m = 1 case 
For the m = 1 case we have 

(;Y Pl (cos¢) = ~ sin 0 (;- COSO) [4 (;Y -7 (;Y sin
2 e ] 

=~(I- 2)1/2~(!.)1-3(!....p" _!""xP" _~(1_x2)P'" +~X(1_X2)P"') x £.. 1-2 I-I 15 I-I 15 1 2 1 r 3 3 

(
S)I-3 (I 2) I =2: - - [(71+2)(1-3)P)_1- 71(1-I)PI+d 

I r 6(21 + 1) . 

=~[(!.)/-4 (-7)(1-1)(/-2)(1-3) _(!.)/-2 (-I)(I-l)U- 2 )(7J+9)]p) (B8) 
..,. r 6(21- 1) r 6(21 + 3) 

and 

(;Y P! (cos ¢) = ~ sin 0 (; - cos 0 ) [4 GY -7 (;Y sin
2 0 ] 

= (1 - x2) 1/2 2: (!.)I-3 (l:. xP i"-- I _l:. x Pi" - ~ (1 - x 2) P j'" + ~ x (1 - x 2) P 7': I ) 
1 r 3 3 6 6 

= ~ (;Y -4 ( _ ~) (I _ 1) (1- 2) (1- 3) P) . (B9) 

Thus (BS) and (B9) give the desired relations 

P!(cos¢) = _ ~(SI-4 7(1-1)(1-2)(1-3) _ SI-2 (l-1)(I-2)(71+9»)p)(COSO) 
(3 ..,. ,J-l 6(2/- 1) ,J+ 1 6(21 + 3) 

(BIO) 

and 

pi (cos¢) SI--4 1 
4 = _ ~--(/-l)(l-2)(l-3)P:(cosO). 

t 5 ..,. ,J+I 6 
(Bll ) 

(iii) m = 2 case 
For the m = 2 case we have 

(;Y P; (cos ¢J) = ~ sin
2 0 [6GY - 7 (;Y sin

2 
0 ] 

= ~ (l - x2
) 2: (!.)/- 3 (2Pi'_1 - ~ (l - x2

) PI") 
2 1 r 15 

(s)l-- 3 1 =2: -- (7(l-1)(1-2)P7+1-(7J-4)(1-3)Py __ d 
1 r 2(21+ 1) 

=2: [(!.)1--4 7(1-2)(1-3) _(!.)I_Z (1-2)(7/+3) ]P7 
I r 2(2/- 1) r 2(21 + 3 ) 

(BI2) 

and 

(;Y P~ (cos ¢J) = ~ sin
2

0 [6(;Y - 7 (7Y sin
2 

0 J 

= (1 - x 2
) ~ (;)'-- 3 (3Pj" - + (l - X2)pi'': I) 

= I (!.)I-4 ~ (I - 2) (1 - 3)P 7 . 
1 r 2 

(B13) 

Thus 

P~(cos¢)_ (/-4 7(1-2)(1-3) _/-2 (l-2)(7J+3»)p2(COSO) 
t 3 -~ ,J-I 2(2/-1) ,J+I 2(2/+3) I , 

(B14) 

and 

3511 J. App/. Phys., Vol. 62, No.9, 1 November 1987 Sen, Lado, and Torquato 3511 

Downloaded 27 Sep 2010 to 128.112.70.51. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



p 2 (cos -I.) 1-4 1 
4 'I' =,\:,_S __ (/_2)(/_3)P 2(coS(}). 

(5 +- r'+ I 2 1 
(B15 ) 

(iV) m = 3 case 
For the m = 3 case we have 

(;Y Pi (cos (,6) = 105 sin
3 

() (~- cos () ) (;Y 
= 7(1 - x2

)312 ~ (~)'- 3 (Pt .. 1 - xP;,,) 

=,\:,(~)/-3 7(1-2) (P 3 _p3 ) 
£.. r 2/+ 1 I-I 1+1 

_ [(~)/-4 7(1- 3) _ (~)/-2 7(/ - 1)] Pi 
~ . r 21 - 1 r 21 + 3 

(B16) 

and 

(S)/-4 
= -~; (/-3)P~. 

Thus 

P! (cos (,6) (/- 4 7(1- 3) 
(3 = -~ r'-1 2/-1 

_sl-2 7(1_l))p 3(COS(}) 
r'+12/+3 1 

1- 4 

- '\:' - (/ - 3)Pi(cos ()) . +- r'+ I 

(v) m=4case 
For the m = 4 case we have 

GY P! (cos (,6) = 105 (;Y sin4 
() 

= 70-X2)2 ~ (;Y-3 PI" 

= ~ [(~)'-4-(2-/~-1-) 

- - -- P (S)/-2 7 ] 4 

r 2/+3 1 

and 

GY P! (cos (,6) = 105 (;Y sin4 
() 

(5)/-4 
= ~; Pi· 

Thus 
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(RI7) 

(BI8) 

(B19) 

(B20) 

(B21 ) 

~I--------------------------------

P: (cos (,6) (Sl- 4 7 i - 2 7 ) 4 Ll 
---= '\:' ----- - ------ P (COS (7) 

( 3 +- r' - I 2/ - 1 r' + I 21 + 3 1 
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