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Rec:ent upper and lower bounds established by the authors for the rate to diffuse to traps in a 
random medium are compared in a consistent manner by taking account of how the trap-free 
volume affects various definitions of the rate constant. 

We have independently published l ,2 (referred to as PR 
and ST, respectively) relatively simple expressions for the 
average rate at which a diffusing particle is trapped in a me
dium containing a random distribution of static spherical 
traps of arbitrary radius and concentration. ST utilized a 
variational principle3 which gives a lower bound to the trap
ping rate k (called R in PR, except where noted otherwise we 
use the notation ofST) and treated both overlapping (fully 
penetrable) and nonoverlapping (impenetrable) traps. PR 
gave a result for k in the case of overlapping traps which, in 
addition to giving good agreement with simulations, was 
claimed to be an upper bound. A reader may find it mildly 
disturbing that PR's upper bound lies below ST's lower 
bound for overlapping traps when the volume fraction ¢2 is 
appreciable. We show here that the apparent discrepancy is 
due to different definitions of k in terms of the fraction ¢I of 
trap-free volume. When this is accounted for, the upper 
bound of PR happily lies above the lower bound of ST. ST's 
lower bound for nonoverlapping traps also now falls below 
the result derived recently by one ofus.4 

The manner in which k is related to ¢1 should be clear if 
k is defined concretely, but this often is not the case and has 
resulted in some confusion in the past.s If the trapping vol
ume acts like a perfect sink in which particles are instantly 
absorbed, the rate of interest is that which characterizes 
trapping of particles which initially are outside of traps. In 
both his simulations and random-walk methods, PR consid
ered only such particles. However, when the problem is 
treated as a continuum boundary value, one with a contin
uous distribution of sources, it is sometimes not transparent 
whether or not the particles generated in the traps are being 
included. Let the total number of particles created per sec
ond outside of traps be N. and the total number outside of 
traps at a given time be No. Then the average trapping rate 
per particle k is given by k = NJ No. If the numerator and 
denominator of the right-hand side are divided by the total 
volume, we have 

k=s/c, 

whereas 

(la) 

k == (T/co (lb) 

results if they are divided by the trap-free volume V ¢ I' In Eq. 
( 1a) s is the average generation rate over the whole volume 
and c is the average concentration over the whole volume. 
This volume, however, includes a fraction 1 - ¢I over which 

both the generation rate and concentration are zero. In Eq. 
( 1 b) (T and Co are average generation rates over the volume 
for which they are nonzero. 

Obviously either Eq. (1a) or (lb) can be used to pro
duce the same k, but confusion can occur if the generation 
rate and concentration are referred to different volumes, 
which is what DoP appears to have done. He defines the 
reaction rate as kD = (T/ C, and it is evident from his Eq. (7) 
that generation takes place only within the trap-free volume. 
The proper conversion is thus 

(2) 

to convert results of Ref. 3 to the trap rate defined by Eq. 
( 1 ). Another possibility is to have particles generated at 
equal rates throughout the entire volume. The average trap
pingtimeTisthenT=OX(1- ¢I) +k-I¢I,thefirstterm 
indicating instantaneous trapping of particles generated 
within traps, which6 leads to a rate k = k /¢I' In attempting 
to compare Doi's theory with calculations in which particles 
were apparently generated throughout the volume, ST used 
this relation but also took k = k D' Consequently, 

k = k1)¢i (3) 

is the proper relation between the Doi theory and k where 
k 1) is what was called k D in ST. 7 The left-hand side of Eq. 
(3) is referred to as k(ST) in Figs. 1 and 2. Note that the 
results reported in Figs. 1 and 2 are based on definition ( 1 ). 

One of the difficulties in deciding whether and how an 
incompletely specified result should be modified to have the 
proper dependence on ¢I is that 0.5 < ¢I < 1 for almost all 
published results, so there is no order-of-magnitude effect. 
An exception is the case of fully overlapping spheres where 
¢I can be made arbitrarily small. We show in the Appendix 
that in the limit ¢I-IOO, a simple physical argument predicts 
k rxj2 where! = 41rpR 3/3 is the reduced density andp is the 
sphere number density (! = - In ifJl in the continuum limit 
and is the same as Doi's r). Both PR's rate constant and Eq. 
(2) are shown to have this dependence, which confirms that 
Eq. (2) is the proper way to modify the Doi result. We also 
show that k(PR)/kDifJI = 12/11' in this limit, where k(PR) 
is the PR rate constant. 

A less important point is that although both PR and ST 
normalized rate constants to ks = 3D¢2/R 2, the 
ifJ2 = 1 - ¢l-O limit, PR replaced ¢2 with the above J, 
which is ¢2 only with the neglect of overlap. For overlapping 
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FIG. 1. Upper (PR) and lower (ST) bounds on k/ks as a function of trap 
volume fraction ¢J2 for overlapping traps. Triangles are from simulations 
obtained by methods similar to described in Ref. I and extrapolated to 
R / a - 00. Inset shows extrapolation for ¢J2 = 0.9. 

spheres with randomly distributed centers in a continuum, 
t/J2= 1-e- f =fforf .... 0;withnooverlapofcourset/J2=f 
always. Here we follow ST and therefore use t/J2 in ks . 

Figures 1 and 2 give, for overlapping and nonoverlap
ping traps respectively, the proper comparison of k( PR) Iks 
and k(ST)/ks ' Also shown are some ofthe simulation data 
of Refs. 1 and 4 together with some new results for overlap
ping traps for t/J I ::::: 0.1. A final comment is that the ST result 
for nonoverlapping traps may be shown to give 
k(ST)/ks - 1 proportional to t/J2 as t/J2 .... 0' whereas the ex
act result8 is k Iks - 1 = (3t/J2) 1/2 for t/J2 .... 0' which is 
obeyed by k(PR). 

Work performed at Sandia National Laboratories was 
supported by the U.S. Department of Energy under Con
tract No. DE-AC04-76DPOO789. S.T. acknowledges the 
support of the National Science Foundation under Grant 
No. CBT-8514841. 

APPENDIX: LIMIT OF .1 .... 0 (SMALL VOID FRACTION) 

When the spherical traps overlap to the extent that only 
a small fraction of the volume is trap free, the system may be 

FIG. 2. Similar to Fig. I for nonoverJapping traps, where k(PR) and data 
point are from Ref. 4. 

viewed as one with a number of small voids which are not 
connected to each other by diffusion paths. A particle then 
diffuses only in the void of radius r in which it was generated 
and has a lifetime T - riD with D the diffusion coefficient. 
The probability of a particle being generated inside a given 
void is proportional to its volume if the generation rate is 
uniform throughout the trap free region; so the average life
time or inverse trapping rate is 

k-IexD- 1 100 

drrp(r) /100 

drTJp(r) , (AI) 

where p (r) is the probability of finding of void of radius r. 
p (r) is estimated for a system of overlapping spheres of radi
us R on a lattice with a- 3 sites per volume (R fa> 1 in the 
continuum limit used) as follows. To have a void of radius r 
requires there be no trap centers within a radius r + R cen
tered at the origin, the probability for which is (1 _ c) N, + R 

where c is the probability a site is a trap center and 
N, + R = 41r( r + R) 3/3a3 is the number of sites within the 
sphere. Termination of the void region at r requires there to 
be at least one center in the shell between r + R and 
r + R + a, the probability for which is 41r(R + r)2ac in the 
limit a .... O. For c-(l, (1-c)x::::: e -cx, and we note that 
41rR 3c/3a3 is just the nonoverlapping volume fraction f 
These enable us to write 

per) exf (1 + z)2e -/(1 +z)' (A2) 

withz = r/R. In the small void fraction limit t/JI = e- f -( 1, 
the integrals in Eq. (A 1) are dominated by thez -( 1 behavior 
of the integrands whereby use ofEqs. (A2) inEq. (Al) gives 

kexDf2/R 2 (t/JI .... O). (A3) 
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The proportionality constant depends on the precise relation 
between T and R and precise per), both of which are in
fluenced by the fact that the actual voids are not spherical. 
However, as long as the basic physical argument is correct, 
the constant is of no concern here. 

To compare PR with Eq. (A3) we use they~ 1 limit of 
his expression [Eq. (7) ofPR] 

k(PR)-1 = [1 - V1T)'eT erfc(y) ]I [3D/ IR 2] , (A4) 

where 3D/I R 2 is the / ~ 1 limit defined as r in PR and 
y= (3/l1r) 1/2. For y~1, erfc(y) =e-Y 1T-

1
/

2 

(y-I - y-3/2), whereby Eq. (A4) gives 

k(PR) = (18/1T)DPIR 2 (j» 1, equivalent to 1,61 ~ 1) . 
(A5) 

The Doi result for overlapping traps is [Eqs. (21) and (48) 
of Ref. 3 combined] 

k = (R 2tP1 /D) f dx[ (3/) -I + x(1 - X)2] 

X exp [ - / (3x12 - x 3/2)] , (A6) 

where we have noted that his r is the same as our / and 
1,61 = e -I. For large/, the integral, defined as I, is dominated 

by the x ~ 1 behavior of the 
I = 2/3/2

, whereby 
integrand. It is therefore 

kDtPI = (3/2) (DpIR 2) (j»1). (A7) 

Equations (A5) and (A7) have the functional dependence 
predicted by the physical reasoning which led to Eq. (A3), 
but note that it was accomplished in Eq. (A7) only by scal
ing k by the factor 1,61. The upper (PR) and lower (Doi) 
bounds of Eqs. (A5) and (A7) are seen to be in the ratio 
1211T. 
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