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The setting of cement paste is widely understood to be caused by percolation of the links that are created by
overlap of hydration products on the surfaces of reacting grains of clinker. Percolation theory predicts that
the elastic modulus will increase with a certain functional form, but few attempts have been made to dem-
onstrate this behavior quantitatively. We discuss the appropriate variables to use for this test of the theory,
and show that the percolation probability is proportional to time only over a narrow time interval. We com-
pare the measured and predicted degree of hydration at the percolation threshold, and show that the hard-
core/soft-shell model strongly over-estimates the amount of hydration at the setting point. The discrepancy
is attributed to agglomeration of particles in the paste, which reduces the amount of hydration needed to link

the particles into an elastic network.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The setting of cement paste is generally understood to be a perco-
lation process in which the hydration products that form on the sur-
face of clinker particles intersect, leading to the formation of clusters
that eventually join into a continuous elastic network. The percola-
tion of the solid and pore phases has been investigated using numer-
ical simulations, the earliest of which was by Bentz and Garboczi,
using CEMHYD [1]. That paper predicted a high degree of hydration
at the percolation threshold, but later work produced lower, more re-
alistic, values [2]; the difference apparently resulted from increasing
the spatial resolution used in the simulation [3]. Similar studies
have been done using HYMOSTRUC to predict the fraction of con-
nected solids [4]. The connection between the percolation of solids
and the rise in elastic modulus has also been examined by comparing
various measures of rigidity, such as the Vicat test or sound velocity,
with the degree of connectivity simulated with CEMHYD [5-7] or
HYMOSTRUC [4,8]. Only a few studies have tried to quantify the
change in properties near the setting point in terms of percolation
theory, but each of those analyses has defects that will be discussed.

The purpose of this paper is to re-examine the use of percolation the-
ory for interpreting the setting behavior of cement paste. The analysis
will be demonstrated by using data for the ultrasonic pulse velocity
and chemical shrinkage obtained in an earlier study [9]. We will then
compare the observed threshold to the prediction of the hard-core/
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soft-shell (HCSS) percolation model developed by Torquato et al. [10,
Ch. 10 of ref. 11], which is particularly relevant to setting of cement paste.

2. Percolation theory
2.1. Lattice and continuum percolation

In its simplest form, percolation theory describes the growth of
clusters as particles are placed on the sites of a lattice, or as bonds
are established between particles in an array. The probability of filling
a site or forming a bond is p, and it is found that a continuous network
(or, infinite cluster) is formed at a critical value, p = p, called the per-
colation threshold. In the vicinity of the threshold, many properties
(P) of the network obey power-laws, such as

Pec(p—pc)” M

where v is called a critical exponent [12]. The value of pc depends on
the geometry of the lattice, but the critical exponents do not (for sys-
tems in which connections are made only between nearest neighbors
[11]).

It has been demonstrated that the percolation threshold occurs at
a fixed volume fraction of connected particles (or area fraction, in
two-dimensional lattices) [12], which makes it practical to apply per-
colation theory to physical problems. This is called continuum perco-
lation, because it assumes that the percolating objects are placed at
random in continuous space, rather than on a lattice. The critical ex-
ponents for geometrical properties (such as the cluster size distribu-
tion) are identical for continuum and lattice percolation, but the
exponents for transport properties may be different. For example, if
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equal-sized balls of glass and aluminum are randomly mixed, then
the mixture will become electrically conducting when the volume
fraction of aluminum particles, ¢, exceeds ¢c= 16 vol.%, which is
the percolation threshold in 3-d [12]. In this case, the conductivity,
o, would vary as

ooc(d—dc)" 2)

where the exponent 7 ~1.6-2 in 3-d (with more recent analyses fa-
voring the higher value) (Ch. 9 of ref. 11[12]). In this example, the
percolating objects are non-overlapping spheres, and they exhibit
the same exponent as a lattice model. Feng et al. [13] showed that
the conductivity exponent for overlapping spheres (what they call
the “inverse Swiss-cheese model”) is also the same as 7 for a lattice
model; however, if random spherical voids are placed in a conducting
continuum, then the exponent rises by 0.5. The change in 7 is attrib-
uted to the influence of very tenuous links that are created when
two voids are close together; in contrast, all of the links in a lattice
model have equal conductivity.

Models for the elastic behavior of percolating systems show a
broad range of critical behavior. For a system described by an isotro-
pic Born potential, in which relative displacements of particles in any
direction generate the same force (a situation called scalar, or isotro-
pic, elasticity), the shear modulus is expected to exhibit the same crit-
ical exponent as 0 [14,15]; however, under purely central forces, a
higher exponent (on the order of 3.4-4.4 [16]) and a higher percola-
tion threshold are predicted to apply [14]. The Born potential is not
rotationally invariant (i.e., it indicates that interparticle forces result
from a rotation of the whole body), so it is not clear that it provides
a correct representation for any physical system. Lattice models in
which bonds resist both stretching and bending yield a critical expo-
nent of y~4 for the elastic modulus [13], and continuum models
with overlapping spheres are predicted to have y=4.5 in 3-
dimensions.

Some experimental studies show the higher exponents, and some
seem to indicate that there is a crossover from lower to higher values
as the degree of connectivity increases [16]. On the other hand, stud-
ies of gelation of polymers usually indicate an exponent near 2 (e.g.,
[17]), as do studies of the setting of cement [18]. In general, the
form of Eq. (1) applies only in the immediate vicinity of the percola-
tion threshold, because it is only one term in a series expansion, and
there is no way to anticipate its range of applicability a priori. It is
possible that the theoretically predicted exponents only apply in a
very narrow range of p-pc that is not captured by the experiments.
Well beyond the threshold, conventional composite models will
apply, and these predict a nearly parabolic dependence on the volume
fraction of solids [19,20]. A further complication is that hard spheres
exhibit highly nonlinear elastic behavior, as they oppose being
pushed together, but not being pulled apart [21]. In the case of an
HCSS particle, the ratio of resistance to compression versus tension
depends on the thickness of the shell and the magnitude of the strain.

The development of the modulus during setting of cement paste
has been measured by rheometry e.g., [22] and acoustic methods
[22-30]. In most cases, the increase in stiffness was correlated with
the degree of connectivity calculated from a numerical simulation
[4,5,8,27,31]. In one case [31], the calculated amount of connected
solids was used together with an assumed critical exponent of
v =1.53to find the constant of proportionality in Eq. (2); however,
the modulus data were compromised by entrapped air in the sample,
as explained in the next section. Another study [8] used a similar pro-
cedure, but applied Eq. (2) to data very far from the percolation
threshold (>36 h of hydration), where the theory is not expected to
apply. Boumiz et al. [18] analyzed acoustic data in terms of percola-
tion theory by assuming that the progress of the percolation process
could be approximated by replacing p-pc with the elapsed time, t-
tc. This is valid if the rate of the process is constant in time, but that

is an assumption that needs to be verified. We will demonstrate in
Section 3 that it only applies in a very small time interval near the
percolation threshold.

2.2. HCSS percolation

The standard version of continuum percolation theory clearly
does not describe the setting of cement, where the volume fraction
of solids is initially well above 16%. The particles in cement are not
located randomly in space: they are dispersed in a liquid and, in the
absence of aggregation,! it would be possible to put more than
60 vol.% particles into a slurry without forming a network. In the
paste, the network forms as a result of the growth of hydration
products on the surfaces of the clinker particles, so the quantity p-
pc must be related to the degree of hydration. This process is de-
scribed by the HCSS model [11], where the hard core represents
the unhydrated clinker and the soft shell represents the layer of hy-
dration products. The shells overlap to link the particles into in-
creasingly large clusters, leading to percolation. Although the
geometry of this model is different from conventional continuum
percolation, the same critical exponents apply [32]. The comparison
of the HCSS model with data for Class H cement will be shown in
Section 4.

3. Acoustic transmission
3.1. Slurries and networks

The velocity, V, of a longitudinal wave in a suspension is given ap-
proximately by [33]

Ky = puV° 3)

where py; and Kj; are the mean density and bulk modulus of the sus-
pension, which are defined by

Py = dps + (1—d)pr (4)
and

1 ¢ 1-¢

il s g

where ps and pr are the densities, and Ks and K are the bulk moduli,
of the suspended particles and the fluid medium, respectively; the
mean density of a cement paste with w/c=0.35 is py;~ 2023 kg/m°>.
A more rigorous expression, which takes account of the frequency
of the sound and the size of the suspended particles, was derived by
Harker and Temple [33], and is discussed in Appendix 1. The effect
of air on the velocity is shown in Fig. 1, where V drops below the
speed of sound in air (~300 m/s) when the volume fraction of air ex-
ceeds ~0.1%; very similar results are obtained using Eq. (3). The im-
pact of entrapped air was emphasized by Keating et al. [22], and the
effect is clearly illustrated in Fig. 5 of Sant et al. [30]. In contrast, ce-
ment particles suspended in water are predicted to have a minor ef-
fect on V, as shown in Fig. 2. The particles cause some attenuation of
the wave, but the effect is very small compared to that of air, as
shown in Fig. 3.

! Throughout this paper, we use the term “aggregation” and “aggregate” to describe
loose clusters of cement particles in the paste that have flocculated as a result of attrac-
tive van der Waals forces. These aggregates are to be distinguished from the rigid links
created by overlapping hydration products, which lead to formation of an elastic net-
work at the percolation threshold.
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Fig. 1. Velocity of a longitudinal sound wave in water as a function of the volume frac-
tion of air, ¢, calculated using Eq. (14) with the property values given in Appendix 1.
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When the particles are connected into a network, the propagation
of sound is described by the theory developed by Biot [34,35]. When a
cement paste sets, Sayers and Grenfell [36] argue that Biot's low-
frequency limit applies:

puV? =M (6)
where

L4 Kr(Ks—K)*
M=K+ 30+ k=K + K (Rs—K;) (1= @)

In Eq. (7), G and K are the drained shear and bulk moduli of the
solid network, and ¢ is the volume fraction occupied by the network
(which increases as hydration proceeds). In the limit when the net-
work is extremely tenuous (K and G<< K or Ks), Eq. (7) reduces to

1
Mx—r— =K 8
/s + (1—@)/K; M ®
Thus, Eq. (6) becomes identical to Eq. (3) near the percolation
threshold. To identify the point at which the network begins to
form, we need to subtract those two equations. If we define the veloc-
ity in the suspension before percolation as Vy = /Ky /py, then

ou (V2 =Vs) :1<+§GEH ®8)
where we introduce the longitudinal modulus of the network, H (also
known as the oedometric modulus [37] or the stiffness c;1 [38]).
The theory indicates that we should expect a longitudinal wave in
a cement slurry to behave as shown in Fig. 4, beginning at about
1500 m/s and rising to a value typical of hardened cement as setting
occurs; the increase begins at the percolation threshold when G and
K take on finite values. The acoustic velocity data in Fig. 4 were
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Fig. 2. Velocity of a longitudinal sound wave in water as a function of the volume frac-
tion of cement particles in suspension, ¢, calculated using Eq. (14) with the property
values given in Appendix 1.
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Fig. 3. Attenuation of a longitudinal wave as a function of the volume fraction, ¢ of air
(solid curve) or cement particles (dashed curve), calculated using Eq. (15) with the
property values given in Appendix 1.

obtained as part of a study reported earlier [9], where the procedure
is described in detail. The plot shows the results of three runs, indicat-
ing that the reproducibility is excellent, so we will test the fit of per-
colation theory to these data.

It has been shown that colloids exhibit a rigidity threshold when
the period of the acoustic wave is short compared to the lifetime of
transient percolating clusters that form and disintegrate under the in-
fluence of Brownian agitation [39]. Clinker particles are too large to
undergo Brownian diffusion [45], so the lifetime of aggregates is
quite long compared to the period of the ultrasonic waves used in
our experiments, but there is not enough mobility to cause transient
percolation. The presence of agglomeration may contribute to the ini-
tial velocity measured in the slurry, but the rise in stiffness near the
setting point is caused by the formation of elastic networks, which
are also detected by low-frequency rheological measurements.

3.2. Percolation analysis of acoustic data

It is the modulus of the network that forms after percolation that
is described by the power law, so we use Eqs. (1) and (8) to write

H = py (V= V5 ) <(p—pc)” E)

Sayers and Grenfell [36] found that the moduli were proportional
to each other after the percolation threshold, so G, K, and H must scale
with the same exponent. We want to determine the critical exponent,
7, and percolation threshold, pc. In the study by Boumiz et al. [18],
they assumed that the rate of hydration was proportional to time,
so that p-pc could be replaced by the elapsed time after the threshold,
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Fig. 4. Left ordinate: Measured velocity of longitudinal wave in Class H cement with
water/cement ratio=0.35, measured at 25 °C, as a function of time since contact
with water; three runs over 2 weeks. Right ordinate: Chemical shrinkage of the same
type of paste; three runs over 4 months.

Data from ref. [9].
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t-tc. We can test this assumption by making use of the shrinkage data
that were collected for identical pastes, by the technique described in
Ref. [9]. The chemical shrinkage strain, €, is shown in Fig. 4. One might
argue that chemical shrinkage is an indirect measure of the extent of
reaction, but the shrinkage is linearly proportional to the degree of
hydration, h, as shown in Fig. 5; the slope is s=¢&/h= —0.0764 mL/
(g clinker). The advantage of using ¢ is that it is recorded continuous-
ly with high resolution in time, as is the pulse velocity.

The velocity data were fit to the power law, using the absolute
value of the chemical shrinkage to represent the parameter p, with
¢, |ec|, and y as free parameters:

V2—V5 = c(lel—lecl)” (10)

The fit, shown in Fig. 6, is very good; the power-law region ex-
tends up to about 20 h of hydration time, which is much later than
the final setting time (~7-8 h) found from the Vicat needle test. The
exponent is y=1.59, which is lower than the value expected for sca-
lar elasticity. Over this time interval, the longitudinal modulus has
risen to about 10 GPa; after 90 h, the velocity reaches ~3100 m/s
(not shown), which corresponds to H~19.4 GPa. Thus, the power-
law applies while the modulus rises to about half of its final value.

The velocity data are also fit quite well by an equation of the form

ViV =c(t—to)" (11)

but only over a range from about 4 to 9 h. After that, the curvature re-
verses (becoming concave down toward the time axis). In that small
interval, a good fit is obtained with y~ 2.0 (not shown), as was found
by Boumiz et al. [18]. If the fit to Eq. (10) is limited to that time inter-
val, the exponent is also found to be about 2, indicating that € is lin-
early proportional to time over that period; however, the range of
data is rather small for fixing 3 parameters. Nevertheless, since the
exponent found for the wider range of time is lower than predicted
by any percolation model, it is reasonable to conclude that a power-
law fit to the smaller interval is most appropriate, in which case we
can use either variable to represent p-pc, and the critical exponent
is very nearly y~ 2.

From the fit to Eq. (10), the chemical shrinkage at the percolation
threshold is found to be |¢c| =0.00198 mL/g, which occurs at about
3.9 h of hydration; the fit to Eq. (11) yields tc~4.1 h. Both times are
significantly shorter than the time of initial set found by the Vicat
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Fig. 5. Absolute value of the chemical shrinkage of Class H cement paste, |¢[, versus de-
gree of hydration (lower abscissa) and time (upper abscissa). A linear fit of |¢| as a func-
tion of h yields a slope of 0.0764 mL/g; the dependence of |¢| on time is highly
nonlinear over the same interval.

Data from ref. [9].
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Fig. 6. Longitudinal velocity (symbols) plotted versus the absolute value of the chemi-
cal shrinkage, || (lower abscissa), and versus the time of hydration, t (upper abscissa).
Solid curve is a fit to Eq. (10), which yields a critical exponent of y=1.59; data from
Fig. 4. Right ordinate is longitudinal modulus, calculated from acoustic velocity using
Eq. (8) with py=2023 kg/m?>.

test, which was 5.5h for this paste [9]. This disparity, which has
also been observed in comparisons of the Vicat setting point with os-
cillatory rheology [40], occurs because the modulus at the percolation
threshold is very much smaller than the yield stress (around 40 kPa
[41]) detected by the Vicat needle.

If no data on chemical shrinkage or degree of hydration are avail-
able, a reasonably accurate estimate of the time of percolation can be
obtained using time as a variable, as suggested by Boumiz et al. [18].
One can assume that y=2 in Eq. (11), and fit the following equation
to the data:

VVE=VE =c(t—tc) (12)

This is only valid if there is no entrapped air, so that Vj is ~1500 m/
s, and it can only be expected to work in a small time interval around
tc, where the plot is linear. An example of such a fit is shown in Fig. 7
for the same data as in Fig. 6.

When comparing the acoustic and shrinkage measurements, it is
important to recognize that the paste in the shrinkage experiment
is covered with water, and the sample is relatively small, so there is
not likely to be any self-desiccation during the test. In contrast, the
acoustic sample is covered with oil, so it is possible that hydration
would be more limited than for the shrinkage sample after setting
occurs. In the present case, this is unlikely, because the Class H ce-
ment is relatively coarse, and shows severe bleeding at w/c as low
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Fig. 7. Approximate percolation fit to acoustic data using Eq. (12); velocity data are the
same as in Fig. 6.
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as 0.4, which is why our tests were run at w/c = 0.35. However, for
ordinary cement pastes, the degree of hydration at low w/c might
be different in shrinkage and acoustic experiments after setting oc-
curs. The difference could be mitigated by putting a layer of water
over the acoustic sample, and covering that with oil to suppress evap-
oration, or by covering the shrinkage sample with oil, instead of
water.

The present data, as well as the results of simulations and experi-
ments reported in the literature, are consistent with the idea that set-
ting of cement paste results from percolation of the particles. This
means that setting is a geometrical phenomenon: for a given initial
volume fraction of clinker, setting will occur at a fixed degree of hy-
dration, independent of temperature, pressure, or the use of acceler-
ators or retarders (as long as those factors do not change the nature
of the hydration product). These expectations are borne out experi-
mentally [9,42]. We should, therefore, be able to use percolation the-
ory to predict the degree of hydration at which setting of a paste will
begin for a given water/cement ratio and particle size distribution.
We will attempt to do this by application of the HCSS model.

4. Percolation and setting

If equally sized non-overlapping spheres are placed at random in a
box, they will percolate at a volume fraction of about 16%, so another
approach is needed to reach the high solids loadings of cement paste.
The HCSS simulation begins by arranging particles in a box on a lat-
tice, and then shifting their positions with a Metropolis algorithm to
achieve a random distribution. If one were to try to shift the particles
so as to minimize their energy of interaction, crystallization would
occur for any solids loading exceeding ~49 vol.% [43,44]. This does
not happen in a real cement paste, because the particles are polydis-
perse, and they are too large to undergo Brownian diffusion [45]. In
the simulation, however, the rearrangement must be stopped at
some stage prior to crystallization, when the particles are in a meta-
stable arrangement in which they are as widely separated as possible.
This is an important feature of this model, because the initial arrange-
ment is well dispersed, whereas cement paste shows some degree of
agglomeration [46], even when dispersants are used [47]. The conse-
quences of this will become apparent.

Once the hard cores of the particles are in place, each can be ex-
panded by an amount that corresponds to the thickness of the soft
shell. The ratio of the diameter of the core, D¢, to that of the shell of
the particle, Dp, is the “impenetrability parameter”, N = D¢/Dp. The
volume fraction at which the shells percolate, ¢, is shown as a func-
tion of N in Fig. 8. We need to relate \ to the degree of hydration, h, of

PercThreshold vs lambda
0.65
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Fig. 8. Volume fraction of monodisperse hard-core/soft-shell particles (accounting for
overlap of the shells) at the percolation threshold, as a function of the impenetrability
parameter, \. Curve is an empirical fit given in Eq. (22).

Data from Fig. 10.8 of ref. [11].

the clinker, so that we can use this theory to predict the percolation
threshold for cement. The details of the calculation are explained in
Appendix 2.

Based on the analysis in Appendix 2, we can relate the impenetra-
bility parameter, N, to the degree of hydration (DOH) of a hypotheti-
cal cement with uniform particle size. In Fig. 9, the predictions of the
HCSS model are compared to values measured in Ref. [9]. The pre-
dicted DOH is much greater than the measured value, and the dis-
crepancy increases with the water/cement ratio. The measured
values correspond to the initial set found by the Vicat needle test,
which occurs well after percolation, so the predicted DOH values
should fall below the measurements. One might argue that the prob-
lem with the model is that it applies to monodisperse particles,
whereas the particle size distribution in the actual cement ranges
from about 0.5 to 90 pm [48]. To investigate the significance of this
factor, four series of simulations were done in which several particle
sizes from the measured distribution were included, with the ratio
of the largest to smallest being 3:1 (with 10 sizes ranging from
0.239 to 0.717 um), 6.25:1 (with 15 sizes, up to 1.49 um), 10.2:1 (20
sizes, up to 2.43 um), and 18.7:1 (25 sizes, up to 4.47 um). The abso-
lute sizes are small, but that does not matter, because only the rela-
tive sizes affect the percolation threshold. The particles, which
represent the hard cores, were placed into the box, then a layer of
uniform thickness was placed around each particle; that is, the
depth of hydration was the same on particles of all sizes. For these
simulations, a low density of particle cores was used, so the Metrop-
olis algorithm was not applied; that is, the distribution achieved by
random sequential addition of particles is statistically equivalent to
the equilibrium distribution when the packing density is low. The
layer thickness was increased until percolation occurred, with the re-
sults shown in Fig. 10; the calculated points are averages from at least
100, and usually ~1000 initial configurations. A short extrapolation of
the simulated values is necessary to overlap with the w/c range of the
data, but the values fall on very straight lines, so this is not expected
to introduce a significant error. Again, the predictions are higher than
the measured values, and the error increases with w/c; moreover, the
discrepancy increases with the breadth of the particle size distribution
in the simulation. This is probably a reflection of the fact that the
smallest particles can hydrate completely without coming into con-
tact with their neighbors, so they contribute to the DOH, but not to
the formation of a network. We conclude that the failure of the
model to capture the measured behavior is not related to the as-
sumed particle size distribution.

The most likely cause of the discrepancy is the high degree of dis-
persion produced at the start of the simulation. This means that a high
DOH is needed to produce a reaction layer thick enough to bring the
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Fig. 9. Measured degree of hydration at the initial setting point found from the Vicat
needle test (Initial Set) and calculated degree of hydration at the percolation threshold
for equal-sized spheres (HCSS Monodisperse).

Data from ref. [9].
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Fig. 10. Measured degree of hydration at the initial setting point found from the Vicat
needle test (Initial set) and calculated degree of hydration at the percolation threshold
for the HCSS model with polydisperse spheres with the indicated range of sizes.

Data from ref. [9].

particles into contact. In contrast, real cement pastes contain large
clusters of particles that are initially touching [46,47], so they can be
bonded by the formation of a small amount of hydration product.
This idea has been tested in a study in which the initial extent of ag-
glomeration of the particles was systematically varied [49]; as
expected, realistic predictions of DOH can be obtained with reason-
able degrees of agglomeration. Several other simulation studies
have predicted rather low DOH at the percolation threshold (e.g.,
[2,27]), but they did not optimize the particle spacing at the start of
the process. Evidently, the methods used for random placement of
particles into the box in those studies resulted in many of the parti-
cles being in very close proximity. Unfortunately, it is difficult to
quantify the initial state of agglomeration of a paste, and without
that information one cannot predict the DOH at the percolation
threshold.

The critical exponent for the elastic modulus of a percolating HCSS
system is expected to be much higher than what we observe [11,13].
The physical origin of the high exponent is the very broad range of
stiffness of the linkages created by overlapping particles: deep inter-
penetration of particles creates very stiff links, while tangency creates
flexible ones. The thinner the soft shell, the smaller the range of var-
iation in stiffness will be, since overlapping is limited to the depth of
the shell. Moreover, the aggregation of particles that occurs in a paste
enhances the number of strong links, since the hydration products are
depositing on particles already in contact, and that must alter the dis-
tribution of stiffnesses anticipated by the theory. These factors con-
tribute to a reduction in the critical exponent from the high value
(v =4.1-4.5) predicted for freely overlapping spheres. Since the ini-
tial setting of cement occurs at a low DOH (~4% for w/c=0.35 [9]),
the shell of hydration products is very thin at the setting point, so
the elasticity of the cement system should approach the behavior of
a hard-sphere model, and become subject to the nonlinearity men-
tioned earlier [21]. To our knowledge, the critical exponent for such
a system has not been established theoretically.

5. Conclusions

When measurements of the acoustic velocity in hydrating cement
paste are analyzed in terms of percolation theory, the expected power
law behavior is observed for the elastic modulus, but the observed ex-
ponent is difficult to rationalize. If the degree of reaction is assumed
to be linearly proportional to time, the fit is good over a narrow win-
dow in time (~4 to 9 h), and it yields a critical exponent of ~2.0. How-
ever, if the degree of reaction is represented by the chemical
shrinkage, then the power-law applies over a much broader range

of time (up to ~20 h), and the exponent is ~1.6. The latter is lower
than the value predicted for systems exhibiting scalar elasticity, so fit-
ting over the smaller time interval is more appropriate. A critical ex-
ponent of 2 is consistent with scalar elasticity, and is similar to
values reported for gelation of polymers, but is much lower than
the prediction for overlapping spheres. We conclude that setting is a
percolation process, although the details of the process (viz., the evo-
lution of the elastic properties) are not correctly captured by existing
hard-core/soft-shell percolation models. The percolation threshold is
reached well before the initial setting point defined by the Vicat nee-
dle test.

It would be convenient to have an analytical model to predict the
degree of hydration at the setting point on the basis of the water/
cement ratio and particle size distribution, so we tested the hard-
core/soft-shell model. The model predictions were much higher
than the measured DOH values, evidently because the simulations as-
sume perfect dispersion of the particles, whereas actual pastes con-
tain clusters of particles whose proximity allows them to become
bonded by very thin reaction layers. Unfortunately, this means that
the initial state of agglomeration must be known in order to predict
the DOH at the percolation threshold.

Acknowledgments

The authors are indebted to Dale Bentz (NIST) for helpful discus-
sions. S.T. was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering
under Award DE-FG02-04-ER46108.

Appendix 1. Sound velocity in a suspension
Harker and Temple [33] derived the following expression (their

equation 2.25) to describe the propagation of a longitudinal sound
wave in a suspension:

B _pr ( ps(1=c +¢S) + peS(1—) ) 13)

@~ Ky \ps(1=)7 + p(S + b(1=9))

where 3 is the wave vector, o is the radial frequency, K, is defined in
Eq. (5), and S is a complex quantity given by

1230 O3

where a is the radius of the suspended particle and 6 is the “skin
depth” defined by

b= |2 (14)
WOPp

and n is the viscosity of the fluid. The velocity of the longitudinal
wave, V, is related to the real part of the wave vector,

V=Re (%) (14)

and the attenuation of the wave, «, is equal to its imaginary part:

o= Im(p) (15)

The values in Fig. 1-Fig. 3 were calculated using the following
values: ® =2mx10° Hz; (for water) MNr=0.001 Pa-s, pr=1000 kg/
m3, Kr=2.2 GPa; (for clinker) ps=3100 kg/m>, Ks=117 GPa [50],
a=10 um; (for air) ps=1.2 kg/m> Ks=10°Pa, a=1 um.
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Appendix 2. HCSS model

The parameters of the HCSS model described in Ref. [11] (hereaf-
ter, RHM) can be related to the properties of a partially hydrated ce-
ment particle as follows. If the initial diameter of the clinker particle
is Dy and the diameter of the unhydrated core is D¢, then the degree
of hydration is

h:1—<%§)3 (16)

If the densities of the clinker and the hydration products are pc
and py, respectively, then the volumetric expansion, e, upon hydra-
tion is e=pc/py; given pc=~3150 kg/m> and py~ 2000 kg/m>, we
have e~ 1.58. The volume of the partially hydrated particle, with di-
ameter Dp, is

vp = (5)D3 = () [P +e(D3—D2)] = (§)Da(1—h+ he) (17)

The RHM parameter p is the number density of particle cores and
N=p L? is the number of particles in the system. The initial volume
fraction of clinker particles is

N(m/6)Dy  /my 3 1
e Mypdy - 1 17
bo £ (6) oPo T+ RyPe/Pur (17)

The final equality in Eq. (17) relates the volume fraction to the
water/cement ratio, Ryc; pw is the density of water (= 1000 kg/m?).
The subscripts on Ly and p, are needed, because the volume of the
system contracts during hydration, owing to chemical shrinkage.
The change in volume of the system per particle is

T il
AVy = gpc (6) Dg = shp¢ (6) D; (17)
where ¢ is the chemical shrinkage (in mL/g of clinker) and s (<0) is

the ratio of € to the degree of hydration, h (i.e., the negative of the
slope of Fig. 5). The volume of the box at any stage of hydration is

EREN LAY

L’ =N(5)D5(1 +shpc) (18)
SO

I )

P =1 shp, (19)

From Fig. 5, s=—0.0764 mL/g, so when hydration is complete
(h=1), Eq. (19) indicates that p/p ~1.317.

The RHM parameter 1) represents the extended volume fraction of
solid phase (cores plus hydrated layer, ignoring overlap of the shells):

1—h + he
_ 20
(T4 Ryepc/ow) (1 + shog) (20)

1—h+ he
ﬂ:pVP:d)o( )

1+ shp¢

The RHM parameter A is the ratio of the diameter of the hard core,
Dc, to that of the whole particle, Dp:

D ([ 1-h
Ao (i) @

According to eq. (5.119) on p. 155 of RHM, the volume fraction of
solid phase (cores plus hydrate, taking account of overlap) is

33
= 1—(1—7])\3) exp —((]1_1;2)2 A, \) (21)

where
_PN-)
AN =exp|  2(1-n\3)?
X ((7)3 + 7>\—2) —on\3 (77\2 —5\+ 1) +1PA8 (5)\2 —7N+ 2))

(22)

The value of the volume fraction at which percolation of the soft
shells occurs, ¢c, is shown in Fig. 8. The curve is an empirical fit to
the points, which is given by

0.35\7
2—N

$c=0.29 + (22)

The degree of hydration at the percolation threshold, hc, is
found by setting Eq. (21) equal to Eq. (22), and solving numerical-
ly for h for given values of R, s, and e. This was done using
Mathematica® [51].
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