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Dense polyhedron packings are useful models of a variety of condensed matter and biological sys-
tems and have intrigued scientists and mathematicians for centuries. Here, we analytically con-
struct the densest known packing of truncated tetrahedra with a remarkably high packing fraction φ

= 207/208 = 0.995192. . . , which is amazingly close to unity and strongly implies its optimality. This
construction is based on a generalized organizing principle for polyhedra lacking central symmetry
that we introduce here. The “holes” in the putative optimal packing are perfect tetrahedra, which
leads to a new tessellation of space by truncated tetrahedra and tetrahedra. Its packing characteristics
and equilibrium melting properties as the system undergoes decompression are discussed. © 2011
American Institute of Physics. [doi:10.1063/1.3653938]

Dense particle packings are useful models for a variety
of condensed matter systems, including liquids, glasses and
crystals,1–5 granular media,3, 6 and heterogeneous materials.3

Understanding how nonspherical particles pack in space is a
first step toward a better understanding of how biological cells
pack.7 Probing the symmetries and other mathematical prop-
erties of the densest packings is a problem of interest in dis-
crete geometry and number theory.8 In general, a packing is
defined as a large collection of nonoverlapping solid objects
(particles) in d-dimensional Euclidean space Rd . Associated
with a packing is the packing fraction φ defined as the fraction
of space Rd covered by the particles.

The three-dimensional Platonic and Archimedean poly-
hedra possess beautiful symmetries and arise in many natural
and synthetic structures. An original investigation of dense
packings of regular tetrahedra, one of the five Platonic solids,
by Conway and Torquato9 has spurred a flurry of subsequent
research activity, including studies to obtain dense packing
of hard polyhedra10–15 and to understand the phase behavior
of colloidal systems made of such solid objects.12, 16, 17 Gen-
eral organizing principles have been established for the dens-
est packings of polyhedra in R3.10, 11 For centrally symmetric
Platonic and Archimedean solids, it has been conjectured that
the densest packings can be achieved by arranging the poly-
hedra on an appropriate Bravais lattice (see definition below)
with the same orientation.10 (A centrally symmetric solid has
a center of inversion symmetry.) For non-centrally symmet-
ric polyhedra, the optimal packings are generally not Bravais
lattice packings.11 For example, a tetrahedron lacks central
symmetry, and it is known that its densest packing must ex-
ceed that of the densest Bravais lattice packing.9

The Archimedean analog of the regular tetrahedron is the
truncated tetrahedron, whose densest packing has been shown
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to be a non-Bravais lattice packing.9 An Archimedean trun-
cated tetrahedron has four regular hexagonal faces and four
regular triangular faces, as obtained by truncating the corners
(small tetrahedra with edge length 1/3 of that of the origi-
nal tetrahedra) of a tetrahedron (see Fig. 1(a)). In particular, a
truncated tetrahedron does not possess central symmetry and
its dihedral angle (i.e., the angle between two faces) is the
same as that of a tetrahedron θ = cos −1(1/3) ≈ 0.392π . Since
θ is not a sub-multiple of 2π , one cannot tile (i.e., completely
fill) the three-dimensional Euclidean space R3 with truncated
tetrahedra.

Betke and Henk showed that the optimal Bravais lat-
tice packing of truncated tetrahedra possesses a packing frac-
tion φ = 207/304 = 0.680921. . . .18 Conway and Torquato
constructed a dense packing of truncated tetrahedra with φ

= 23/24 = 0.958333. . . ,9 which proved that the optimal pack-
ing must be a non-Bravais lattice packing. Recently, de Graaf,
van Roij, and Dijkstra19 showed via numerical simulations
that truncated tetrahedra can pack at least as dense as 0.988,
suggesting the existence of even denser packings.

Indeed, in this paper, we find an exact construction for the
densest known packing of truncated tetrahedra with a remark-
ably high packing fraction φ = 207/208 = 0.995192. . . 20

which nearly fills all of space. This implies its optimality,
which is supported by additional numerical maximization
studies, as explained below. This construction is based on
a generalized organizing principle for polyhedra that lack
central symmetry that we introduce here. We show that the
“holes” in the putative optimal packing are perfect tetrahedra
and hence taken together with the truncated tetrahedra lead to
a new tessellation of R3. Moreover, we investigate the equi-
librium melting properties of the putative optimal packing.

Some important definitions are in order here before de-
scribing our new packing. A lattice � in R3 is an infinite
set of points generated by a set of discrete translation oper-
ations defined by integer linear combinations of a basis of R3,

0021-9606/2011/135(15)/151101/4/$30.00 © 2011 American Institute of Physics135, 151101-1

Downloaded 17 Oct 2011 to 128.112.70.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3653938
http://dx.doi.org/10.1063/1.3653938
http://dx.doi.org/10.1063/1.3653938
mailto: torquato@princeton.edu


151101-2 Y. Jiao and S. Torquato J. Chem. Phys. 135, 151101 (2011)

FIG. 1. Truncated tetrahedron and portions of its packings. (a) A truncated
tetrahedron with its associated tetrahedron shown. The labels are described
in the text. (b) A dimer (pair) of truncated tetrahedra making perfect contact
through hexagonal faces. Such a dimer is also a truncated regular rhombohe-
dron. (c) A portion of the Conway-Torquato packing of truncated tetrahedra
with a packing fraction φ = 23/24 = 0.958333. . . . The holes in this packing
are regular tetrahedra with the same edge length as the truncated tetrahedra.
(d) A portion of the densest known packing of truncated tetrahedra with φ

= 207/208 = 0.995192. . . . The holes in this densest known packing are reg-
ular tetrahedra whose edge length is 1/3 of that of truncated tetrahedra.

i.e., a1, a2, and a3.8 The vectors ai (i = 1, 2, 3) are called
lattice vectors for �. A (Bravais) lattice packing associated
with � is one in which the centroids (geometric centers) of
the nonoverlapping particles are located at the points of �,
each oriented in the same direction. The space R3 can then be
geometrically divided into identical regions F called funda-
mental cells, each of which contains just the centroid of one
particle. Hence, the packing fraction of a lattice packing is
given by φ = Vp

Vol(F )
, where Vp is the volume of a particle and

Vol(F) = |a1 × a2 · a3| is the volume of a fundamental cell. A
periodic (non-Bravais lattice) packing is obtained by placing
a fixed nonoverlapping configuration of N particles (where N
≥ 1) with arbitrary orientations in each fundamental cell of
a lattice �. Hence, the packing is still periodic under trans-
lations by �, but the N particles can occur anywhere in the
chosen cell subject to the nonoverlap condition. The packing
fraction of a periodic packing is given by φ = NVp

Vol(F )
.

Since a truncated tetrahedron lacks central symmetry,
its optimal (maximally dense) packing can only be a non-
Bravais lattice packing.9 Based on our principles developed
for determining the densest polyhedron packings,10, 11, 14 we
argue more generally that the fundamental cell of the opti-
mal packing of truncated tetrahedra should contain a sim-
ple compound object composed of truncated tetrahedra that
itself is centrally symmetric. The fact that the aforemen-
tioned Conway-Torquato packing (henceforth referred to as
the “CT packing”) possesses such a fundamental cell con-

taining a centrally symmetric dimer (defined below) of trun-
cated tetrahedra with a high packing fraction φ = 23/24
= 0.958333. . . suggests that it can be used as a starting point
to find the optimal packing. Indeed, in the ensuing discus-
sion, we provide a construction of the densest known packing
of truncated tetrahedra by optimizing the CT packing.

It is convenient to describe a truncated tetrahedron from
its associated tetrahedron with vertices labeled A, B, C, and D
[see Fig. 1(a)]. The centers of the four hexagonal faces of the
truncated tetrahedron are denoted by p1, p2, p3, and O, which
can be expressed in terms of the vectors associated with the
vertices of the original tetrahedra, i.e.,

p1 = (vA + vB + vD)

3
− O, p2 = (vA + vC + vD)

3
− O,

p3 = (vB + vC + vD)

3
− O, (1)

where vi (i = A, B, C, D) are the vectors associated with the
vertices and the origin O = 1

3 (vA + vB + vC). In the afore-
mentioned CT packing,9 each fundamental cell contains two
truncated tetrahedra, making a perfect contact through one of
the hexagonal faces of each particle (i.e., forming a dimer),
which are center-inversion images of each other through O
[see Fig. 1(b)]. Such a repeat unit is centrally symmetric and
can be considered to be a regular rhombohedron with two
sharper corners (with in-face angle π /3) truncated. The trun-
cated rhombohedron has six pentagonal faces and two trian-
gular faces [Fig. 1(b)]. The CT packing then corresponds to
removing the sharp corners (tetrahedra with half edge-length
of the rhombohedron) of each rhombohedron in its tiling [see
Fig. 1(c)], leading to φ = 23/24 with the lattice vectors

a1 = −2p3, a2 = −2p2, a3 = 2p1. (2)

Both the truncated-tetrahedron dimer (i.e., the truncated reg-
ular rhombohedron) and the CT packing possess 3-fold rota-
tional symmetry, with the symmetry axes being the long body-
diagonal of the rhombohedron. Each dimer makes contacts
with six neighbors through its six pentagonal faces.

It is noteworthy that the CT packing is not “collectively”
jammed and can be continuously deformed until the packing
fraction reaches a (local) maximum. Following Torquato and
Stillinger,21 a packing is locally jammed if no particle in the
system can be translated while fixing the positions of all other
particles. A collectively jammed packing is a locally jammed
packing such that no subset of particles can simultaneously be
continuously displaced so that its members move out of con-
tact with one another and with the remainder set. A packing
is strictly jammed if it is collectively jammed and all globally
uniform volume non-increasing deformations of the system
boundary are disallowed by the impenetrability constraints.
Readers are referred to Ref. 21 for further details.

The truncated-tetrahedron dimers in the CT packing can
slide relative to one another along directions of certain edges,
while the 3-fold rotational symmetry of the packing is main-
tained (see Fig. 2). Such a deformation can be achieved via
continuously varying the lattice vectors

a1 = −2p3 + γ (vD − vC), a2 = −2p2 + γ (vD − vA),

a3 = 2p1 + γ (vB − vD), (3)
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FIG. 2. Structures along the continuous deformation path that bring the
Conway-Torquato packing of truncated tetrahedra with φ = 23/24 to the pu-
tative optimal packing with φ = 207/208. The associated deformation param-
eter γ for each packing is (a) γ = 0 (the Conway-Torquato packing), (b) γ

= 2/27, (c) γ = 4/27, and (d) γ = 2/9 (our current putative optimal packing).

where γ ∈ [0, 2/9] is the deformation parameter determined
by the nonoverlapping constraints. For γ = 0, one has the
CT packing, and γ = 2/9 corresponds to the densest known
packing of truncated tetrahedra. By explicitly choosing a set
of coordinates for vi (i = A, B, C, D), e.g., vA = ( − 1, −1,
−1), vB = (1, 1, −1), vc = ( − 1, 1, 1), vD = (1, −1, 1), the
packing fraction can be obtained using Eqs. (1) and (3)

φ = 2Vp

Vol(F )
= 2 × (184/81)

76 544/16 767
= 207

208
= 0.995192 . . . .

(4)

To obtain the densest known packing from the CT pack-
ing, the dimers must slide relative to one another such that
each dimer now contacts two neighbors through one pentago-
nal face. Moreover, each dimer makes contacts with two addi-
tional neighbors along the direction of its long body-diagonal
(i.e., a1 + a2 − a3) through the two triangular faces [see
Fig. 1(d)]. Thus, each dimer has 14 face-to-face contacts in
the densest known packing. We note that the formation of
the additional triangular-face contacts prevents further defor-
mations of the packing. The contacting equilateral triangular
faces are center-inversion images of each other and share a
common face center. This leads to six tetrahedron holes (with
edge length 1/3 of that of truncated tetrahedra) associated with
each triangular face-to-face contact and, thus, each truncated-
tetrahedron dimer. Let the volume of the holes VH = 1, then
the volume of a truncated tetrahedron VT = 621. Alternatively,
the packing fraction can easily be obtained via

φ = VT + VT

VT + VT + 6VH

= 621 + 621

621 + 621 + 6
= 207

208
, (5)

which is amazingly close to unity, given the fact that trun-
cated tetrahedra can not tile R3. Numerical maximization
methods14 have been employed to verify that the densest
known packing is indeed optimal among packings with sim-
ilar structures. In fact, its remarkably high packing fraction,
highly symmetric structure, and the numerical maximization
results all suggest that this packing would be the optimal
among all packings of truncated tetrahedra.

We note that by inserting regular tetrahedra of proper
size into the holes of the optimal packing of the truncated
tetrahedra, one completely fills the space without any gaps.
This leads to a new tiling (or tessellation) of R3 by regular
tetrahedra and truncated tetrahedra. Since the holes in the CT
packing are also regular tetrahedra, a tiling associated with

this packing can be obtained in a similar way. Interestingly, it
has recently been shown that the optimal packing of regular
octahedra, which can be obtained by continuously deform-
ing a sub-optimal face-centered-cubic packing of octahedra,
corresponds to a new tiling of R3 by regular tetrahedra and
octahedra.22 In fact, each octahedron packing in the family of
packings obtained by the aforementioned continuous defor-
mation is associated with a tiling of tetrahedra and octahedra
unlike the situation for truncated tetrahedra where only the
two “extremes” of the deformation correspond to tilings.

Once again, we see the important role that central sym-
metry plays in dense packings: although truncated tetrahedra
are not centrally symmetric, they form centrally symmetric
dimers, which then densely pack on a Bravais lattice. This is
also the case for the densest tetrahedron packing, whose cen-
trally symmetric unit has four particles forming two dimers.
This suggests a generalization of the organizing principle we
proposed for centrally symmetric Platonic and Archimedean
solids. Specifically, we conjecture that the densest packings of
convex polyhedra with equivalent principal axes are either a
Bravais lattice packing of the polyhedra themselves that pos-
sess central symmetry or a Bravais lattice packing of centrally
symmetric compound solids that are made of the polyhedra
that lack central symmetry.

Although a comprehensive study of the equilibrium
phase behavior is beyond the scope of the present paper,
we conclude our investigation by examining the equilibrium
melting properties of our putative optimal packing of trun-
cated tetrahedra. At infinite pressure, the putative optimal
packing of truncated tetrahedra constructed here is the ther-
modynamic equilibrium phase for these particles. Colloidal
particles with shapes similar to that of truncated tetrahedra
have been fabricated via different techniques.23, 24 Thus, it is
useful to see to what extent this solid phase is stable under
finite pressures.

We have carried out Monte-Carlo (MC) simulations25

to “melt” the optimal packing structure (i.e., the highest-
packing-fraction “crystal”) via a decompression process. In
particular, a periodic simulation box containing N = 686
particles is employed, whose size and shape are allowed to
change.10, 14 The volume of the simulation box is slowly in-
creased to decrease the pressure and density (i.e., packing
fraction) of the system. At each density, 10 000 000 MC trial
moves are applied to each particle and 100 000 trial volume-
preserving deformations are applied to the simulation box to
equilibrate the system. Equilibrium structural characteristics,
such as the pair-correlation function g2 (see Fig. 3) and the
number of dimers n2, are collected. We use such descriptors
to gauge the remaining crystalline order in the system during
the decompression process. We find that above φ ≈ 0.68, the
crystal configurations associated with the optimal packing of
truncated tetrahedra is the stable solid phase for these parti-
cles. Interestingly, when 0.53 < φ < 0.68, the crystal config-
urations associated with the CT packing becomes the stable
phase. Below φ ≈ 0.53, the pair correlation function g2 sud-
denly changes from a long-ranged function to an exponen-
tial decaying function (see Fig. 3) and n2 quickly drops from
N/2 to almost zero, indicating the occurrence of a first-order
crystal-liquid transition.
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FIG. 3. Pair correlation function g2(r) associated with the centroids of the
truncated tetrahedra at different densities in the range from 0.99 to 0.38 dur-
ing the melting of the highest-packing-fraction crystal. At very high densi-
ties, g2(r) is a long-ranged function. Below φ ≈ 0.53, g2(r) suddenly changes
from a long-ranged function to an exponential decaying function, indicating
the occurrence of a first-order crystal-liquid transition.

Our simulations suggest that the crystal phases associ-
ated with the optimal packing and the CT packing of trun-
cated tetrahedra are stable over a wide range of densities φ

∈ (0.53, 0.995) upon melting (decompression). This wide
range of stability for the crystal phase is due to the fact that the
dimers of truncated tetrahedra (in both the CT packing and the
putative optimal packing) fill space very efficiently. This
means that the free volume associated with crystals of the
truncated tetrahedra is readily maximized in the dimer ar-
rangement, leading to a lower free energy of the system. Since
a dimer is formed by a pair of truncated tetrahedra contact-
ing through the a common large hexagonal face, it is rela-
tively easy for such local clusters to form in a dense liquid.
Once such dimers nucleate, the system is expected to crys-
tallize easily upon further compression. Thus, we expect the
phase diagram of truncated tetrahedra to involve a single first-
order liquid-solid phase transition. Of course, the exact coex-
istence range of φ and whether there are higher order solid-
solid phase transitions can be precisely explored by carrying
out free-energy calculations, which we intend to do in future
work.

In summary, we have discovered a packing of truncated
tetrahedra that nearly fills all of space, i.e., φ = 207/208

= 0.995192. . . , via exact analytical construction and dis-
cussed its melting properties. We are not aware of any pack-
ing of a nontiling regular or semi-regular polyhedron with φ

that is nearly unity. While a rigorous proof of its optimality
is highly nontrivial, the fact that its packing fraction is amaz-
ingly close to unity in conjunction with our generalized or-
ganizing principle introduced here as well as our numerical
maximization studies leads us to conclude that the packing is
likely optimal.

This work was supported by the MRSEC program of
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0804431.
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