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Complex tumor-host interactions can significantly affect the growth dynamics and
morphologies of progressing neoplasms. The growth of a confined solid tumor in-
duces mechanical pressure and deformation of the surrounding microenvironment,
which in turn influences tumor growth. In this paper, we generalize a recently devel-
oped cellular automaton model for invasive tumor growth in heterogeneous microen-
vironments [Y. Jiao and S. Torquato, PLoS Comput. Biol. 7, e1002314 (2011)] by
incorporating the effects of pressure. Specifically, we explicitly model the pressure
exerted on the growing tumor due to the deformation of the microenvironment and
its effect on the local tumor-host interface instability. Both noninvasive-proliferative
growth and invasive growth with individual cells that detach themselves from the
primary tumor and migrate into the surrounding microenvironment are investigated.
We find that while noninvasive tumors growing in “soft” homogeneous microenvi-
ronments develop almost isotropic shapes, both high pressure and host heterogeneity
can strongly enhance malignant behavior, leading to finger-like protrusions of the
tumor surface. Moreover, we show that individual invasive cells of an invasive tumor
degrade the local extracellular matrix at the tumor-host interface, which diminishes
the fingering growth of the primary tumor. The implications of our results for can-
cer diagnosis, prognosis and therapy are discussed. Copyright 2012 Author(s). This
article is distributed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.3697959]

I. INTRODUCTION

Tumor malignancy arises from many complex interactions occurring between the tumor and
its host microenvironment.1, 2 There is increasing evidence that the host microenvironment can sig-
nificantly affect neoplasm progression.3–20 The growth of a confined solid tumor also produces
mechanical pressure, leading to deformation of the surrounding microenvironment, which generally
affects the growth dynamics of the tumor.21 Such pressure can result in clinical complications, espe-
cially in a confined region of space such as the brain22 and deform or even collapse the intra-tumoral
blood and lymphatic vessels.23 It has been hypothesized that pressure may also influence tumor
physiology, growth rate and morphology.21 Therefore, understanding effects of pressure on tumor
growth is important for both fundamental cancer research and clinical practice.21

Mechanical interactions between a tumor and its microenvironment is a topic of great interest. In
the work of Helmlinger et al.,21 it was shown that pressure can significantly reduce tumor growth rate
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and even inhibit tumor growth in vivo. Bru and Casero24 studied the effect of external pressure on the
growth of tumor cell colonies and showed that tumor morphology strongly depends on the pressure
exerted by the surrounding medium. Moreover, it has been observed that stiffer microenvironments
can promote malignant behavior.25 For example, tumors embedded in low-density soft agarose gels
remain roughly spherical in shape; however, they could exhibit a finger-like morphology in a stiff
gel with high density.26

A variety of analytical and computational models have been developed to incorporate the
effect of pressure on tumor growth. In particular, McElwain and Pettet27 considered that tumor
cells mechanically behave as incompressible “bags” of fluid enclosed by the plasma membrane.
Chen et al.28 modeled the growth of tumor spheroids in agarose gels, considering the agarose
gel to be a elastic material undergoing large deformations and the tumor tissue was approximated
by a fluid-like material with additional drag and surface tension effects. Roose et al.29 employed
a linear poroelasticity model to estimate the solid stress generated by the growth of the tumor
spheroid. Although the overall growth of the tumor spheroid can be well described by these analytical
approaches, they are not able to provide detailed information on the tumor morphology. Gevertz
et al.7, 8 employed a cellular automaton model to investigate the effects the shape of an organ
on growing tumors through mechanical interactions. Using coupled nonlinear partial differential
equations, Macklin and Lowengrub19 modeled the response of the tissue surrounding the tumor
to the proliferation-induced mechanical pressure. Specifically, these authors found that tumors
growing in mechanically unresponsive (i.e., rigid) microenvironments develop invasive fingering
morphologies and tumors growing in mechanically responsive (i.e., soft) microenvironment develop
compact morphologies. However, since a continuum method is used, it is not possible to keep track
of individual invasive cells that detach themselves from the primary tumor and how such invasive
cells affect the growth dynamics and morphologies of the primary tumor.

Recently, we presented a single-cell based cellular automaton (CA) model for invasive tumor
growth in heterogeneous microenvironments30 in response to the challenge of developing an “Ising”
model for cancer growth.31 In this CA model, individual invasive cells can detach themselves from
the primary tumor, locally degrade the extracellular matrix (ECM) and invade into the surrounding
host microenvironment. A rich spectrum of emergent properties and coupled growth dynamics of
the primary tumor and invasive cells were predicted. However, the effects of pressure exerted by the
outer boundary of the growth permitting region (e.g., cranium) on the tumor and the deformation of
the ECM were only implicitly considered.

In this paper, we generalize the aforementioned CA model to explicitly take into account the
deformation of the ECM surrounding an invasive or noninvasive tumor, which in turn imposes pres-
sure on the neoplasm. Moreover, we also explicitly consider the local geometry of the tumor-host
interface (i.e., the tumor surface), which can either enhance or reduce local growth (i.e., interface
instability) depending on the local curvature of the interface. Both noninvasive-proliferative growth
and invasive growth with individual cells that detach themselves from the primary tumor and migrate
into the surrounding microenvironment are investigated. We show here that by varying the ECM
rigidity (density), one can obtain a continuous spectrum of tumor morphologies ranging from smooth
isotropic shapes to fingering patterns, which have been observed both in vitro and in vivo.19 The
specific surface32 is employed to quantify the degree of “fingering” for noninvasive proliferative
growth. We find that both the high pressure built up due to tumor growth and the microenvironment
heterogeneity can significantly promote malignancy of the noninvasive proliferative tumor. More-
over, we show that individual invasive cells that leave an invasive primary tumor degrade the local
ECM at the tumor-host interface, which diminishes the fingering growth of the primary tumor. Our
results concerning the diversity of tumor morphologies enable one to infer what are the possible
mechanisms behind the resulting shapes. Such information is expected to be of great value for cancer
diagnosis, prognosis and therapy.

II. COMPUTATIONAL METHODS

Following Refs. 7, 8, 30, 33–35, we use the Voronoi tessellation associated with random-
sequential-addition (RSA) sphere packings32 to model the underlying cellular structure. In
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particular, nonoverlapping d-dimensional spheres (d = 2 and 3) are randomly and sequentially
placed in a prescribed region in d-dimensional Euclidean space until there is no void space left for
additional spheres. Then, space is divided into polyhedra, each associated with a sphere center, such
that any points within a polyhedron is closer to its associated sphere center than to any other sphere
centers. The resulting Voronoi polyhedra are referred to as automaton cells, which can represent
either real biological cells or regions of tumor stroma.

Here we explicitly takes into account the interactions between a single cell and the surrounding
microenvironment. Thus, each automaton cell represents either a single tumor cell (approximately
15 − 20 μm in size) or a region of tumor stroma of similar size. In the current model, we mainly
focus on the effects of the ECM macromolecule density, ECM degradation by the malignant cells,
and the pressure due to the ECM deformation on tumor growth. Henceforth, we will refer to the host
microenvironment (or tumor stroma) as the “ECM” for simplicity. Each ECM associated automaton
cell is assigned a particular density ρECM, representing the density of the ECM molecules within
the automaton cell. A tumor cell can occupy an ECM associated automaton cell only if the density
of this automaton cell ρECM = 0, which means that either the ECM is degraded or it is deformed
(pushed away) by the proliferating tumor cells.

A. Modeling the pressure exerted on the growing tumor

The extracellular matrix is a complex mixture of macromolecules and interstitial fluids that
provides mechanical supports for the tissue and plays an important role for cell adhesion and
motility.36 In general, the ECM can be highly heterogeneous, with large spatial variations of the
ECM macromolecule densities ρECM. Our simulated tumors are only allowed to grow in a compact
growth-permitting region in order to mimic the physical confinement of the host microenvironment,
such as the boundary of an organ or cranium in the case of the brain. Therefore, a growing tumor
deforms the ECM, which in turn imposes a pressure on the tumor.21, 37, 38

In Ref. 30, we considered the effects of the local ECM density on the proliferating cells. In
this work, the ECM with larger density was considered to be more rigid and more difficult to
degrade/deform. Therefore, the probability of division pdiv, which is related to the cell doubling time
τ 0 by τ 0 = ln 2/ln (1 + pdiv), was taken to be a monotonically decreasing function of ρECM, e.g.,

pdiv ∼ (1 − ρECM). (1)

The effect of pressure was only considered implicitly, e.g., pdiv ∼ (1 − r/Lmax), where r is the
distance of the dividing cell from the tumor centroid, Lmax is the distance between the closest
growth-permitting boundary cell in the direction of tumor growth and the tumor centroid.

Here we explicitly consider the pressure exerted on the growing tumor by the ECM due to
deformation. In particular, we consider that the ECM is a linear elastic medium with bulk modulus
κECM. The pressure P due to volume deformation �V is given by

P = κECM
�V

V
, (2)

where V is the initial volume of the ECM. The ECM density ρECM = M/V, where M is the ECM
mass. Therefore, the ECM density increase due to small volume shrinkage, i.e.,

ρECM = M/(V − �V ) ≈ (M/V )(1 + �V ) = ρ0
ECM(1 + �V ), (3)

which gives

�V

V
= (ρECM − ρ0

ECM)

ρ0
ECM

. (4)

Substituting Eq. (4) into Eq. (2), we have

P = κECM
�V

V
= κECM

(ρECM − ρ0
ECM)

ρ0
ECM

. (5)
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In other words, the pressure exerted by the ECM due to deformation is proportional to its density,
i.e., P ∼ (ρECM − ρ0

ECM). Without loss of generality, we consider that cell division probability is
simply a monotonically decreasing function of pressure, and thus, also a monotonically decreasing
function of the ECM density, i.e.,

pdiv = (1 − ωP) ∼
[

1 − ω
κECM

ρ0
ECM

(ρECM − ρ0
ECM)

]
= [1 − ω∗

ρ0
ECM

(ρECM − ρ0
ECM)], (6)

where

ω∗ = ωκECM (7)

is a constant of proportionality.
Suppose that the proliferative cells possess the ECM degradation ability χ0, which is the fraction

of the ECM macromolecules degraded by malignant cells per day per unit volume. After each day,
the total mass of the ECM that has been degraded is

�M = χ0

n∑
i

ρECM(i)v(i), (8)

where n is the total number of the ECM associated automaton cells taken by new tumor cells, ρECM(i)
and v(i) are respectively the macromolecule density and volume associated with the ith automaton
cell. The average ECM density is then given by

ρECM = M − χ0
∑n

i ρECM(i)v(i)

V − ∑n
i v(i)

. (9)

We define the ratio of ρECM/ρ0
ECM to be ξ , i.e.,

ξ = ρECM

ρ0
ECM

= M − χ0
∑n

i ρECM(i)v(i)

V − ∑n
i v(i)

V

M
. (10)

The macromolecule densities of the remaining ECM automaton cells are then updated as

ρECM( j) = ξρ0
ECM( j), (11)

i.e., the increase of the ECM density after deformation is proportional to its original density. Substitute
Eq. (11) into Eq. (6), we have

pdiv ∼ [
1 − ω∗(ξ − 1)

]
. (12)

We note that in the above analysis, we have neglected the deformation of the tumor cells, which
possess a much larger bulk modulus κcell than that of the ECM, i.e., κcell/κECM ∼ 100 (see Ref. 29).

B. Modeling local tumor-host interface instablity

Real tumors never possess a perfect spherical shape. Tumors growing even in a homogeneous
soft ECM will develop a “bumpy” tumor surface, which can be very well captured by our underlying
cellular structure model (i.e., the Voronoi tessellation).30 When growing in a rigid microenvironment,
a locally smooth tumor surface which results in a huge pressure gradient at the surface is highly
undesirable. On the other hand, locally small protrusions on the tumor surface can gain some growth
advantage by further invading into the surrounding ECM to release local pressure.26

To model the aforementioned effects, we consider the local geometry of the protrusion tip. In
particular, the width of the tip is taken to be the length w of the automaton cell at the tip. The length
of the tip is given by

	 = |xc − x|, (13)

where xc is the position of the center of the automaton cell at the tip and x = ∑m
i xi is the average

center position of tumor cells neighboring the cell at the tip. The growth advantage of the cell at the
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tip is then proportional to 	/w, i.e.,

pdiv ∼ (1 + 	/w). (14)

We note that 	 is effective the radius of curvature, which can be either positive or negative. A
negative value of 	 reduces pdiv. For positive 	, the ratio 	/w is defined as the stress concentration
factor associated with a crack tip in solid mechanics.

Other biophysical mechanisms associated with noninvasive and invasive malignant cells are
the same as those described in Ref. 30. For example, the non-invasive cells remain in the primary
tumor and can be proliferative, quiescent or necrotic, depending on their nutritional supply, which
is determined by tumor-size dependent characteristic diffusion distances. Proliferative cells can
produce “mutant” daughter cells that possess strong ECM degradation ability χ1 and can leave the
primary tumor and invade into the surrounding microenvironment by locally degrading the ECM
macromolecules. Readers are referred to Ref. 30 for details of such mechanisms.

C. Cellular automaton rules

We now specify the CA rules for our generalized model, which closely follow those given in
Ref. 30, except for the additional rules explicitly incorporating the pressure imposed by the ECM
and the local host-tumor interface instability described here. After generating the automaton cells
using Voronoi tessellation, an ECM density ρECM ∈ (0, 1) is assigned to each automaton cell within
the growth-permitting region, which represents the heterogeneous host microenvironment. Then a
tumor is introduced by designating any one or more of the automaton cells as proliferative cancer
cells. Time is then discretized into units that represent one real day. At each time step:

� Each automaton cell is checked for type: invasive, proliferative, quiescent, necrotic or ECM
associated. Invasive cells degrade and migrate into the ECM surrounding the tumor. Prolifera-
tive cells are actively dividing cancer cells, quiescent cancer cells are those that are alive, but
do not have enough oxygen and nutrients to support cellular division and necrotic cells are
dead cancer cells.

� All tumorous necrotic cells are inert (i.e., they do not change type).
� Quiescent cells more than a certain distance δn from the tumor’s edge are turned necrotic. The

tumor’s edge, which is assumed to be the source of oxygen and nutrients, consists of all ECM
associated automaton cells that border the neoplasm. The critical distance δn for quiescent cells
to turn necrotic is computed as follows:

δn = aL (d−1)/d
t , (15)

where a is a prescribed parameter (see Table I), d is the Euclidean spatial dimension and Lt

is the distance between the geometric centroid xc of the tumor and the tumor edge cell that is
closest to the quiescent cell under consideration. The position of the tumor centroid xc is given
by

xc = x1 + x2 + · · · + xN

N
, (16)

where N is the total number of noninvasive cells contained in the tumor, which is updated when
a new noninvasive daughter cell is added to the tumor.

� Each proliferative cell will attempt to divide with probability pdiv into the surrounding ECM
(i.e., the automaton cells associated with the ECM) by degrading and pushing away the ECM
in that automaton cell. As discussed in the previous section, we consider that pdiv for a specific
proliferative cell depends on the local ECM density [Eq. (1)], the pressure imposed by the
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ECM [Eq. (6)] and the local geometry of the tumor-host interface [Eq. (14)], i.e.,

pdiv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0[1 − ρECM − ω∗ξ if any ECM associated automaton cell within

+ω∗ + ξ 	
w ] the predefined growth distance is in the growth-

permitting microenvironment

if no ECM associated automaton cell within

0 the predefined growth distance is in the growth-

permitting microenvironment, or the value

of the above expression is negative

(17)

where p0 is the base probability of division (see Table I), r is the distance of the dividing cell
from the tumor centroid, ρECM is the ECM density of the automaton cell to be taken by the new
tumor cell, ω* and ξ are respectively given by Eq. (7) and Eq. (10). When a ECM associated
automaton cell is taken by a tumor cell, its density is set to be zero. The predefined growth
distance (δp) is described in the following bullet point.

� If a proliferative cell divides, it can produce a mutant daughter cell possessing an invasive
phenotype with a prescribed probability γ (i.e., the mutation rate). The invasive daughter cell
gains ECM degradation ability χ1 and motility μ, which enables it to leave the primary tumor
and invade into the surrounding ECM. The rules for updating invasive cells are given in the
following bullet point. If the daughter cell is noninvasive, it is designated as a new proliferative
cell.

� A proliferative cell turns quiescent if there is no space available for the placement of a daughter
cell within a distance δp from the proliferative cell, which is given by

δp = bL (d−1)/d
t ,

where b is a nutritional parameter (see Table I), d is the spatial dimension and Lt is the
distance between the geometric tumor centroid xc and the tumor edge cell that is closest to the
proliferative cell under consideration.

� An invasive cell degrades the surrounding ECM (i.e., those in the neighboring automaton cells
of the invasive cell) and can move from one automaton cell to another if the associated ECM
is completely degraded locally. For an invasive cell with motility μ and ECM degradation
ability χ1, it will make m attempts to degrade the ECM in the neighboring automaton cells
and jump to these automaton cells, where m is an arbitrary integer in [0, μ]. For each attempt,
the surrounding ECM density ρECM is decreased by δρ, where δρ is an arbitrary number in
[0, χ1]. Using random numbers for the ECM degradation ability and cellular motility is to take
into account tumor genome heterogeneity, which is manifested as heterogeneous phenotypes
(such as different m and δρ). When the ECM in multiple neighboring automaton cells of the
invasive cell are completely degraded (i.e., ρECM = 0), the invasive cell moves in a direction
that maximizes the nutrients and oxygen supply. Here we assume that the migrating invasive
cells do not divide. The degraded ECM shows the invasive path of the tumor.

� The density ρECM of the remaining ECM automaton cells is updated according to Eq. (11).

The important parameters mentioned in the bullet points above are summarized in Table I. We
note that although only spherical growth-permitting regions are considered here, this constraint can
be easily relaxed. As a demonstration of the capability and versatility of the generalized CA model,
we will employ it to investigate the growth dynamics and morphologies of both noninvasive and
invasive tumors in two dimensions. However, the model is easily extended to three dimensions and
the algorithmic details of the model are presented for any spatial dimension.

III. RESULTS

Homogeneous and random distributions of the ECM density30 are used to study the effects
of microenvironment heterogeneity on the growing tumor. The random distribution of the ECM
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TABLE I. Parameters and terms in the CA model. Summarized here are definitions of the parameters for tumor growth and
invasion, and all other (time-dependent) quantities used in the simulations. The number(s) listed in parentheses indicates the
value or range of values assigned to the corresponding parameters in the simulations. The values of the parameters are chosen
such that the CA model can reproduce reported growth dynamics of GBM from the medical literature.3, 7, 33

Time dependent terms

Lt Local tumor radius (varies with cell positions)
Lmax Local maximum tumor extent (varies with cell positions)
δp Characteristic proliferative rim thickness
δn Characteristic living-cell rim thickness (determines necrotic fraction)
pdiv Probability of division (varies with cell positions)
ρECM ECM density (depends on ECM deformation and varies with positions, >0)
ξ Ratio of current ECM density over initial density ρECM/ρ0

ECM

ω* Parameter measuring pdiv reduced by pressure, = 2ρ0
ECM

Growth parameters

p0 Base probability of division, linked to cell-doubling time (0.192)
a Base necrotic thickness, controlled by nutritional needs (0.58 mm1/2)
b Base proliferative thickness, controlled by nutritional needs (0.30 mm1/2)
	 Length of local protrusion tip
w Width of local protrusion tip
χ0 ECM degradation ability of proliferative cells (0.0 − 0.25)

Invasiveness parameters

γ Mutation rate (determines the number of invasive cells, 0.05)
χ1 ECM degradation ability of invasive cells (0.4 − 1.0)
μ Cell motility (the number of “jumps” from one automaton cell to another, 0 − 4)

density, which henceforth is referred to as the “random ECM” for simplicity, is generated by
assigning a random ECM density value between 0 and 1 to each ECM associated automaton cell.
The boundary of the growth-permitting region is considered to be vascularized, i.e., a growing tumor
can receive oxygen and nutrients from the growth-permitting region. In particular, we consider
a constant radially symmetric nutrient/oxygen gradient in the growth-permitting region with the
highest nutrient/oxygen concentration at the vascular boundary. We note that although generally
the nutrient/oxygen concentration field in vivo is more complicated, previous numerical studies
that considered the exact evolution of nutrient/oxygen concentrations have shown a decay of the
concentrations toward the tumor center.9, 10 Since the directions of cell motions are determined by
the nutrient/oxygen gradient only, our constant-gradient approximation is a very reasonable one.

In the beginning, a proliferative tumor cell is introduced at the center of the growth-permitting
region and tumor growth is initiated. The parameters employed are either given in Table I or specified
for each case separately. The specific surface s for the noninvasive proliferative tumor, defined as the
ratio of the total length of the perimeter of the primary tumor over its total area,30, 32 is employed to
quantify the degree of “fingering” of the growing tumor. For a perfectly circular shape with radius
R, the associated s is given by 2/R, which is the minimal value among all shapes with the same area.
The specific surface of a tumor in excess of that of a circle provides a measurement of the roughness
of the tumor surface and thus, the degree of “fingering”. Therefore, the specific surface s scaled by
2/RT associated with a circle is used for an arbitrary-shaped tumor with effective radius RT (i.e., the
average distance from tumor edge to tumor center). In the visualizations of the tumor that follow,
we will use the following convention: The ECM degraded by the tumor cells is blue. In the primary
tumor, necrotic cells are black, quiescent cells are yellow and proliferative cells are red. The invasive
tumor cells are green.

A. Noninvasive proliferative growth

We first investigate the effects of pressure on the growth of noninvasive proliferative tumors by
setting the mutation rate to zero, i.e., γ = 0. Figure 1 shows the snapshots of noninvasive tumors
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FIG. 1. Upper panel: Snapshots of a noninvasive tumor growing in homogeneous ECM with density ρECM = 0.25 on day
40 (a1), day 80 (a2) and day 120 (a3) after initialization. The associated specific surface s/(2/RT) (a4) remains small in
value as the tumor grows, indicating a compact tumor morphology. Middle panel: Snapshots of a noninvasive tumor growing
in homogeneous ECM with density ρECM = 0.45 on day 40 (b1), day 80 (b2) and day 120 (b3) after initialization. The
associated specific surface s/(2/RT) (b4) shows a rapid growth after day 100, indicating fingering growth of the tumor. Lower
panel: Snapshots of a noninvasive tumor growing in homogeneous ECM with density ρECM = 0.65 on day 40 (c1), day 80
(c2) and day 120 (c3) after initialization. The associated specific surface s/(2/RT) (c4) increase monotonically as the tumor
grows, indicating significant fingering of the tumor.

growing in the homogeneous ECM with initial density ρ0
ECM = 0.25, 0.45 and 0.65. The associated

specific surface as a function of time is also shown. The ECM degradation ability value χ0 = 0.2
for the proliferative cells is used.

It can be clearly seen that as the ECM density (i.e., pressure level) varies, a variety of growth
dynamics and tumor morphologies emerge. In particular, the tumor growing in the ECM with low
density (pressure) (ρECM = 0.25) develops an almost isotropic shape with small specific surface
s/(2/RT) (upper panel of Fig. 1). As the ECM density (pressure) increases (ρECM = 0.45), the tumor
begins to develop bumpy surface, but a well-defined “spherical” core can still be identified (middle
panel of Fig. 1). For the high ECM density (pressure) ρECM = 0.65, finger-like protrusions emerge at
early growing stages and no “spherical” core of significant size is found (lower panel of Fig. 1). The
associated specific surface s/(2/RT) monotonically increases as the tumor grows. Since the elongated
finger-like structures of proliferative cells can grow into the nutrient-rich microenvironment, necrotic
regions within these “fingers” are very rare. We note that the overall size (i.e., distance between
tumor center and the farthest cell on tumor edge) of the tumors with distinct morphologies decrease
as the ECM density and the associated pressure increase. Nonetheless, the emergence of finger-like
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FIG. 2. Upper panel: Snapshots of a noninvasive tumor growing in random ECM with average density ρECM = 0.25 on
day 40 (a1), day 80 (a2) and day 120 (a3) after initialization. The associated specific surface s/(2/RT) (a4) remains small in
value as the tumor grows, indicating a compact tumor morphology. Middle panel: Snapshots of a noninvasive tumor growing
in random ECM with average density ρECM = 0.45 on day 40 (b1), day 80 (b2) and day 120 (b3) after initialization. The
associated specific surface s/(2/RT) (b4) shows a rapid growth after day 100, indicating fingering growth of the tumor. Lower
panel: Snapshots of a noninvasive tumor growing in random ECM with average density ρECM = 0.65 on day 40 (c1), day 80
(c2) and day 120 (c3) after initialization. The associated specific surface s/(2/RT) (c4) increase monotonically as the tumor
grows, indicating significant fingering of the tumor. Note that sub-fingers are developed on the primary fingers.

structures significantly release the local pressure built up at the smooth surface of the growing tumor
and thus, the growth of such invasion fingers is favored.

Figure 2 shows the snapshots of noninvasive tumors (e.g., γ = 0) growing in the random ECM
with average initial density ρ0

ECM = 0.25, 0.45 and 0.65, as well as the associated specific surface
s/(2/RT) as a function of time. The ECM degradation ability value χ0 = 0.2 for the proliferative
cells is used. Similar effects of the ECM density (i.e., pressure level) on the growth dynamics and
tumor morphologies are observed, i.e., increasing the ECM density (pressure) leads to a continuous
variation of tumor morphology ranging from smooth isotropic shapes to significantly fingered
patterns. Since the heterogeneity of the ECM results in stronger local tumor surface roughness, the
fingering effect is also stronger comparing with the corresponding homogeneous case with the same
ECM density. In particular, the tumor growing in the ECM with ρ0

ECM = 0.65 develops sub-fingers
on the primary fingers, which is mainly caused by the local ECM density fluctuations (lower panel of
Fig. 2). Such fine morphological features can hardly be resolved by continuum simulation method.
The stronger fingering of tumors growing in the random ECM also leads to larger overall extents of
the tumors.
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FIG. 3. Snapshots of invasive tumors growing in a homogeneous ECM with different densities on day 100. Individual invasive
cells detach themselves from the primary tumor, locally degrade the ECM and migrate into the surrounding microenvironment.
(a) ρECM = 0.25 (b) ρECM = 0.45 (c) ρECM = 0.65. Note that the tumor growing in the low-density ECM (pressure) (ρECM

= 0.25) develops relative short invasive branches [see panel (a)], while the tumor growing in the high-density ECM (pressure)
(ρECM = 0.65) possesses very long invasive branches [see panel (c)].

B. Invasive growth with individual cells migrating into surround ECM

Figure 3 shows the snapshots of invasive tumors growing in a homogeneous ECM with initial
density ρ0

ECM = 0.25, 0.45 and 0.65 on day 120. Specifically, individual invasive cells can detach
themselves from the primary tumor and migrate into the surrounding ECM. The following values
of invasiveness parameters are used: mutation rate γ = 0.05, ECM degradation ability value for
the proliferative cells χ0 = 0.25, ECM degradation ability value for the invasive cells χ1 = 0.75,
motility of the invasive cells μ = 4, which corresponds to a high degree of malignancy.

It is clear from Fig. 3 that the tumor growing in the low-density ECM (e.g., under low pressure)
(ρECM = 0.25) develops relatively short invasive branches (Fig. 3(a)), while the tumor growing
in the high-density ECM (e.g., under high pressure) (ρECM = 0.65) possesses very long invasive
branches (Fig. 3(c)). Also, we note that a large number of invasive cells are generated at the finger
tips of the primary tumor, which in turns promotes the growth of the fingers. Since the invasive cells
degrade the ECM close to the tumor surface, the local pressure exerted on the tumor is reduced.
Thus, the degree of “fingering” in the invasive tumors is smaller than in the noninvasive ones. The
invasive cells also enhance the growth of the primary tumor. Moreover, it can be seen that high ECM
density (i.e., high pressure exerted on the tumor) enhances both fingering of the primary tumor and
malignant behavior of invasive cells (Fig. 3(c)). We note that such invasion-tumor couplings have
been extensively explored in Ref. 30.

Figure 4 shows the snapshots of invasive tumors growing in the random ECM with average initial
density ρ0

ECM = 0.25, 0.45 and 0.65 on day 120. The same values of invasiveness parameters as the
homogeneous case are used. Again, the growth dynamics and tumor morphologies are qualitatively
the same as the corresponding homogeneous case. However, the heterogeneity of the ECM enhances
local tumor instability and thus, promotes the malignant behavior of the invasive tumor.

IV. CONCLUSIONS AND DISCUSSION

We have generalized a recently developed cellular automaton model to study the effects of
pressure on the dynamics and tumor morphologies for both noninvasive proliferative growth and
invasive growth with individual malignant cells detaching themselves from the primary tumor. In
particular, we have explicitly taken into account the deformation of the extracellular matrix surround-
ing the tumor, which in turn imposes pressure on the neoplasm. Moreover, we also considered the
local tumor-host interface instability, which can give rise to the emergence of finger-like protrusions
of the tumor surface. We showed that by varying the ECM rigidity (i.e., the pressure level in the
ECM), one can obtain a variety of tumor morphologies ranging from spherical shapes to fingering
patterns, which are quantitatively characterized by the specific surface. We also found that both high
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FIG. 4. Snapshots of invasive tumors growing in a random ECM with different average densities on day 100. Individual
invasive cells detach themselves from the primary tumor, locally degrade the ECM and migrate into the surrounding
microenvironment. (a) ρECM = 0.25 (b) ρECM = 0.45 (c) ρECM = 0.65. Note that the tumor growing in the low-density
ECM (pressure) (ρECM = 0.25) develops relative short invasive branches [see panel (a)], while the tumor growing in the
high-density ECM (pressure) (ρECM = 0.65) possesses very long invasive branches [see panel (c)]. Also observe that invasive
cells clump at the finger tips of the primary tumor, which in turns promotes the growth of the fingers [see panel (c)].

FIG. 5. An image showing the morphology of ductal carcinoma in situ with bumpy surface. Image courtesy of R. Gatenby.

pressure and microenvironment heterogeneity can amplify the malignancy of the neoplasm in both
the noninvasive proliferative case and the invasive case. Moreover, we demonstrated that the growth
dynamics of the primary tumor and invasive cells are strongly coupled.

Figure 5 shows the morphology of ductal carcinoma in situ (DCIS), which resembles the
morphology of noninvasive tumors growing in the ECM with intermediate density (Fig. 1(b) and
Fig. 2(b)) predicted by our CA model. Strong fingering growth is rarely observed for DCIS, manly
because the neoplasm is further constrained by a tight basal membrane composed of epithelial
cells. Such complex microenvironment heterogeneities need to be incorporated in the CA model
to accurately predict DCIS progression. On the other hand, significant fingering has been observed
in vitro.19 These experimental observations clearly demonstrate the robustness and predictive capa-
bility of our CA model.

We have shown that a high pressure in the ECM, which is due to large ECM density and
deformation, can lead to significant fingering growth and enhance the malignant behavior of both
the primary tumor and invasive cells. As a tumor grows in a confined microenvironment, it is
inevitable that a high pressure will be built up. Thus, a tumor with a low level of malignancy initially
can eventually develop highly malignant invasive behavior. Specifically, when finger-like protrusions
develop, cells close to the finger tip have less contacting neighbors and thus, less adhesion. This
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makes it very easy for the invasive cells to leave the primary tumor and migrate deeply into the
surrounding microenvironment, which ultimately leads to cancer metastasis.

Moreover, our results concerning the diversity of tumor morphologies enable one to infer the
possible mechanisms behind the resulting shapes. For example, a noninvasive proliferative tumor
possesses a morphology with significant finger-like protrusions on the tumor surface could be at-
tributed to a host microenvironment in which the tumor grew that was very rigid and inhomogeneous.
On the other hand, if such a tumor has a smooth and almost isotropic shape, it could mean that its
host environment was very soft and homogeneous. For an invasive tumor with individual invasive
cells that detach themselves from the primary tumor and migrate into the surrounding microenvi-
ronment, a rougher tumor surface could imply that the individual invasive cells possessed a strong
ECM degradation ability, high motility and weak cell-cell adhesion.

Although our CA model is readily applied to model in vitro tumor growth, the heterogeneous
microenvironments considered in the current model are highly idealized and do not include hetero-
geneities such as blood vessels and lymphatics, which could play an important role in clinical cancers.
Incorporating more realistic microenvironments as well as other possible mechanisms (e.g., tumor
and normal cell phenotypic plasticity and immune response) would lead to an improved model that
could provide insights into in vivo tumor growth. Nonetheless, we expect that the conclusions drawn
here still qualitatively apply to in vivo situations. Therefore, information on the tumor morphology,
which can be obtained from histological images, is expected to lead to more accurate diagnosis
and thus, more effective tumor treatment strategies. For example, if a tumor with a rough surface is
detected, drugs that can release the high concomitant pressure in the host environment by modifying
the molecular compositions of the ECM macromolecules could be used to reduce the malignancy
of the tumor, leading to a noninvasive smooth isotropic shape. This not only could improve the effi-
ciency of chemotherapy but also could make it easier to remove the tumor by resection. Finally, we
note that improving the deliverability of chemotherapy will require application of existing theories
to predict the transport properties of the underlying heterogeneous media.39
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