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We show analytically that the [0, 1], [1, 1], and [2, 1] Padé approximants of the mean cluster num-
ber S for both overlapping hyperspheres and overlapping oriented hypercubes are upper bounds on
this quantity in any Euclidean dimension d. These results lead to lower bounds on the percolation
threshold density ηc, which become progressively tighter as d increases and exact asymptotically as
d → ∞, i.e., ηc → 2−d. Our analysis is aided by a certain remarkable duality between the equi-
librium hard-hypersphere (hypercube) fluid system and the continuum percolation model of over-
lapping hyperspheres (hypercubes). Analogies between these two seemingly different problems are
described. We also obtain Percus-Yevick-like approximations for the mean cluster number S in any
dimension d that also become asymptotically exact as d → ∞. We infer that as the space dimension
increases, finite-sized clusters become more ramified or “branch-like.” These analytical estimates
are used to assess simulation results for ηc up to 20 dimensions in the case of hyperspheres and up
to 15 dimensions in the case of hypercubes. Our analysis sheds light on the radius of convergence
of the density expansion for S and naturally leads to an analytical approximation for ηc that ap-
plies across all dimensions for both hyperspheres and oriented hypercubes. Finally, we describe the
extension of our results to the case of overlapping particles of general anisotropic shape in d dimen-
sions with a specified orientational probability distribution. © 2012 American Institute of Physics.
[doi:10.1063/1.3679861]

I. INTRODUCTION

The study of clustering behavior of particles in
condensed-phase systems is of importance in phenomena
such as nucleation, condensation of gases, gelation and poly-
merization, chemical association, structure of liquids, metal-
insulator transition in liquid metals, conduction in disper-
sions, aggregation of colloids, and flow in porous media.1–4

Percolation theory provides a powerful means of understand-
ing such clustering phenomena. A prototypical model of
continuum (off-lattice) percolation is a Poisson distribution
(i.e., spatially uncorrelated) of equal-sized spheres. The per-
colation properties of this continuum model in one, two, and
three dimensions in Euclidean space have been extensively
studied.4–19 Its transport and elastic properties, when used as
models of two-phase heterogeneous media, have also been
analytically characterized.20–27 Two spheres are “connected”
to one another if they overlap. Since the spheres are allowed
to overlap, clusters of various sizes, shapes, and volumes are
formed, as depicted in Figure 1. This model has been given
a variety of names, including “fully penetrable spheres,”
“randomly overlapping spheres,” the “Swiss-cheese model,”
and the “Poisson blob model.” We will henceforth refer to
this model as overlapping hyperspheres in d-dimensional
Euclidean space Rd . Observe that an affine (linear) deforma-
tion of an overlapping-hypersphere system in d orthogonal
directions leads to an overlapping-hyperellipsoid system that
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possesses the same percolation threshold as the former, since
the density remains invariant under an affine transformation.

For equal-sized overlapping hyperspheres of diameter D
in Rd at number density ρ, defined to be the number of
spheres per unit volume, it is convenient to introduce the re-
duced density η, which is defined by

η = ρv1(D/2), (1)

where v1(R) is the d-dimensional volume of a sphere of radius
R given by

v1(R) = πd/2Rd

�(1 + d/2)
. (2)

We will also consider percolation of overlapping oriented hy-
percubes of edge length D (see Fig. 2). The expression (1) for
the reduced density η still applies when v1(D/2) is interpreted
to be the volume of a cube with half-edge length D/2, i.e.,28

v1(D/2) = Dd. (3)

As in the case of overlapping hyperspheres, an affine defor-
mation of a system of overlapping oriented hypercubes in d
orthogonal directions leads to a system of overlapping ori-
ented hyperparallelpipeds that possesses the same percolation
threshold as the former.

The low-density expansion of the mean cluster number
S (defined in Sec. II) encodes information about the pole of
this function over its density domain, which determines the
percolation threshold ηc. It has been observed that the [0, 1],
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FIG. 1. Left Panel: Schematic of a system of overlapping circles (i.e.,
two-dimensional overlapping hyperspheres). Right Panel: Corresponding
schematic of overlapping oriented ellipses obtained by an affine stretch of
the overlapping-circle system in the vertical direction. The densities of the
overlapping circle and ellipse systems are identical, since the density remains
invariant under an affine transformation. Thus, the percolation thresholds of
both systems are identical.

[1, 1], and [2, 1] Padé approximants of the mean cluster num-
ber S provide lower bounds on ηc for overlapping spheres in
two and three dimensions (as determined by simulations) and
become sharper as the order of the approximant increases.19

In this paper, we show analytically that these Padé approx-
imants are indeed lower bounds on S for both hyperspheres
and hypercubes in any dimension d and that they become ex-
act asymptotically as d → ∞, i.e., ηc → 2−d. We also ob-
tain Percus-Yevick-like approximations for the cluster num-
ber S that also become asymptotically exact as d → ∞. Our
bounds and approximations are compared to recent simula-
tion results for ηc that span dimensions up to d = 20 in the
case of overlapping hyperspheres29, 30 and up to d = 15 in the
case of hypercubes.30 Our analysis is aided by a striking du-
ality between the equilibrium hard-hypersphere (hypercube)
fluid system and the continuum percolation models of over-
lapping hyperspheres (hypercubes). Analogies between these

FIG. 2. Left Panel: Schematic of a system of overlapping oriented squares
(i.e., two-dimensional overlapping hypercubes). Right Panel: Corresponding
schematic of overlapping oriented ellipses obtained by an affine stretch of
the overlapping-square system in the vertical direction. The densities for both
systems are identical and hence their percolation thresholds are the same.

seemingly disparate problems are discussed. Our investiga-
tion sheds light on the radius of convergence of the density
expansion for S and naturally leads to an analytical approxi-
mation for ηc that applies across all dimensions. In Sec. IX,
we describe the extension of our results to the case of over-
lapping particles of general anisotropic shape in d dimensions
with a specified orientational probability distribution.

II. DEFINITIONS AND PRELIMINARIES

A. Connectedness criterion

Two spheres of radius D/2 are considered to be connected
if they overlap, i.e., if the center of one lies within a spheri-
cal “exclusion” region of radius D centered around the other
sphere (see Fig. 3). This connectedness criterion is captured
by the “Mayer-f ” connectedness function, which is a radial
function given by

f (r) = �(D − r), (4)

where

�(x) =
{

1, x ≥ 0

0, x < 0
(5)

is the Heaviside step function. Thus, f(r) is an indicator func-
tion for the exclusion region. The volume of the exclusion
region v1(D) is given by the volume integral of f(r), i.e.,

v1(D) =
∫
Rd

f (r)dr = 2dv1(D/2). (6)

By virtue of the fact that the spheres are Poisson distributed in
space, it follows that the mean number of overlaps per sphere
N is given by

N = ρv1(D) = 2dη. (7)

Similarly, two oriented cubes of edge length D are taken
to be connected if they overlap, i.e., if each Cartesian compo-
nent of the displacement vector r between the centroids of the
cubes is less than D, i.e., the connectedness exclusion-region

FIG. 3. Any center of a sphere of radius D/2 that lies within a spherical
“exclusion” region of radius D centered around a central sphere of radius D/2
(dark blue) is connected to the central sphere. Whereas the leftmost sphere is
not connected to the central sphere, the rightmost sphere is connected to the
central sphere. The volume of the exclusion region is v1(D) = 2dv1(D/2).
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indicator function is given by

f (r) =
d∏

i=1

�(D − |xi |), (8)

where −∞ < xi < ∞ (i = 1, 2, . . . , d) denotes the ith Carte-
sian component of r and the coordinate system is chosen to
align with the principal axes of the cubes. The volume of the
cubical exclusion region v1(D) is again given by the volume
integral of f(r), i.e.,

v1(D) =
∫
Rd

f (r)dr = 2dv1(D/2), (9)

where v1(D/2) is given by Eq. (3). Similarly, the mean number
of overlaps per cube is still given by relation (7).

B. Cluster statistics and connectedness functions

The pair-connectedness function P(r) is defined such that
ρ2P(r) dr1 dr2 is the probability finding any pair of particles
of the same cluster in the volume elements dr1 and dr2 cen-
tered on r1 and r2, respectively, where r = r2 − r1. We also
consider the particle-averaged cluster number S (also referred
to as the mean cluster size), which is the average number of
particles in the cluster containing a randomly chosen particle.
The mean cluster number S is given in terms of P(r) for any
statistically homogeneous system via a “compressibility-like”
relation6

S = 1 + ρ

∫
Rd

P (r) dr. (10)

The trivial first term of unity in this relation accounts for
monomers, while the volume integral over P(r) accounts for
particle clustering (dimers, trimers, tetramers, etc.). Since
P(r) becomes long-ranged (i.e., decays to zero for large r
slower than 1/rd) at the percolation threshold ηc, it follows
from Eq. (10) that S diverges to infinity as η → η−

c . Indeed, it
is believed that S obeys the power law,

S ∝ (ηc − η)−γ , η → η−
c , (11)

in the immediate vicinity of the percolation threshold. In
this expression, γ is a universal exponent for a large class
of lattice and continuum percolation models in dimension d,
including not only spatially uncorrelated overlapping parti-
cles but also correlated continuum systems.31 For example,
γ = 43/18 for d = 2 and γ = 1.8 for d = 3 (see Refs. 2–4, and
references therein). It is believed that when d ≥ dc = 6, where
dc is the “critical” dimension, the lattice- and continuum-
percolation exponents take on their dimension-independent
mean-field values,2–4 which means in the case of (11) that
γ = 1.

Coniglio et al.6 derived the density expansion for the
pair-connectedness function P(r) in terms of the “Mayer-f”
connectedness function, the latter of which characterizes the
connectedness criterion. Specifically, P(r) is identified as the
collection of diagrams having at least one unbroken path of
f-bonds connecting root points 1 and 2. The diagrams that
constitute P(r) can be divided into the nodal or bridge dia-
grams and the non-nodal or direct diagrams denoted by C(r).

The latter quantity is called the direct connectedness function
and has the following density series expansion:

C(r) =
∑
n=2

ρn−2cn(r). (12)

The first three terms of this series expansion have the follow-
ing diagrammatic representations:

c2(r) =
(13)

ρc3(r) =
(14)

ρ2c4(r) =

(15)
A diagram consists of a certain number of circles and f-bonds
connecting the circles. There are two types of circles: white
circles that are labeled and associated with the positions not
integrated over (e.g., 1 and 2 in the expression given immedi-
ately above), and black circles associated with the integrated
positions that are unlabeled, since they are dummy variables.

The aforementioned decomposition of the pair connect-
edness function into nodal and non-nodal diagrams results in
an Ornstein–Zernike (OZ) relation, i.e.,

P (r) = C(r) + ρC(r) ⊗ P (r), (16)

where ⊗ denotes a convolution integral. Taking the Fourier
transform of Eq. (16) gives

P̃ (k) = C̃(k)

1 − ρC̃(k)
, (17)

where k is the wave vector. Using the equivalent Fourier rep-
resentation of the “compressibility” relation (10) for the mean
cluster number S and Eq. (17), we arrive at

S = 1 + ρP̃ (0) = [1 − ρC̃(0)]−1. (18)

The direct connectedness function C(r) can immediately be
used to determine the critical percolation density ηc. Since S
diverges at the threshold, we have from Eq. (18) that

ηc = v1(D/2)[C̃(0)]−1 = v1(D/2)

[ ∫
C(r)dr

]−1

. (19)
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The fact C̃(0) is bounded at the percolation threshold im-
plies that C(r) is a short-ranged function, even at η = ηc,
i.e., decays to zero for large r ≡ |r| faster than 1/rd at the
percolation threshold. These connectedness functions and re-
lated quantities have been analytically and numerically de-
termined for overlapping spheres in one, two, and three
dimensions.7–13, 15, 16, 18

The density expansion of the mean cluster number,

S = 1 +
∑
m=1

Sm+1η
m, (20)

can be obtained from Eq. (18) and the series expansion,

ρC̃(0) = ρ

∫
Rd

C(r)dr =
∑
m=1

Cm+1η
m, (21)

where

Cm = 1

v1(D/2)m−1

∫
Rd

cm(r)dr (22)

and the functions cm(r) are defined by Eq. (12). One can easily
verify that the coefficients Sm and Cm for m ≥ 2 are related as
follows:

Sm =
m∑

j=2

CjSm+1−j , (23)

where S1 ≡ 1. The first three inter-relations are given by

S2 = C2, (24)

S3 = C2
2 + C3, (25)

S4 = C3
2 + 2C2C3 + C4. (26)

Using the definitions immediately above, we see that density
expansion of the inverse mean cluster number S−1 is given by

S−1 = 1 − ρ

∫
Rd

C(r)dr = 1 −
∑
m=1

Cm+1η
m. (27)

It was once hypothesized that in the case of lattice perco-
lation the percolation threshold or critical concentration cor-
responded to the radius of convergence of the series expansion
for S. This hypothesis rested on the assumption that S had no
singularities on the positive real axis for concentrations less
than the critical value, i.e., the concentration coefficients (cor-
responding to the Sn in the continuum percolation problem)
were all positive. It was shown that at sufficiently high order
(e.g., 17th-order), the coefficients are sometimes negative for
d = 2. This implies that the critical concentration does not cor-
respond to the radius of convergence of the series expansion
for S for d = 2, strongly suggesting that there is a closer sin-
gularity on the negative real axis.32 Although no such an anal-
ogous results have been reported for the series expansion (20)
due to the difficulty involved in ascertaining very high-order
coefficients in low dimensions, we strongly expect that the
convergence properties for continuum percolation to be qual-
itatively similar to that of Bernoulli lattice percolation, but
only in sufficiently low dimensions when d ≥ 2. Among other
results, we show here that in sufficiently high dimensions, the

radius of convergence of series expansion (20) corresponds
to ηc.

It is well known that the integrals involved in comput-
ing the density expansion of the mean cluster number are the
same as the ones that arise in the virial expansion of the hard-
sphere or hard-cube system, even if the statistical weights are
generally different from one another.5 For example, the first
two coefficients of the series expansion (21), i.e., the dimer
and trimer contributions, are, respectively, given by

C2 = 1

v1(D/2)

∫
Rd

f (r)dr

= 2B2

v1(D/2)
= 2d , (28)

C3 = − 1

v2
1(D/2)

∫
Rd

f (r)vint
2 (r; D)dr

= − 3 · B3

v1(D/2)2
, (29)

where

vint
2 (r; D) = f (r) ⊗ f (r) (30)

is the intersection volume of two exclusion regions whose
centroids are separated by the displacement vector r. This ex-
clusion region in the case of spheres and oriented cubes is a
sphere of radius D and a cube of half-edge length D, respec-
tively. The virial coefficient Bm is defined via the density ex-
pansion of the pressure p of a hard-particle system at number
density ρ and temperature T, i.e.,

p

ρkBT
= 1 +

∑
m=1

Bm+1ρ
m. (31)

The tetramer contribution to the series expansion
(22) is also of direct interest in this paper. It can be simpli-
fied as follows:

C4 = −3

2
CA

4 + 7

2
CB

4 − CC
4 , (32)

where

CA
4 = 1

v3
1(D/2)

∫
Rd

[
vint

2 (r; D)
]2

dr, (33)

CB
4 = 1

v3
1(D/2)

∫
Rd

f (r)
[
vint

2 (r; D)
]2

dr, (34)

CC
4 = 1

v3
1(D/2)

∫
Rd

f (r)
[
vint

3 (r12, r13, r23; D)
]2

dr, (35)

and

vint
3 (r12, r13, r23; D) =

∫
Rd

f (r14)f (r24)f (r34)dr4 (36)

is the intersection volume of three exclusion regions whose
centroids are separated by the displacement vectors r12, r13,
and r23, respectively. The fourth virial coefficient B4 for the
corresponding hard-particle system is also obtained from the
sum of the diagrams corresponding to CA

4 , CB
4 , and CC

4 but
with the weights −3/8, 3/4, and −1/8, respectively. Observe
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that CA
4 is a four-particle “ring” diagram. While each of the

diagrams CA
4 , CB

4 , and CC
4 are positive quantities, the entire

tetramer statistic C4 can be negative, which will be the case
for sufficiently large d. Section III B shows that C4 changes
from a positive quantity to a negative quantity in relatively
low dimensions for either hyperspheres or hypercubes.

C. Duality with the hard hyperspheres in equilibrium

Here, we show that the continuum percolation model of
overlapping particles at number density ρ is in a particular
sense dual to the corresponding hard-particle fluid system in
equilibrium at number density ρ.33 Of course, it must be kept
in mind that the reduced density η for the percolation model
is not the fraction of space covered by the particles, as it is in
the hard-particle model.

First, we recall the well-known Ornstein-Zernike relation
for a general one-component many-particle (not necessarily
hard-particle) equilibrium system at number density ρ,

h(r) = c(r) + ρc(r) ⊗ h(r), (37)

where h(r) = g2(r) − 1 is the total pair-correlation function,
g2(r) is the pair-correlation function, and c(r) is the direct
correlation function. We see that this is the analog of the per-
colation integral equation (16). The “compressibility relation”
for general systems in equilibrium (hard particles or not) at
number density ρ is exactly given by

ρkBT κT = 1 + ρ

∫
Rd

h(r)dr, (38)

where kB is Boltzmann’s constant and κT ≡ 1
ρ

( ∂ρ

∂p
)T is the

isothermal compressibility.
For simplicity of discussion, we will specialize to the

case of overlapping hyperspheres, keeping in mind that the
generalization to overlapping hypercubes or other particle
shapes is obvious. From the percolation OZ equation (16),
the pair connectedness function P(r) for overlapping hyper-
spheres of diameter D, exactly through first order in density,
is

P (r) = f (r) + ρ[1 − f (r)]vint
2 (r; D) + O(ρ2). (39)

Now we make the observation that this expansion for P(r) is
identical to −h(r) for a hard-hypersphere system through the
same order but evaluated at negative density; i.e., P(r; ρ) =
−h(r; −ρ) (see Hansen and MacDonald34 for the hard-sphere
diagrammatic expansion). Similarly, the direct connectedness
function C(r) through first order in ρ is identical to −c(r) for
a hard-hypersphere system through the same order but evalu-
ated at negative density. This duality between these seemingly
different physical problems at low densities applies as well in
high dimensions for η ≤ ηc, since we will see in Sec. IV that
ηc tends to zero exponentially fast. Other manifestations of
this duality are discussed further in Secs. V and IX.

III. TRIMER AND TETRAMER STATISTICS

A. Trimer statistics

The trimer contribution (29) to series expansion (21),
which appears in relation (10) for the mean cluster number
S, is of great importance in this paper. Since the trimer statis-
tic (Eq. (29)) is the volume integral of the diagram given in
Eq. (14), then it immediately follows that the absolute value
of the ratio of the trimer statistic C3 to the square of the dimer
statistic (Eq. (28)) can be interpreted as a conditional proba-
bility. Specifically, given that particles 2 and 3 are each con-
nected to particle 1, |C3|/C2

2 is the probability that the pair of
particles 2 and 3 are connected to one another.

In what follows, we compute this conditional probability
exactly as a function of dimension for both overlapping hyper-
spheres and overlapping oriented hypercubes. Importantly, we
show that this probability vanishes as d becomes large, imply-
ing that trimers become more ramified or “branch-like.” This
is a consequence of the multitude of directions that become
available for particles of a cluster to orient themselves with
respect to one another as the dimension becomes large. Thus,
ramification of finite clusters, i.e., k-mers with k ≥ 3, is a gen-
eral high-dimensional feature provided that d 	 k.

It is noteworthy that since the function f(r) is unity inside
an exclusion region and zero otherwise, it immediately fol-
lows that for any finite d, we have the following inequality for
either overlapping hyperspheres or oriented hypercubes,

|C3| < C2
2 = 22d , (40)

which in turn implies the positivity of S3 = C2
2 + C3 for any

finite d, i.e., S3 > 0.

1. Hyperspheres

For hyperspheres, the integral that defines the trimer
statistic (Eq. (29)) can be simplified as follows:

C3 = − 3 · 2d−1vint
2 (D; D)

v1(D/2)
. (41)

We see that the trimer statistic is related to the intersection
volume of two spherical exclusion regions of radius D. For
hyperspheres, the situation is considerably more complicated
than for oriented hypercubes, even if C3/C2

2 also tends to zero
exponentially fast as d → ∞, as we will show below. We
denote by α(x; d) = vint

2 (x; R)/v1(R) the volume common to
two d-dimensional hyperspheres of radius R [in units of the
volume of a sphere of radius R, v1(R)] whose centers are sep-
arated by the dimensionless distance x = r/(2R). We will call
α(x; d) the scaled intersection volume, which will play an im-
portant role in this paper. The scaled intersection volume has
the support [0, 1], the range [0, 1], and the following integral
representation:35

α(x; d) = c(d)
∫ cos−1(x)

0
sind (θ ) dθ, (42)

where c(d) is the d-dimensional constant given by

c(d) = 2�(1 + d/2)

π1/2�[(d + 1)/2]
. (43)
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We see from Eq. (41) that the trimer statistic C3(d) in dimen-
sion d is related to α(1/2; d), namely,

C3(d) = −3 · 22d−1α(1/2; d). (44)

Note that relation (42) for the scaled intersection vol-
ume for hyperspheres has been given explicitly in any space
dimension in various representations.35, 36 For example, using

α(x; 0) = 2

π
cos−1(x), α(x; 1) = 1 − x

and the recursive relation,

α(x; d) = α(x; d − 2) − �(d/2)√
π�((d + 1)/2)

x(1 − x2)
d−1

2 ,

d ≥ 2, (45)

obtained by integrating Eq. (42) by parts, yields the scaled in-
tersection volume for any d ≥ 2. For example, for d = 2, 3, 4,
and 5, we have, for x ≤ 1, that

α(x; 2) = 2

π

[
cos−1(x) − x(1 − x2)1/2

]
, (46)

α(x; 3) = 1 − 3

2
x + 1

2
x3, (47)

α(x; 4) = 2

π

[
cos−1(x) −

{
5x

3
− 3

4
x3

}
(1 − x2)1/2

]
, (48)

α(x; 5) = 1 − 15

8
x + 5

4
x3 − 3

8
x5. (49)

Torquato and Stillinger35 found the following series represen-
tation of the scaled intersection volume α(x; d) for x ≤ 1 and
any d:

α(r; R) = 1 − c(d)x + c(d)
∞∑

n=2

(−1)n

× (d − 1)(d − 3) · · · (d − 2n + 3)

(2n − 1)[2 · 4 · 6 · · · (2n − 2)]
x2n−1. (50)

For even dimensions, relation (50) is an infinite series, but
for odd dimensions, the series truncates such that α(x; d) is a
univariate polynomial of degree d.

Figure 4 shows graphs of the scaled intersection vol-
ume α(x; d) as a function of x for the first five space dimen-
sions. For any dimension, α(x; d) is a monotonically decreas-
ing function of x. At a fixed value of x in the open interval
(0, 1), α(x; d) is a monotonically decreasing function of the
dimension d.

Using the definition (44) and the recursive relation (45)
yields the corresponding recursive relation for the trimer
statistic,

C3(d) = 16 · C3(d − 2) + 3 · 22d−2 �(d/2)√
π�((d + 1)/2)

(
3

4

) d−1
2

,

d ≥ 2, (51)

where C3(0) = −1 and C3(1) = −3. Table I lists the condi-
tional trimer probability |C3|/C2

2 = −C3/C2
2 (discussed ear-

lier) for the first 11 space dimensions. This table indicates that
the ratio |C3|/C2

2 monotonically decreases as d increases, pre-
sumably tending to zero. Indeed, this is the case. For large d,

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

α(
x;

d) d=1

d=5

FIG. 4. The scaled intersection volume α(x; d) for spherical windows of ra-
dius 1/2 as a function of x for the first five space dimensions. The uppermost
curve is for d = 1 and lowermost curve is for d = 5.

we will make use of the leading-order asymptotic result,35

C3(d) ∼ −
(

6

πd

)1/2

2d−1 · 3
d+2

2 . (52)

Thus, the conditional probability |C3|/C2
2 goes to zero expo-

nentially fast as d → ∞, since

|C3|
C2

2

∼
(

24

πd

)1/2 (
3

4

) d+2
2

, d → ∞. (53)

2. Hypercubes

Evaluations of the terms in the density expansion of S for
overlapping oriented hypercubes are considerably easier than
those for overlapping hyperspheres since individual diagrams

TABLE I. Conditional trimer probability |C3|/C2
2 = −C3/C2

2 for overlap-
ping hyperspheres, denoted by (|C3|/C2

2 )sphere and overlapping oriented hy-
percubes, denoted by (|C3|/C2

2 )cube, for dimensions one through eleven.

d (|C3|/C2
2 )sphere (|C3|/C2

2 )cube

1 3
4 = 0.7500000000 . . . 3

4 = 0.7500000000 . . .

2 1 − 3
√

3
4π

= 0.5865033288 . . .
(

3
4

)2 = 0.5625000000 . . .

3 15
32 = 0.4687500000 . . .

(
3
4

)3 = 0.4218750000 . . .

4 1 − 9
√

3
9π

= 0.3797549926 . . .
(

3
4

)4 = 0.3164062500 . . .

5 159
512 = 0.3105468750 . . .

(
3
4

)5 = 0.2373046875 . . .

6 1 − 27
√

3
20π

= 0.2557059910 . . .
(

3
4

)6 = 0.1779785156 . . .

7 867
4096 = 0.2116699219 . . .

(
3
4

)7 = 0.1334838867 . . .

8 1 − 837
√

3
560π

= 0.1759602045 . . .
(

3
4

)8 = 0.1001129150 . . .

9 19239
131072 = 0.1467819214 . . .

(
3
4

)9 = 0.07508468628 . . .

10 1 − 891
√

3
560π

= 0.1227963465 . . .
(

3
4

)10 = 0.05631351471 . . .

11 107985
1048576 = 0.1029825211 . . .

(
3
4

)11 = 0.04223513603 . . .
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for the former in any dimension d can be expressed as the one-
dimensional solution raised to the power d. For example, for
one-dimensional “cubes” of length D, the intersection volume
of two such cubes (i.e., line intervals) as a function of the
displacement vector r between their centroids is given by

vint
2 (|r|; D) = 2D

[
1 − |r|

2D

]
�(2D − |r|). (54)

Thus, the trimer statistic (Eq. (29)) for overlapping oriented
hypercubes in dimension d is

C3(d) = −|C3(1)|d = −3d , (55)

where the one-dimensional trimer statistic C3(1), defined by
Eq. (29), is

C3(1) = − 4

D2

∫ D

0
vint

2 (x; D)dx = −3 . (56)

Therefore, the conditional trimer probability for any d is ex-
actly given by

|C3|
C2

2

=
(

3

4

)d

, (57)

which we see tends to zero exponentially fast as d → ∞.

B. Tetramer statistics

Because f(r) is a unit-step function, the ring diagram CA
4

in the tetramer statistic (Eq. (32)) is always greater than either
CB

4 or CC
4 < CB

4 , but always smaller than 2d|C3| for finite d
for either hypersphere or hypercubes, i.e.,

CC
4 < CB

4 < CA
4 < 2d |C3| . (58)

We will see below that the absolute value of the tetramer
statistic C4 is bounded from above by

|C4| < 2d |C3|. (59)

1. Hyperspheres

To evaluate the tetramer statistic C4 [cf. Eq. (32)] for
overlapping hyperspheres for the first 11 dimensions, the ring
diagram CA

4 contribution as well as that from the diagram
CB

4 can be directly determined using the scaled intersection
volume α(x; d) obtained from the recurrence relation (45).
To evaluate the remaining “star” diagram contribution CC

4
to C4, we utilize results for the “star” diagram contribution
to the fourth virial coefficient B4 for hard hyperspheres ob-
tained in two and three dimensions37, 38 as well as in higher
dimensions39, 40 as per the discussion at the end of Sec. II.
Table II lists the scaled tetramer statistic C4/C3

2 for overlap-
ping hyperspheres for the first 11 space dimensions. This table
indicates that the ratio |C4|/C3

2 is always smaller than unity
and is a monotonically decreasing function of d, presumably
tending to zero. Comparing these results for hyperspheres to
Table I, we see that inequality (59) relating the tetramer statis-
tic C4 to the trimer statistic C3 is obeyed.

Not only is the ring diagram CA
4 larger than either of the

other diagrams CB
4 and CC

4 that contributes to C4 for any fi-
nite d, as noted at the end of Sec. II, but CB

4 and CC
4 become

TABLE II. Scaled tetramer statistic C4/C3
2 for overlapping hyperspheres,

denoted by (C4/C3
2 )sphere and overlapping oriented hypercubes, denoted by

(C4/C3
2 )cube, for dimensions one through eleven.

d (C4/C3
2 )sphere (C4/C3

2 )cube

1 0.5416666667 13
24 = 0.5416666667

2 0.3110703762 79
288 = 0.2743055556

3 0.1823550119 433
3456 = 0.1252893519

4 0.1070948907 1927
41 472 = 0.04646508488

5 0.06210757652 3793
497 664 = 0.007621608153

6 0.03498939854 − 56 201
5 971 968 = −0.009410800594

7 0.01866770530 − 1 086 527
71 663 616 = −0.01516148725

8 0.008950018335 − 13 337 273
859 963 392 = −0.01550911716

9 0.003289929140 − 140 333 327
10 319 560 704 = −0.01359876947

10 0.0001175430431 − 1 364 831 081
123 834 728 448 = −0.01102139196

11 − 0.001543006376 − 12 654 110 687
1 048 576 = −0.006371786923

subdominant compared to CA
4 in the large-d limit, i.e.,

CB
4

CA
4

→ 0,
CC

4

CA
4

→ 0, as d → ∞. (60)

This is a well-known property of not only this ring diagram
but all higher order ring diagrams in the context of hard
hyperspheres.41 Thus, for some sufficiently large critical di-
mension, the ring diagram contribution to C4 becomes ap-
preciably larger than the other contributions, implying that
tetramer statistic C4 must change from a positive quantity be-
low this critical dimension to a negative quantity at and above
this critical dimension (since the ring-diagram contribution is
weighted with a minus sign). Indeed, we see from Table II that
this critical dimension is 11. Note also that the scaled tetramer
statistic C4/C3

2 or CA
4 /C3

2 tends to zero in the high-d limit ac-
cording to the following leading-order asymptotic behavior:

C4

C3
2

→ −3

2

CA
4

C3
2

∼ −
(

24

πd

)1/2 (
4

3
√

3

)d

, d → ∞. (61)

Combination of the asymptotic formulas (53) and (61) yields
that the ratio |C4|/(2d|C3|) goes to zero exponentially fast in
the high-dimensional limit according to the relation

|C4|
2d |C3| ∼ 4

3

(
8

9

)d

, d → ∞. (62)

2. Hypercubes

Again, since the individual diagrams involved in the
tetramer statistic (Eq. (32)) for overlapping oriented hy-
percubes in any dimension d can be expressed as the
one-dimensional solution raised to the power d, we find that
CA

4 = 23d (2/3)d , CB
4 = (14/3)d , and CC

4 = 4d . Therefore,
from Eq. (32), the tetramer statistic is given by

C4 = −23d

(
2

3

)d−1

+ 7

2

(
14

3

)d

− 4d . (63)
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In the limit that d → ∞, the ratio |C4|/C3
2 goes to zero expo-

nentially fast according to

|C4|
C3

2

∼
(

2

3

)d

. (64)

Combination of the asymptotic formulas (57) and (64) gives
that the ratio |C4|/(2d|C3|) goes to zero exponentially fast
in the high-dimensional limit according to the asymptotic
relation

|C4|
2d |C3| ∼

(
8

9

)d

, d → ∞. (65)

C. Higher-order statistics in the
high-dimensional limit

It is useful for later purposes to bound the successive co-
efficients Ck and Ck + 1 for large dimensions. In particular, we
have that

|Ck| >
|Ck+1|

C2
= |Ck+1|

2d
, for k ≥ 2 and d 	 1. (66)

This inequality follows because the ring-diagram contribution
to Ck dominants among all others because f(r) is a unit step
function. The bound indicated in relation (66) likely applies
in all dimensions, e.g., we have shown above that it is valid
when k = 2 and 3 for any d. One can easily verify, using the
results of Sec. VI A, that it is also valid in one dimension for
any k.

IV. EXACT HIGH-d ASYMPTOTICS
FOR PERCOLATION BEHAVIOR

On physical grounds, it is clear that the threshold ηc for
either overlapping hyperspheres or hypercubes must tend to
zero as d tends to infinity. Indeed, we now show that in suf-
ficiently high dimensions, the threshold ηc has the following
exact asymptotic expansion:

ηc = 1

2d
− C3

23d
− C4

24d
+ O

(
C2

3

25d

)
, d 	 1. (67)

The terms in this expansion are written in order of de-
creasing dominance. Thus, using this relation in the expres-
sion (7) yields the corresponding asymptotic expansion for
mean number of overlaps per particle Nc at the threshold, i.e.,

Nc = 1 − C3

22d
− C4

23d
+ O

(
C2

3

24d

)
, d 	 1. (68)

Hence, in the infinite-dimensional limit, we exactly have

ηc ∼ 1

2d
, d → ∞, (69)

Nc ∼ 1, d → ∞, (70)

where we have used the asymptotic results for C3 and C4 ob-
tained in Sec. III. We see that ηc tends to zero exponentially
fast as d → ∞ and each sphere overlaps exactly one other
sphere on average in this asymptotic limit. The latter result is

the theoretical basis for the same numerical observation re-
ported by Krüger.29

To obtain the asymptotic relation (Eq. (67)) for the per-
colation threshold ηc, it is important to recognize that the sum
of the first few terms in the exact expression (Eq. (27)) for
S−1, which is a low-degree polynomial in η, is sufficient to
determine ηc in high dimensions. Specifically, ηc is the rel-
evant zero of this low-degree polynomial in η. We illustrate
this idea by showing how to obtain the leading-order term in
Eq. (67), i.e., 1/2d. Let us rewrite the exact expression for the
inverse of the mean cluster number as follows:

S−1 = 1 − 2dη − R2(η), (71)

where

Rn(η) =
∞∑

m=n

Cm+1η
m (72)

is the nth-order remainder of the series expansion (21) for
ρC̃(0). Now if we can show that the remainder R2(η = 1/2d)
tends to zero as d tends to infinity, then the proof would be
complete, since η = 1/2d is trivially the zero of 1 − 2dη. Since

R2(η = 1/2d ) = C3

22d
+ C4

23d
+ · · · , (73)

it immediately follows from the asymptotic results obtained
in Sec. III that

lim
d→∞

R2(η = 1/2d ) → 0, (74)

which completes the proof. This analysis implies that

S ∼ 1

1 − 2dη
, d → ∞, (75)

and thus the asymptotic relation (Eq. (69)) for the percolation
threshold ηc. We will see in Sec. VI B that expression (75) is
a rigorous upper bound on the mean cluster number for any
dimension d and reduced densities in the interval [0, 2−d].

Now to obtain the next terms in the asymptotic expansion
(67), successively more terms are included in the partial sum
(e.g., quadratic and cubic terms in η) and its roots are deter-
mined. One can again show that the remainder R4(η) when
evaluated at η = 1/2d − C3/23d − C4/24d tends to zero as d
tends to infinity.

V. PERCUS-YEVICK APPROXIMATION
FOR CLUSTER STATISTICS

Stell8 has shown a remarkable correspondence between
the Percus-Yevick (PY) approximations for the pair connect-
edness function P(r) for overlapping particles and the pair
correlation function of hard spheres continued analytically to
−ρ. This is another manifestation of the duality between the
two problems described in Sec. II C that applies in all dimen-
sions, albeit approximately. The PY approximation for hard
hyperspheres of diameter D solves the OZ equation (37) as-
suming the closure

c(r) = 0 for r > D, h(r) = −1 for r < D. (76)
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The analogous PY closure for the percolation OZ equa-
tion (16) is specified by

C(r) = 0 for r > D, P (r) = 1 for r < D.

(77)
Therefore, comparison of the two different integral equa-
tions (16) and (37) with their corresponding PY closures re-
veals that P(r) and C(r) at ρ can be mapped to −h(r) and
−c(r) at −ρ, respectively. Since the PY approximation is ex-
act up through the third virial coefficient, this implies that it
yields the direct connectedness function C(r) in Eq. (12) ex-
actly up through first order in density or, equivalently, expan-
sion (39) for P(r).

A consequence of this correspondence is that the mean
cluster number S for overlapping particles, which is exactly
given by Eq. (10), can be obtained within the PY approxi-
mation from the corresponding hard-particle solution of the
compressibility relation (38), i.e.,

S = kBT

(
∂ρ

∂p

)
ρ→−ρ

= 1 − ρ

∫
Rd

h(r; −ρ)dr, (78)

where h(r; −ρ) indicates the total correlation function evalu-
ated at −ρ. Since the PY approximation is exact up through
the third virial level, the mean cluster size for overlapping
particles within the PY approximation is exact up through
the second order in ρ or η, i.e., it yields the exact series co-
efficients S2 and S3 defined in Eq. (20) or, equivalently, the
exact coefficients C2 and C3 defined by Eqs. (28) and (29),
respectively.

Using this prescription and the Percus-Yevick-like ex-
pression for the pressure for a d-dimensional hard-sphere or
oriented hard-cube derived in Appendix A, we arrive at the
following PY-like expression for S for overlapping hyper-
spheres or oriented hypercubes,

S ≈ SPY = (1 + η)d+1

1 + A1η + A2η2 + A3η3
, (79)

where

A1 = d + 1 − C2, (80)

A2 = d(d + 1)

2
− (d + 1)C2

2
− C3, (81)

A3 = (3 − d)

[
d(d − 1)

2
− C2d

2
− C3

3

]
. (82)

Thus, the predicted percolation threshold is obtained by find-
ing the appropriate zero ηPY

0 of the cubic polynomial in the
denominator of Eq. (79). Thus, in this approximation,

ηc ≈ ηPY
0 . (83)

The root ηPY
0 is meaningful for d ≥ 3. Expanding the inverse

of Eq. (79) through order η3 yields

S−1 ≈ (SPY)−1 = 1 − C2η − C3η
2 +

[
4d

3
C3 + d(d − 1)C2

− 2d(d − 2)(d − 1)

3

]
η3 + O(η4). (84)

Thus, since this approximation is exact through second order
in η [cf. Eq. (21)], we see that the tetramer coefficient within
this approximation is given by

C4 ≈ −4d

3
C3 − d(d − 1)C2 + 2d(d − 2)(d − 1)

3
. (85)

For sufficiently large d, the cubic term in the denominator
can be neglected, and hence, estimate of ηc is given by the
appropriate root of the remaining quadratic relation, i.e.,

ηPY
0 ≈ (d + 1) − C2 +

√
(1 + C2)2 + 2d(C2 − d) + 4C3

2C2(d + 1) − d(d + 1) + 2C3
.

(86)

This high-dimensional quadratic solution matches the exact
cubic solution to at least three significant figures in eight di-
mensions, a relatively low dimension. Finally, we note that
Eq. (86) asymptotically becomes

ηPY
0 ∼ 1

2d
− C3

23d
− d

22d
+ h.o.t (d 	 1), (87)

which is the exact form up through the first two terms [cf.
Eq. (67)], since this approximation is exact through the third
virial level. Note we have used Eq. (28), i.e., C2 = 2d.

VI. LOWER BOUNDS ON THE
PERCOLATION THRESHOLD

It has been observed that the [n, 1] Padé approximant of
the mean cluster number S provides lower bounds on ηc for
overlapping spheres in two and three dimensions (as deter-
mined by numerical simulations) and become sharper as n in-
creases, where n = 0, 1, 2, . . . .19 Let us denote the [n, 1] Padé
approximant of the mean cluster number S by S[n, 1]. This ra-
tional function for any d is given explicitly by

S ≈ S[n,1] =
1 + ∑n

m=1

[
Sm+1 − Sm

Sn+2

Sn+1

]
ηm

1 − Sn+2

Sn+1
η

,

for 0 ≤ η ≤ η
(n)
0 , (88)

where η
(n)
0 is the pole of the [n, 1] approximant, which is given

by

η
(n)
0 = Sn+1

Sn+2
, for n ≥ 0. (89)

Here we use the convention that the sum in Eq. (88) is zero in
the single instance in which n = 0. The claim we make is that
the pole η

(n)
0 for n = 0, 1, and 2 bounds the threshold ηc from

below for any d, i.e.,

ηc ≥ η
(n)
0 = Sn+1

Sn+2
, for n = 0, 1, 2, (90)

and hence,

Nc ≥ 2d Sn+1

Sn+2
, for n = 0, 1, 2. (91)
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A. Proof in the one-dimensional case

For d = 1, it is simple to show that all [n, 1] Padé ap-
proximants of S (n = 0, 1, 2, 3, . . . ) provide lower bounds on
the percolation threshold. To see this, note the mean cluster
number S in the one-dimensional case is given exactly by

S = 1 + φ

1 − φ
, (92)

where φ = 1 − e−η is the fraction of space covered the over-
lapping particles.19 Thus, the mean cluster number can be
written as

S = 2eη − 1 = 1 +
∞∑

k=1

2

k!
ηk. (93)

Comparing this relation to Eq. (20) yields

Sm = 2

(m − 1)!
, for m ≥ 2. (94)

We see from Eq. (89) that

η
(n)
0 = n + 2, (95)

and hence, this pole always bounds the actual percolation
threshold φ1 = 1 [cf. Eq. (92)] or ηc = ∞ from below:

ηc ≥ n + 2, for n ≥ 0. (96)

Note that the lower bound (96) progressively becomes tighter
as the order of the [n, 1] Padé approximant of S increases. Ap-
parently, as we will see below, these lower bound properties
of the [n, 1] Padé approximant of S extend to all dimensions
for sufficiently small n.

B. [0, 1] Padé approximant

We will begin by proving that the [0, 1] Padé approximant
of the mean cluster number S given by

S ≈ S[0,1] = 1

1 − 2dη
, for 0 ≤ η ≤ 1

2d
, (97)

provides the following rigorous lower bound on the percola-
tion threshold ηc in all Euclidean dimensions,

ηc ≥ η
(0)
0 = 1

2d
. (98)

This in turn directly implies the lower bound

Nc ≥ 1. (99)

Given and Stell15 derived bounds on the pair connected-
ness function for overlapping spheres, which trivially take the
following more general form for anisotropic particle shapes:

P (r) ≥ f (r), (100)

P (r) ≤ f (r) + ρ[1 − f (r)]f (r) ⊗ P (r). (101)

Note that since 1 − f(r) ≤ 1, we also have from the inequality
(101), the weaker upper bound

P (r) ≤ f (r) + ρf (r) ⊗ P (r). (102)

Taking the volume integral of Eq. (102) and using the defini-
tion (10) for the mean cluster number S yields the following
upper bound on the latter:

S ≤ 1

1 − S2η
. (103)

Now since this lower bound has a pole at η = S−1
2 = C−1

2 , it
immediately implies the new rigorous lower bound (98) on
the percolation threshold for any d.42 This in turn implies the
following rigorous lower bound on the mean number of over-
laps per particle Nc at the threshold for any d:

Nc ≥ 1. (104)

This rigorous lower bound contradicts the numerical results
reported in Ref. 30 that Nc is less than unity for hyperspheres
in high dimensions.

Note that the lower bound (100) and upper bound (101)
imply that in the limit d → ∞,

P (r) → f (r), for 0 ≤ η ≤ 1

2d
. (105)

This follows since the higher terms in the upper bound
(101) vanish in the limit d → ∞ in light of the asymptotic
properties established above. Thus, for overlapping hyper-
spheres, this result means that P(r) tends to a step function,
i.e.,

P (r) → �(D − r), for 0 ≤ η ≤ 1

2d
. (106)

The dual statement for the hard-hypersphere correlation func-
tion is described in Sec. IX.

Note that a stronger upper bound on P(r) can be ob-
tained by using the lower bound (100) in the inequality (101),
namely,

P (r) ≤ f (r) + ρf (r) ⊗ P (r) − ρf (r)[f (r) ⊗ P (r)]. (107)

Taking the volume integral of Eq. (102) and use of Eq. (10)
gives the following upper bound:

S ≤ 1 − C3η
2

1 − S2η
. (108)

Although this lower bound on S is sharper than inequality
(103), it has the same pole and, therefore, does not provide
a tighter upper bound on the percolation threshold than in-
equality (98).

It is instructive to analyze the implications of the upper
bound (103) or lower bound on S−1. In particular, using rela-
tions (27) and (103), we have that

1 − 2dη ≤ S−1 = 1 − 2dη − R2(η), 0 ≤ η ≤ 1

2d
,

(109)
where R2(η) is the second-order remainder defined by
Eq. (72) with n = 2. Therefore, the remainder R2(η) is nega-
tive semi-definite, i.e.,

R2(η) ≤ 0, (110)

which is tantamount to saying that the left side of inequal-
ity (109) bounds S−1 from below. This remainder property is
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true for η = 1/2d, and hence, its density expansion obeys the
inequality

R2(η = 2−d ) = C3

22d
+ C4

23d
+ O

(
C5

24d

)
≥ 0. (111)

The sign of the first term in this sum is negative and deter-
mines the sign of the entire sum.

C. [1, 1] Padé approximant

The [1, 1] Padé approximant of S, given by Eq. (88) with
n = 1, is more explicitly given by

S ≤ S[1,1] = 1 + [
2d − S3

2d

]
η

1 − S3
2d η

, for 0 ≤ η ≤ η
(1)
0 , (112)

provides the following putative lower bound on the threshold
ηc in all Euclidean dimensions:

ηc ≥ η
(1)
0 = 1

2d
[
1 + C3

22d

] , (113)

where η
(1)
0 is the pole defined by Eq. (89) and we have made

use of the identities (24) and (25) with S2 = C2 = 2d. We see
that since C3 is negative, this putative lower bound improves
upon the lower bound (98) obtained from the [0, 1] Padé ap-
proximant for any finite d.

We now examine whether relation (113) is indeed a rig-
orous lower bound on ηc or, equivalently, relation (112) is an
upper bound on S, which provides a lower bound on S−1. The
bounds (100) and (101) on the connectedness function, unlike
the case of the [0, 1] Padé approximant, do not contain suffi-
cient information to prove that relation (113) is a lower bound.
Therefore, we must use a different approach. Note that S−1

[1,1]
can be written as

S−1
[1,1] = 1 − 2dη − C3η

2 −
∑
k=3

Ck−1
3

2d(n−2)
ηk. (114)

Thus, for this expression to bound S−1 from below, it is re-
quired that the difference R3(η) − S−1

[1,1] be negative or[
C4 − C2

3

2d

]
+

[
C5 − C3

3

22d

]
η +

[
C6 − C4

3

23d

]
η2 + h.o.t ≤ 0,

for 0 ≤ η ≤ η
(1)
0 . (115)

First, we observe that the first bracketed term is negative,
which follows immediately from the results of Sec. III. There-
fore, for sufficiently small η, the inequality (115) must be
obeyed, since all terms after the first bracketed term are sub-
dominant. Second, for sufficiently large d, again the inequal-
ity (115) must be obeyed because∣∣∣∣∣C4 − C2

3

2d

∣∣∣∣∣ ≥
∣∣∣∣∣Ck − Ck−2

3

2d(k−3)

∣∣∣∣∣η(k−4)
0 , for all k ≥ 5,

(116)
and the ratio of the right side to the left side of this inequal-
ity tends to zero as d → ∞. Here, we have again used the
results of Sec. III, including inequality (66), which results
from the fact that the ring-diagram contributions to Ck domi-
nant in the large-d limit. These results combined with the fact

relations (112) and (113) are indeed rigorous upper and lower
bounds on S and ηc, respectively, for d = 1 (Sec. VI A)
provide strong theoretical arguments that these are rigorous
bounds for all dimensions. Moreover, we will also see that
numerical simulations in sufficiently low dimensions support
these claims.

Note that for large d, the pole η
(1)
0 has the following

asymptotic behavior:

η
(1)
0 = 1

2d
− C3

23d
+ C2

3

25d
+ O

(
C3

3

27d

)
, d 	 1 (117)

Notice that the first two terms in this expression match the
exact asymptotic expansion (87). Since |C3|/22d tends to
zero exponentially fast as d → ∞ for both hyperspheres
and hypercubes [cf. Eqs. (53) and (57)], the lower bound
(113) tends to the exact asymptotic result of 1/2d in this limit
[cf. Eq. (69)] for these models.

D. [2, 1] Padé approximant

The [2, 1] Padé approximant of the mean cluster number
S, given by Eq. (88) with n = 2, is more explicitly given by

S ≤ S[1,1] =
1 +

[
2d − S4

S3

]
η +

[
S3 − 2dS4

S3

]
η2

1 − S4
S3

η
,

for 0 ≤ η ≤ η
(2)
0 , (118)

provides the following putative lower bound on the percola-
tion threshold ηc in all d:

ηc ≥ η
(2)
0 = 1 + C3

22d

2d
[
1 + 2C3

22d + C4
23d

] , (119)

where η
(2)
0 is the pole defined by Eq. (89) and we have

made use of the identities (24)–(26) with S2 = C2 = 2d.
Observe that because of the properties of C3 and C4 dis-
cussed in Sec. III, the putative lower bound (119) improves
upon the lower bound (113) arising from the [1, 1] Padé
approximant for any finite d.

Using the same analysis described above for the [1, 1]
Padé approximant, it is simple to show that relation (118) is
an upper bound on S for sufficiently small η and sufficiently
large d for 0 ≤ η ≤ η

(2)
0 , which implies the lower bound (119)

at least for sufficiently large d. As noted above, these results
combined with the fact that relations (118) and (119) are in-
deed rigorous upper and lower bounds on S and ηc, respec-
tively, for d = 1 provide strong theoretical arguments that
these are rigorous bounds for all dimensions. Numerical sim-
ulations in sufficiently low dimensions discussed in Sec. VII
also support these claims.

For large d, the pole η
(1)
0 has the following asymptotic

behavior:

η
(2)
0 = 1

2d
− C3

23d
− C4

24d
+ 2C2

3

25d
+ O

(
C3C4

26d

)
, d 	 1

(120)
As expected, the first two terms in this expression match
the exact asymptotic expansion (87). Since |C3|/22d and
|C4|/23d tend to zero exponentially fast as d → ∞ for both
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TABLE III. Estimates of the percolation threshold ηc for overlapping hyperspheres as obtained from the lower bounds
(98), (113), and (119), Percus-Yevick-like approximation (83) and simulation data29 for dimensions two through eleven.
The relevant trimer and tetramer statistics are obtained from Tables I and II.

d ηPY
c from Eq. (83) ηc ηL

c from Eq. (119) ηL
c from Eq. (113) ηL

c from Eq. (98)

2 1.1282 0.748742. . . 0.604599. . . 0.250000. . .
3 0.500000. . . 0.3418 0.271206. . . 0.235294. . . 0.125000. . .
4 0.138093. . . 0.1300 0.111527. . . 0.100766. . . 0.0625000. . .
5 0.0546701. . . 0.0543 0.0488542. . . 0.0453257. . . 0.0312500. . .
6 0.0236116. . . 0.02346 0.0222117. . . 0.0209930. . . 0.0156250. . .
7 0.0106853. . . 0.0105 0.0103452. . . 0.00991018. . . 0.00781250. . .
8 0.00497795. . . 0.00481 0.00489917. . . 0.00474036. . . 0.00390625. . .
9 0.00236383. . . 0.00227 0.00234800. . . 0.00228912. . . 0.00195312. . .
10 0.00113725. . . 0.00106 0.00113534. . . 0.00111326. . . 0.000976562. . .
11 0.000552172. . . 0.000505 0.000552682. . . 0.000544338. . . 0.000488281. . .

hyperspheres and hypercubes [cf. Eqs. (53), (57), (61),
and (64)], the lower bound (119) tends to the exact asymp-
totic result of 1/2d in this limit [cf. Eq. (69)] for these models.

E. [n, 1] Padé approximant

We expect that higher order [n, 1] Padé approximants
(n ≥ 3) of S also provide lower bounds on ηc for d ≥ 2 for
n ≥ 3 and relatively low d provided that successive density
coefficients Sn + 1 and Sn + 2 remain positive. For example,
we have verified that S[3, 1] yields lower bounds on ηc for
d = 2 and d = 3. However, as noted earlier, because we expect
Sn to become negative at some large value of n for d = 2 and
d = 3, S[n, 1] cannot always yield lower bounds on ηc for
relatively low dimensions such that d ≥ 2. In the limit
d → ∞, we have shown that the Sn are all positive [cf.
Eq. (75)], and hence, it is possible that in sufficiently high
d, S[n, 1] gives lower bounds on ηc for any n. See also related
discussion in Sec. IX.

VII. RESULTS FOR OVERLAPPING HYPERSPHERES

In Table III, we compare the lower bounds (98), (113),
and (119) on the percolation threshold ηc, and Percus-Yevick-
like approximation (83) for ηc for overlapping hyperspheres
to the corresponding simulation data obtained by Krüger29

for dimensions two through eleven. Although more precise
values of ηc have been determined in two43, 44 and three45, 46

dimensions, Krüger claims to have obtained estimates for ηc

that are accurate essentially up to the number of significant
figures indicated in Table III for all of the considered di-
mensions. By comparing the bounds to the simulation data,
one can see that the bounds become progressively tighter
as the space dimension increases (for reasons already men-
tioned in Sec. VI) and that the lower bound derived from
the [2, 1] provides an excellent estimate for higher dimen-
sions. Observe also that the Percus-Yevick-like estimate (83)
of ηc bounds the simulation data from above for dimensions
two through nine. Since it becomes increasingly challeng-
ing to estimate percolation thresholds from simulations in
high dimensions, it is not surprising that the simulation
data fall slightly below the putative lower bound (119) for

8 ≤ d ≤ 11, which becomes asymptotically exact in high di-
mensions. Nonetheless, the quality of the simulation data is
quite high.

This is to be contrasted with the simulation data reported
by Wagner et al.30 for hyperspheres up to dimension 20. In
particular, they find that 2dηc incorrectly is a non-monotonic
function of dimension; they find that 2dηc decreases as a func-
tion of d up to dimension nine, increases at d = 10 above its
value at d = 9, and then decreases again for larger values of
d. By contrast, the simulation data of Krüger29 for 2dηc is a
monotonic function of d, which is consistent with our theoret-
ical results.

Figure 5 depicts the data listed in Table III graphically.
It is seen that as the order of the Padé approximant increases,
the corresponding estimates of the threshold become progres-
sively better for any fixed dimension. All of the theoretical
estimates, including the Percus-Yevick-like approximation
(Eq. (83)), improve in accuracy as the space dimension
increases.

Figures 6–8 plot theoretical estimates of the inverse of
the mean cluster number S−1 as a function of the reduced

4 5 6 7 8 9 10 11

d

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

η c

Hyperspheres
PY

[0,1]

FIG. 5. Percolation threshold ηc versus dimension d for overlapping hyper-
spheres as obtained from the lower bounds (98) (lowermost curve), (113)
and (119), Percus-Yevick-like approximation (83) (uppermost curve)), and
simulation data (black circles).29
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0 0.1 0.2 0.3 0.4 0.5
η

0

0.2

0.4

0.6

0.8

1

S
-1
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FIG. 6. Lower bounds on the inverse of the mean cluster number S−1 ver-
sus reduced density η for overlapping hyperspheres for d = 3 as obtained
from inequalities (112) (lowermost curve) and (118). Included is the corre-
sponding estimate obtained from the Percus-Yevick-like approximation (79)
(upppermost curve). The filled black circle shows the threshold ηc determined
numerically in Ref. 29.

density η for dimensions 3, 6, and 11, respectively. These
include those expressions for S−1 obtained from the [1, 1]
and [2, 1] Padé approximants of S [cf. (Eqs. (112) and (118))],
which bound S−1 from below, and the Percus-Yevick-like ap-
proximation (Eq. (79)). These figures clearly illustrate that the
theoretical estimates for the inverse mean cluster number be-
come increasingly more accurate as the space dimension in-
creases. Indeed, for d = 11, all of the theoretical estimates es-
sentially coincide with one another for all densities up to the
threshold. This is not surprising, since all of these estimates
become asymptotically exact as the space dimension becomes
large.

We use the threshold estimate obtained from the [2, 1]
Padé approximant of S as the basis for an accurate analytical
approximation for ηc that applies across all dimensions for
hyperspheres. Specifically, we fit the following function to the
simulation data for 2 ≤ d ≤ 7:

ηc ≈
(

1 + b1

d2
+ b2

d4

)
η

(2)
0 . (121)
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FIG. 7. As in Fig. 6, except for d = 6.
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FIG. 8. As in Fig. 6, except for d = 11. Note that all of the theoretical esti-
mates essentially coincide for this dimension on the scale of this figure.

We find that b1 = 2.05801 and b2 = 3.15983, and correla-
tion coefficient equal to 0.997906. Here, η

(2)
0 is the pole for

[2, 1] Padé approximant explicitly given by Eq. (119).

VIII. RESULTS FOR OVERLAPPING HYPERCUBES

In Table IV, we present the lower bounds (98), (113),
and (119) on the percolation threshold ηc, and Percus-Yevick-
like approximation (83) for ηc for overlapping oriented hyper-
cubes for dimensions two through twelve, and compare to the
corresponding simulation data for dimensions two and three47

as well as four.30 By comparing the bounds to the simula-
tion data one can see that the bounds become progressively
tighter as the space dimension increases, as in the case of hy-
perspheres, and that the lower bound derived from the [2, 1]
approximant provides an excellent estimate for higher dimen-
sions. Unlike in the case of hyperspheres, the Percus-Yevick-
like estimate (83) of ηc always bounds the simulation data
from below. Like the case of hyperspheres, this approximation
becomes essentially indistinguishable from the estimate ob-
tained from the [2, 1] approximant in the higher dimensions.
We see that the threshold for hyperspheres is always above
that for hypercubes as obtained from our theoretical estimates.
Given that the qualitative trends for the thresholds and mean
cluster number are similar for hypercubes and hyperspheres,
we do not provide plots that are analogous to Figs. 5–8.

Note that Wagner et al.30 also reported numerical
estimates of ηc for 5 ≤ d ≤ 15. However, we do not list
those values in Table IV, since they violate the lower bound
(119). Another reason why this simulation data is question-
able in high dimensions is that 2dηc is incorrectly found
to be a nonmonotonic function of d (as they found for
hyperspheres); the authors find that it first decreases as d
increases for 2 ≤ d ≤ 9 and then increases as d increases for
10 ≤ d ≤ 15. Indeed, they incorrectly conclude from their
data that hyperspheres have lower thresholds than hypercubes
in higher dimensions while the reverse is true at lower
dimensions. The fact is that hypercubes always have a lower
threshold than hyperspheres for any fixed finite dimension,
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TABLE IV. Estimates of the percolation threshold ηc for overlapping hypercubes as obtained from the lower bounds
(98), (113), and (119) and Percus-Yevick-like approximation (83) for dimensions two through eleven. Included for
comparison are corresponding simulation data for dimensions two through four.30, 47 The relevant trimer and tetramer
statistics are obtained from Tables I and II.

d ηPY
c from Eq. (83) ηc ηL

c from Eq. (119) ηL
c from Eq. (113) ηL

c from Eq. (98)

2 1.098 0.732558. . . 0.571428. . . 0.250000. . .
3 0.267949. . . 0.3248 0.256680. . . 0.216216. . . 0.125000. . .
4 0.101137. . . 0.12 0.103286. . . 0.0914285. . . 0.0625000. . .
5 0.0431986. . . 0.0447161. . . 0.0409731. . . 0.0312500. . .
6 0.0195737. . . 0.0202386. . . 0.0190080. . . 0.0156250. . .
7 0.00916745. . . 0.0094301. . . 0.00901598. . . 0.00781250. . .
8 0.00438238. . . 0.00448213. . . 0.00434082. . . 0.00390625. . .
9 0.00212321. . . 0.00216025. . . 0.00211167. . . 0.00195312. . .
10 0.00103805. . . 0.00105159. . . 0.00103483. . . 0.000976562. . .
11 0.000510713. . . 0.000515602. . . 0.000509813. . . 0.000488281. . .

and the thresholds of these two systems approach one another
in the limit d → ∞, as noted above.

As in the case of hyperspheres, we use the percolation
threshold estimate obtained from the [2, 1] Padé approximant
of S to obtain an accurate analytical approximation for ηc that
applies across all dimensions for hypercubes. In particular, we
fit the following function to the simulation data for 2 ≤ d ≤ 4:

ηc ≈
(

1 + b1

d2
+ b2

d4

)
η

(2)
0 . (122)

We find that b1 = 2.73808 and b2 = −2.97382, and corre-
lation coefficient equal to 0.999938. Here η

(2)
0 is the pole for

[2, 1] Padé approximant explicitly given by Eq. (119).

IX. DISCUSSION

We have shown that lower order Padé approximants of
the mean cluster number S of the form [n, 1] (where n = 0,
1, and 2) provide upper bounds on S and, hence, yield corre-
sponding lower bounds on the threshold ηc for overlapping
hyperspheres and oriented hypercubes in any dimension d.
These estimates and the Percus-Yevick-like approximations
already become accurate in relatively low dimensions,
improve in accuracy as d increases, and become exact asymp-
totically, i.e., ηc tends to zero as 2−d as d → ∞. The latter
result applies for any overlapping system of identical oriented
d-dimensional convex particles that possess central
symmetry48 (e.g., spheres, cubes, regular octahedra, and
regular icosahedra).

Note that the aforementioned trends and asymptotic re-
sults will hold for overlapping particles of arbitrary shape
and orientational distribution when appropriately general-
ized. For example, for identical overlapping particles of gen-
eral anisotropic shape of volume v1 with specified probabil-
ity distribution of orientations in d dimensions, the simplest
lower bound on ηc inequality (98) and on Nc inequality (99)
generalizes as follows:

ηc ≥ v1

vex
, (123)

Nc ≡ ηc

vex
v1

≥ 1, (124)

where

vex =
∫
Rd

f (r,ω)p(ω)drdω, (125)

f (r,ω) is still the exclusion-region indicator function, r and
ω is the centroidal position and orientation of one particle, re-
spectively, with respect to a coordinate system at the centroid
of the other particle with some fixed orientation, and p(ω)
is the orientational probability density function. Moreover, in
the high-dimensional limit for any convex particle shape, we
obtain the exact asymptotic results,

ηc ∼ v1

vex
, d → ∞, (126)

Nc ∼ 1, d → ∞. (127)

Exclusion volumes are known for a variety of convex non-
spherical shapes that are randomly oriented in two and three
dimensions,49, 50 which must be necessarily larger than the
corresponding values when all of the particles are aligned and
possess central symmetry, in which case vex/v1 = 2d, indepen-
dent of the particle shape. For example, for randomly oriented
rectangles,50 vex/v1 = 2 + (β + 1)2/(πβ), and ellipses,50

vex/v1 = 2 + 4βE(1 − β−2)2/π2, where β is the aspect ratio
and E(x) = ∫ π/2

0 dt(1 − x sin2(t))1/2 is the complete elliptic
integral of the second kind. For randomly oriented cubes,49

vex/v1 = 11, and spheroids,49 vex/v1 is an analytical rela-
tion given in terms of the aspect ratio, which in the pro-
late “needle-limit” yields vex/v1 ∼ 3πβ/4 (β 	 1). Thus,
lower bound (123) for randomly oriented cubes and nee-
dles yields ηc ≥ 1/11 = 0.09090909. . . and ηc ≥ 4/(3πβ)
= (0.424413181. . . )/β, respectively. These values should
be compared to the corresponding simulation values of ηc

= 0.2168 (Ref. 47) and ηc = 0.6/β,51 respectively (see Refs.
51 and 52 for numerical estimates of ηc for other spheroid
aspect ratios). Note that in the case of three-dimensional nee-
dles, the lower bound (123) is considerably sharper than for
three-dimensional spheres. Indeed, the lower bound (123)
improves in accuracy in any fixed dimension as the parti-
cle shape becomes more anisotropic. Balberg et al.53 have
suggested that Nc is an approximant invariant for overlap-
ping particles of general shape in two and three dimensions.
Simulations have shown this not to be an invariant47, 51, 54 in
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these low dimensions. However, the asymptotic result (127)
reveals that Nc is an invariant, with value unity, in the high-
dimensional limit regardless of the shape of the convex parti-
cle. The lower bound on ηc for randomly oriented convex non-
spherical particles (including Archimedean polyhedra48, 55)
corresponding to inequality (98) will be the subject of a fu-
ture study.

We have already noted the remarkable duality between
continuum percolation of overlapping particles and corre-
sponding hard particles in equilibrium in high dimensions
(and low densities regardless of the dimension). There is yet
another amazing manifestation of this duality involving the
percolation threshold for continuum percolation and the lim-
iting density for a class of disordered hard-particle systems.
For simplicity of discussion, we will focus on overlapping hy-
perspheres and the corresponding packing of disordered hard
hyperspheres in high dimensions. We have seen that the per-
colation threshold ηc of the former system tends to 2−d as
d → ∞. The dual statement is that there is a variety of disor-
dered hard hyperspheres whose upper limiting packing frac-
tion φ (fraction of space covered by the hard hyperspheres)
is also 2−d in this high-dimensional limit, some of which we
will now describe.

First, it has been shown that the pressure of an equilib-
rium hard-hypersphere packing is exactly given by the first
two terms of its asymptotic low-density expansion for some
positive density interval [0, φ0] as d → ∞.41, 56 Frisch and
Percus41 have argued that φ0 = 2−d, which implies that the
pair correlation function g2(r) tends to a unit-step function,
i.e., g2(r) → �(r − D), where D is the hypersphere diame-
ter. [Recall that the dual statement for the percolation prob-
lem is that the pair connectedness function tends to the com-
plimentary unit-step function, i.e., P(r) → �(D − r) (see
Eq. (106)).] According to the decorrelation principle, which
states that unconstrained correlations that exist in low dimen-
sions must vanish in the high-dimensional limit,35 this implies
that 2−d is the high-dimensional asymptotic limit for the pack-
ing fraction of the freezing point of a hard hypersphere sys-
tem. Why? Because only short-range correlations character-
istic of disordered states along the stable fluid branch (rather
than the long-ranged correlations describing states along the
stable crystal branch) can decorrelate to a unit-step function
�(r − D). This outcome concerning the asymptotic form of
the freezing-point density does not appear to have noted or
appreciated before. A second example is provided by the so-
called “ghost” random sequential addition packing, which is
an exactly solvable disordered hard hypersphere model for
any dimension d whose maximal packing fraction is again
given by 2−d.57 This nonequilibrium packing again possesses
a pair correlation function that has the asymptotic behavior
g2(r) → �(r − D). Third, it has been shown that certain so-
called g2-invariant processes in which g2(r) = �(r − D) are
achieved in the high-dimensional limit with maximal pack-
ing fraction φ → 2−d.35, 58 It is important to note that there
exists hard-hypersphere packings with packing fractions that
exceed 2−d in high dimensions, but with pair correlation func-
tions that are not simple unit step functions.35, 59

Our analysis enables us to draw some new conclusions
about the radius of convergence of the density expansion (20)

of the mean cluster number S as a function dimension. First,
note that this radius of convergence in the high-dimensional
limit corresponds to the percolation threshold because the co-
efficients of the density expansion of the exact asymptotic ex-
pression (75) for the mean cluster number are all positive. As
we already observed in Sec. II B, this is generally not the case
for d ≥ 2 and sufficiently low d, where we expect the closest
singularities to lie on the negative real axis. However, in one
dimension, we see from Sec. VI A that radius of convergence
indeed corresponds to ηc. Thus, the closest singularities for
the density expansion of S shifts from the positive real axis to
the negative real axis in going from one to two dimensions, re-
main on the negative real axis for sufficiently low dimensions
d > 2, and eventually move back to the positive real axis for
sufficiently large d.

As discussed in Sec. VIII, our theoretical analysis re-
vealed fundamental deficiencies in the dependence of the per-
colation threshold ηc as a function of d for overlapping ori-
ented hypercubes reported in the numerical work of Ref. 30.
In future work, we will report simulation results for overlap-
ping oriented hypercubes for d up to 15 in which 2dηc is a
decreasing monotonic function of dimension d that satisfies
the lower bound (119) and has a threshold ηc that always
lies below the corresponding value for overlapping hyper-
spheres. Moreover, in a follow-up investigation, we will show
that the lower order Padé approximants studied here lead also
to bounds on the percolation threshold for lattice-percolation
models in arbitrary dimension.
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APPENDIX: HIGH-DIMENSIONAL GENERALIZATION
OF THE PERCUS-YEVICK APPROXIMATION
FOR HARD HYPERSPHERES AND HYPERCUBES

The Percus-Yevick approximation for the pressure of a
three-dimensional hard-sphere fluid via the “compressibility”
route is given by

p

ρkBT
= 1 + η + η2

(1 − η)3
, (A1)

where η is still the reduced density defined by Eq. (1) but
here also represents the fraction of space covered by the hard
spheres (denoted by φ in Sec. IX), since, unlike the con-
tinuum percolation model, overlap of particles is prohibited.
This approximation for the equation of state, which is exact up
through the third virial coefficient, is slightly more accurate
than the resulting Percus-Yevick approximation via the “pres-
sure” equation. A means of generalizing this result to other
space dimensions was proposed by Torquato in his consider-
ation of nearest-neighbor statistics for the equilibrium hard-
disk fluid.60 Specifically, this procedure presumed the form
p/(ρkBT) = (1 + a1η + a2η

2)/(1 − η)2 and determined the
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coefficients a1 and a2 so that the equation of state was exact
up through the third virial coefficient, implying a1 = 0 and a2

= 0.1280. . . . For general d, this Percus-Yevick-like approxi-
mation yields

p

ρkBT
= 1 + a1η + a2η

2

(1 − η)d
. (A2)

where, using Eqs. (28) and (29),

a1 = B2

v1(D/2)
− d

= C2

2
− d, (A3)

a2 = d(d − 1)

2
− d2d−1 + B3

v1(D/2)2

= d(d − 1)

2
− C2d

2
− C3

3
. (A4)

We see that for three-dimensional spheres, we recover
Eq. (A1) with a1 = a2 = 1, and for one-dimensional hard rods,
we recover the exact result with a1 = a2 = 0. The appropriate
dimensionless pressure for d-dimensional hard hypercubes is
obtained from Eq. (A1) but with the corresponding third virial
coefficient B3 for this system.
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