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Abstract. In this paper, we introduce constructions of the high-dimensional
generalizations of the kagomé and diamond crystals. The two-dimensional
kagomé crystal and its three-dimensional counterpart, the pyrochlore crystal,
have been extensively studied in the context of geometric frustration in
antiferromagnetic materials. Similarly, the polymorphs of elemental carbon
include the diamond crystal and the corresponding two-dimensional honeycomb
structure, adopted by graphene. The kagomé crystal in d Euclidean dimensions
consists of vertex-sharing d-dimensional simplices in which all of the points are
topologically equivalent. The d-dimensional generalization of the diamond crystal
can then be obtained from the centroids of each of the simplices, and we show
that this natural construction of the diamond crystal is distinct from the D+

d
family of crystals for all dimensions d �= 3. We analyze the structural properties
of these high-dimensional crystals, including the packing densities, coordination
numbers, void exclusion probability functions, covering radii and quantizer errors.
Our results demonstrate that the so-called decorrelation principle, which formally
states that unconstrained correlations vanish in asymptotically high dimensions,
remarkably applies to the case of periodic point patterns with inherent long-
range order. We argue that the decorrelation principle is already exhibited in
periodic crystals in low dimensions via a ‘smoothed’ pair correlation function
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obtained by convolution with a Gaussian kernel. These observations support
the universality of the decorrelation principle for any point pattern in high
dimensions, whether disordered or not. This universal property in turn suggests
that the best conjectural lower bound on the maximal sphere-packing density
in high Euclidean dimensions derived by Torquato and Stillinger (2006 Expt.
Math. 15 307) is, in fact, optimal.
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1. Introduction

There has been substantial recent interest in the physics of high-dimensional systems
with applications to ground-state problems, packing problems, number theory and phase
behaviors of many-particle systems [1]–[8]. The problem of identifying the densest sphere
packings in high-dimensional Euclidean space R

d is an open and fundamental problem
in discrete geometry and number theory with important applications to communications
theory [9]. In particular, Shannon showed that the optimal method of sending digital
signals over noisy channels corresponds to the densest packing in a high-dimensional
space [10]. Although the densest packings in dimensions two and three are known to be
Bravais lattice packings (the triangular and FCC lattices, respectively [11]), in sufficiently
high dimensions, non-Bravais lattices almost surely are the densest packings. In addition
to providing putative exponential improvement on Minkowski’s lower bound for the
maximal sphere-packing density, Torquato and Stillinger presented strong arguments to
suggest that the densest packings in high dimensions are, in fact, disordered [12, 13].

Their methods rely on the so-called decorrelation principle for disordered sphere
packings, which states that, as the dimension d increases, all unconstrained correlations
asymptotically vanish and any higher-order correlation functions gn(r

n) may be expressed
in terms of the number density ρ and the pair correlation function g2 [12]. Since its
introduction, additional work has shown that the decorrelation principle is remarkably
robust, meaning that it is already manifested in low dimensions and applies also to certain
soft-matter systems [14] and quantum many-particle distributions [15]. Furthermore,
detailed numerical studies of saturated maximally random jammed hard-sphere packings,
which are the most disordered packings of spheres that are rigorously incompressible and
nonshearable, have demonstrated that unconstrained correlations beyond the hard-sphere
diameter asymptotically vanish even in relatively low dimensions d = 1–6 [4]. Similar
results have also been observed for the exactly-solvable ‘ghost’ random sequential addition
(RSA) process [16] along with the usual RSA process [17]. All evidence to date supports
the notion that the decorrelation principle applies fundamentally to disordered many-
particle systems. In this paper, we provide evidence that the decorrelation principle
applies more generally to any periodic crystal, which has implications for the densest
sphere packings in high dimensions and sheds light on the reasons why it is robust in low
dimensions.

The properties of periodic crystal structures are fundamental to the physical and
mathematical sciences. Experience in two-and three-dimensional systems suggests that
crystals are prototypical ground states of matter [18], obtained by slow annealing of an
interacting many-particle system to absolute zero temperature. Unlike disordered states
of matter, including gases and liquids, crystals possess complete long-range correlations
and translational symmetry. As such, periodic crystals can be specified by translational
copies of a single fundamental cell containing one (in the case of a Bravais lattice) or more
particles.

Elemental carbon is known to adopt numerous polymorphs of fundamental
significance. Its four-electron valence structure implies that it can be tetrahedrally,
covalently bonded with itself to form the diamond crystal. Certain ‘superdense’
polymorphs of carbon involving different packings of carbon tetrahedra have also recently
been reported in the literature [19]. The two-dimensional analog of the diamond crystal is
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the so-called honeycomb crystal, in which points are placed at the vertices of hexagons that
tile the plane. This polymorph of carbon is the graphene structure, variations of which
have gained substantial interest as nanomaterials [20]. Each point in the honeycomb
crystal is coordinated with three other points of the structure, and by placing particles at
the midpoints of each of the ‘bonds’, one obtains the kagomé crystal. The kagomé crystal
and its three-dimensional counterpart, the pyrochlore crystal, have been used in models
of spin-frustrated antiferromagnetic materials [21]. This type of geometric frustration in
so-called ‘spin ice’ induces a nonvanishing residual entropy in the ground state, equivalent
to behavior identified in liquid water [22].

Recently, Torquato has reformulated the covering and quantizer problems from
discrete geometry as ground-state problems involving many-body interactions with one-
body, two-body, three-body and higher-body potentials [1]. Formally, the covering
problem seeks the point configuration that minimizes the radius of overlapping spheres
circumscribed around each of the points required to cover R

d [9, 1]. The quantizer problem
involves finding the point configuration in R

d that minimizes a Euclidean ‘distance error’
associated with replacing a randomly placed point in R

d with the nearest point of the
point process [9, 1]. Closely related is the so-called number variance problem, which aims
to identify the distribution of points that minimize fluctuations in the local number density
over large length scales [2, 3]. This problem can also be interpreted as the determination
of the ground state for a particular soft, bounded pair interaction and, for the special case
of Bravais lattices, is equivalent to identifying the minimizer of the so-called Epstein zeta
function [23]. Note that the number variance of a point pattern has been suggested to
quantify structural order over large length scales [2, 3].

Studies of many-body fluids and amorphous packings have attempted to glean new
information about low-dimensional physical properties, including the equation of state,
radius of convergence of the virial series, phase transitions and structure, from high-
dimensional models. Frisch and Percus have shown that, for repulsive interactions,
Mayer cluster expansions of the free energy are dominated by ring diagrams at each
order in particle density ρ [24]. This result was extended by Zachary, Stillinger and
Torquato to show that the so-called mean-field approximation for soft, bounded pair
interactions becomes exact in the high-dimensional limit [14]. Parisi and Zamponi have
utilized the HNC approximation to the pair correlation function and mean-field theory
to understand hard-sphere glasses and jamming in high dimensions [5], and Rohrmann
and Santos have generalized results from liquid-state theory to study fluids of hard
spheres in high dimensions [6]. Michels and Trappeniers [25], Skoge et al [4], van
Meel et al [7] and Lue et al [8] have numerically studied the effect of dimensionality
of the disorder–order transition in equilibrium hard-sphere systems in up to dimension
six. Additionally, Doren and Herschbach have developed a dimensionally dependent
perturbation theory for quantum systems to draw conclusions about the energy eigenvalues
in low dimensions [26].

In this paper, we generalize the kagomé and diamond crystals for high-dimensional
Euclidean space R

d. We are motivated by the observation that there are d + 1
particles within the fundamental cell of the kagomé crystal, which grows with the
dimension. The high-dimensional kagomé crystal thus possesses a large basis of
particles and approximates the case of a (possibly irregular) N -particle many-particle
distribution subject to periodic boundary conditions for N large. The d-dimensional
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kagomé crystal provides an intriguing structure for which to test the applicability of
the decorrelation principle for periodic point patterns. Since such periodic crystals
possess full long-range order, it is highly nonintuitive that the decorrelation principle
should apply, and yet we provide indirect and direct evidence that it continues to
hold in this general setting. Furthermore, by analyzing the structural properties of
the high-dimensional diamond and kagomé crystals, we show that certain ‘disordered’
packings can be quantitatively more ordered with respect to local fluctuations in the
number density than periodic crystals, even in relatively low dimensions. Our results
therefore have important implications for the low- and high-dimensional problems outlined
above.

Our major results are summarized as follows:

(i) We develop constructions of high-dimensional generalizations of the kagomé and
diamond crystals using the geometry of the fundamental cell for the Ad Bravais lattice
(defined below). Our results suggest a natural method for constructing a large class
of ‘kagomé-like’ crystals in high dimensions.

(ii) We examine the behavior of structural features of the kagomé and diamond crystals,
including the packing densities, coordination numbers, covering radii and quantizer
errors. In particular, we show that the kagomé crystal possesses a lower packing
fraction than the diamond crystal for all d ≥ 4, a larger covering radius for all d ≥ 2
and a larger quantizer error for all d ≥ 3.

(iii) We relate these structural features to the distribution of the void space external to
the particles in the fundamental cell via numerical calculation of the void exclusion
probability function EV (defined below). As the spatial dimension increases, the
fundamental cell of the kagomé lattice develops substantially large holes, thereby
skewing the bulk of the void-space distribution such that large holes are less rare than
in the uncorrelated Poisson point pattern. The kagomé crystal therefore lies above
Zador’s upper bound on the minimal quantizer error in sufficiently high dimensions.

(iv) We calculate the number variance coefficients governing asymptotic surface area
fluctuations in the local number density for the kagomé and diamond crystals. The
kagomé crystal for all d ≥ 3 possesses a larger number variance coefficient than
a certain correlated disordered packing corresponding to a so-called g2-invariant
process [12, 27, 28], providing indirect evidence for a decorrelation principle of high-
dimensional periodic point patterns.

(v) We provide direct evidence for a decorrelation principle of periodic structures by
examining a ‘smoothed’ pair correlation function for the d-dimensional kagomé
crystal. Our analysis also applies to Bravais lattices as shown by corresponding
calculations for the hypercubic lattice Z

d, establishing the universality of the
decorrelation effect. These results suggest that pair correlations alone are sufficient
to completely characterize a sphere packing for large dimension d and that the
best conjectural lower bound on the maximal density of sphere packings provided
by Torquato and Stillinger [12] may, in fact, be optimal in high dimensions. This
statement suggests that the densest sphere packings in high dimensions are, in fact,
disordered.
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2. Definitions

2.1. Crystals and correlation functions

A d-dimensional Bravais lattice is a periodic structure defined by integer linear
combinations of a set of basis vectors {ej} for R

d, i.e.

p =

d∑

j=1

njej ≡MΛn (nj ∈ Z ∀j) (1)

for all points p of the Bravais lattice [9], where we have defined the generator matrix
MΛ of the Bravais lattice Λ with columns given by the basis vectors. The basis vectors
define a fundamental cell for the Bravais lattice containing only one lattice point. This
concept can be naturally generalized to include multiple points within the fundamental
cell, defining a periodic crystal or non-Bravais lattice3. Specifically, a non-Bravais lattice
consists of the union of a Bravais lattice with one or more translates of itself; it can
therefore be defined by specifying the generator matrix MΛ for the Bravais lattice along
with a set of translate vectors {νj}. Note that the special case of a single zero translate
vector 0 defines a Bravais lattice.

Every Bravais lattice Λ possesses a dual Bravais lattice Λ∗ with lattice points q defined
by p · q = m ∈ Z.4 The generator matrix for the dual Bravais lattice is given by [9]

MΛ∗ = (MT
Λ )−1, (2)

where BT denotes the transpose of a matrix B. A Bravais lattice and its dual obey
the Poisson summation formula5 for any Schwarz function [18, 29]. In general, a crystal,
containing more than one particle per fundamental cell, does not possess a dual structure
in the same sense as for a Bravais lattice.

A many-particle distribution is determined by its number density ρ, equal to the
number of particles per unit volume, and the set of n-particle correlation functions gn,
proportional to the probability density of finding a configuration rn of any n particles
within the system. Of particular importance is the pair correlation function g2(r), which
for an isotropic and statistically homogeneous point pattern is a function only of the
magnitude r of pair separations between particles. For any periodic crystal consisting of
topologically equivalent particles, the angularly averaged pair correlation function has the
form

ρs(r)g2(r) =

+∞∑

k=1

Zkδ(r − rk), (3)

3 Physicists and crystallographers also refer to non-Bravais lattices as lattices ‘with a basis’. Mathematicians
reserve the term lattice only to refer to a Bravais lattice. Here, we will use the term lattice to refer only to a
Bravais lattice; our usage of the term crystal refers generally to any periodic point pattern.
4 Physicists also define a dual Bravais lattice with the condition p · q = 2πm for some m ∈ Z, corresponding to a
different scaling for the Fourier transform.
5 The Poisson summation formula generalizes the Fourier series of an appropriately well-behaved function f
that is periodic with respect to the fundamental cell of a Bravais lattice Λ. Namely, for every vector v ∈ R

d,∑
p∈Λ f(p + v) = [vF (Λ)]−1 ∑

q∈Λ∗ exp(−2πiq · v)f̂(q), where vF (Λ) is the volume of the fundamental cell for Λ

and f̂ is the unitary Fourier transform of the function f . See [38] (see footnote 7) for an application of Poisson
summation to maximally dense sphere packings.
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where Zk is the number of points at a radial distance rk away from a reference particle
of the lattice and s(r) is the surface area of a d-dimensional sphere of radius r. The
cumulative coordination number Z(R), the total number of particles within a radial
distance R from a reference particle, is therefore given by

Z(R) = ρ

∫ R

0

s(r)g2(r) dr; (4)

for a periodic crystal. This identity simplifies to Z(R) =
∑K

k=1 Zk, where K denotes the
highest index for which rK ≤ R.

2.2. Hyperuniformity and the number variance problem

Torquato and Stillinger have characterized fluctuations in the local number density of a
many-particle distribution [2] and have shown that these fluctuations behave differently for
periodic crystals and uncorrelated systems. Define the random variable N(x0;R) to be the
number of particles within a spherical observation window of radius R centered at position
x0. By definition, 〈N(x0;R)〉 = ρv(R), where v(R) is the volume of a d-dimensional sphere
of radius R. For a Poisson point pattern in which there are no correlations between
particles, the underlying Poisson counting measure also implies that

σ2(R) = 〈N2(x0;R)〉 − 〈N(x0;R)〉2 = 〈N(x0;R)〉 = ρv(R), (5)

meaning that fluctuations in the local number density of the observation window scale
with the window volume.

However, this scaling is not a general feature of all point patterns. In the general case
of correlated point patterns, the local number variance is given by [2]

σ2(R) = ρv(R)

{
1 + ρ

∫
[g2(r) − 1]α(r;R) dr

}
, (6)

where α(r;R) is the so-called scaled intersection volume, defined geometrically as the
volume of the intersection of two d-dimensional spheres of radius R with centers separated
by a distance r, normalized by the volume v(R) of a sphere. Explicit expressions for
the scaled intersection volume in various dimensions have been given by Torquato and
Stillinger [2, 12].

Introducing a length scaleD (e.g. the mean nearest-neighbor distance between points)
and a corresponding reduced density η = ρv(D/2), one can show that the asymptotic
behavior of the number variance for large observation windows is [2]

σ2(R) = 2dη{A(R/D)d +B(R/D)d−1 + o[(R/D)d−1]}, (7)

where o(x) denotes terms of order less than x. The coefficients A and B are given by

A = 1 + ρ

∫
[g2(r) − 1] dr = lim

‖k‖→0
S(k) (8)

B =
−ηΓ(1 + d/2)

Dv(D/2)Γ[(d+ 1)/2]Γ(1/2)

∫
‖r‖[g2(r) − 1] dr, (9)

where S(k) = 1 + ρF{g2(r) − 1}(k), with F denoting the Fourier transform, is the
structure factor. It follows that the number variance of any point pattern for which A = 0
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grows more slowly than the volume of the observation window, implying that the point
pattern is effectively homogeneous even on local length scales. Such systems are known
as hyperuniform [2] or superhomogeneous point patterns [30]. Examples of hyperuniform
point patterns include all Bravais and non-Bravais lattices, quasicrystals possessing Bragg
peaks, and certain disordered point patterns with pair correlations decaying exponentially
fast.

It has also been suggested that the coefficient B quantifies large-scale order in
a hyperuniform point pattern [2, 3]. The issue of identifying the point pattern that
minimizes this coefficient defines the so-called number variance problem [1, 2]. It has
recently been proved that the integer lattice is the unique number variance minimizer
in one dimension among all hyperuniform point patterns [2]. Numerical results strongly
suggest that the triangular lattice minimizes the number variance in two dimensions [2, 3].
However, contrary to the expectation that the densest lattice packing should also minimize
the number variance, it has been shown in three dimensions that the BCC lattice possesses
a lower asymptotic number variance coefficient B than the FCC lattice [2]. It is worth
mentioning in this regard that the BCC lattice is the dual of FCC.

2.3. Jamming in hard-sphere packings

A sphere packing is obtained from a point pattern in d-dimensional Euclidean space by
decorating each of the points with a sphere of radius RP such that no spheres overlap
after the decoration; the parameter RP is the packing radius. It is an open and nontrivial
problem to quantify the extent of randomness (equivalently, of order) in a sphere packing,
which reflects nontrivial structural information about the system. Research in this area is
aimed at identifying sets of order metrics ψ [31] that align with physical intuitions of order,
at least in relatively low dimensions, and are positively correlated. It has recently been
proposed that hyperuniformity is itself a measure of order over large length scales [2, 3].

Torquato and Stillinger have introduced a classification of sphere packings in terms
of the extent to which they are jammed [32, 13]. In particular, they have provided a
mathematically precise hierarchy of jammed sphere packings, distinguished depending on
the nature of their mechanical stability [32, 13]:

(i) Local jamming : each particle in the packing is locally trapped by at least d + 1
contacting neighbors, not all in the same hemisphere. Locally jammed particles
cannot be translated while fixing the positions of all other particles.

(ii) Collective jamming : any locally jammed configuration is collectively jammed if no
subset of particles can simultaneously be displaced so that its members move out of
contact with each other and with the remainder set.

(iii) Strict jamming : any collectively jammed configuration is strictly jammed if it
disallows all uniform volume-nonincreasing strains of the system boundary.

These categories certainly do not include all possible distinctions of jammed
configurations, but they span a reasonable spectrum of possibilities. Importantly, jamming
depends explicitly on the boundary conditions for the packing [32, 13].

Isostatic packings are jammed packings with the minimal number of contacts M for
a given jamming category under the specified boundary conditions [13]. Under periodic
boundary conditions, for collective jamming M = 2N − 1 and 3N − 2 for d = 2 and
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d = 3, respectively, and for strict jamming M = 2N + 1 and 3N + 3 for d = 2
and d = 3, respectively [13, 33]. In this case, the relative differences between isostatic
collective and strictly jammed packings diminishes for large N , and an isostatic packing
in d dimensions has a mean contact number per particle Z = 2d, known as the isostatic
condition. Note, however, that packings for which Z = 2d are not necessarily collectively
or strictly jammed; the two-dimensional square lattice and three-dimensional simple-cubic
lattice are simple counterexamples in dimensions d = 2 and d = 3, respectively. Another
interesting example is the two-dimensional kagomé crystal, which is locally jammed but
neither collectively nor strictly jammed under periodic boundary conditions and possesses
a nearest-neighbor contact number per particle Z = 4 [32, 33]. However, this structure can
be made strictly jammed by ‘reinforcing’ it with an extra ‘row’ and ‘column’ of disks [33].

2.4. The covering problem

Consider a distribution of particles at unit number density. The covering radius for the
point process is defined by decorating each of the particles with a sphere of radius R
and identifying the minimal radius RC necessary to cover the space completely. More
precisely, for any choice of R, we can define the volume fraction of space φP occupied by
the spheres; the volume fraction occupied by the void space external to the spheres is
then φV = 1 − φP. The covering radius RC is then defined as the minimal value of R for
which φP = 1 and φV = 0.

The volume fraction φV of the void space external to a set of spheres of radius R
is equivalent to the probability of inserting a ‘test’ sphere of radius R into the system
and finding it contained entirely in the void space. This latter quantity is known as the
void exclusion probability function EV(R) and can be expressed in terms of the n-particle
correlation functions for the underlying point pattern [35, 34]:

EV(R) = 1 +
+∞∑

k=1

(−ρ)k

Γ(k + 1)

∫
gk(r

k)
k∏

j=1

Θ(R− ‖x − rj‖) drj, (10)

where Θ(x) is the Heaviside step function. This expression can also be rewritten for a
statistically homogeneous point pattern in terms of intersection volumes of spheres [1]:

EV(R) = 1 +
+∞∑

k=1

(−ρ)k

Γ(k + 1)

∫
gk(r12, . . . , r1k)v

(k)
int (r

k;R) drk, (11)

where v
(k)
int (r

k;R) is the intersection volume of k spheres of radius R and centers at rk:

v
(k)
int (r

k;R) =

∫
dx

k∏

j=1

Θ(R− ‖x − rj‖). (12)

The expression (11) implies that EV(R) can be interpreted as a total energy per particle
associated with a many-particle interaction involving one-body, two-body, three-body
and higher-body potential energies [1]. For a single realization of N points in a volume
V ⊂ R

d [1]

EV(R) = 1 − ρv(R) +
1

V

∑

i<j

v
(2)
int (rij ;R) − 1

V

∑

i<j<k

v
(3)
int (rij , rik, rjk;R) + · · · . (13)
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We remark that truncating the series expression (11) at order k provides an upper bound
to EV when k is even and a lower bound when k is odd [36].

The covering problem concerns identifying the point pattern with the minimal
covering radius at unit number density. In particular, one attempts to identify the point
pattern that minimizes the one-dimensional Lebesgue measure of the interval of compact
support [0, RC] of the void exclusion probability function EV(R). A lower bound on the
minimal covering radius can be obtained by truncating the series representation (11) for
EV at first order, implying at unit number density that

EV(R) ≥ [1 − v(R)]Θ[1 − v(R)]. (14)

This lower bound has a zero at R∗ = Γ1/d(1+d/2)/
√
π, which increases as

√
d for large d.

2.5. The quantizer problem

A d-dimensional quantizer is a device that takes as an input a point at position x in R
d

generated from some probability density function p(x) and outputs the nearest point rj

of a known point pattern to x [9]. The quantizer problem is then to choose the point
pattern to minimize the scaled dimensionless error G = 〈R2〉/d, where 〈R2〉 is the second
moment of the nearest-neighbor distribution function for the void space external to the
particles in the point process. Specifically, we define the void nearest-neighbor density
function HV(R) such that HV(R)dR is the probability of finding the nearest particle of
a point pattern with respect to an arbitrary point x of the void space within a radial
distance R+ dR from x.

The void exclusion probability function EV(R) is then the complementary cumulative
distribution function associated with HV(R) [34]:

EV(R) = 1 −
∫ R

0

HV(r) dr. (15)

Using integration by parts, one can then show that

G =
1

d

∫ +∞

0

R2HV(R) dR (16)

=
2

d

∫ +∞

0

REV(R) dR. (17)

The quantizer error therefore depends sensitively on the shape of the void-space
distribution. This situation is distinct from the covering problem, which is concerned
only with the compact support of EV.

Using upper and lower bounds on EV, Torquato has been able to re-derive Zador’s
bounds for the minimum scaled dimensionless error [1]:

Γ2/d(1 + d/2)

π(d+ 2)
≤ Gmin ≤ Γ2/d(1 + d/2)Γ(1 + 2/d)

πd
. (18)

These bounds converge in asymptotically high dimensions, implying

Gmin → (2πe)−1 (d→ +∞). (19)
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This convergence implies that lattices and disordered point patterns are equally good
quantizers in asymptotically high dimensions. Using known results for sphere packings,
Torquato has also presented an improved upper bound to the minimal quantizer error [1],
which is generally appreciably tighter than Zador’s upper bound for low to moderately
high dimensions and converges to the exact asymptotic result (19) in high dimensions.

2.6. Comparison of the packing, number variance, covering and quantizer problems

In his study of the best solutions of the covering and quantizer problems in up to 24
dimensions, Torquato [1] compared these results to the best known solutions for the sphere
packing and number variance problems. In R and R

2, it is well known that the integer
lattice Z and the triangular lattice, respectively, possess simultaneously the maximal
packing density, the minimal asymptotic number variance, the minimal covering radius
and the minimal quantizer error [9, 1]. However, the solutions to these problems are no
longer the same in as low as three dimensions. Although the FCC lattice generates
the densest sphere packing in three dimensions [11], its dual lattice BCC minimizes
the three-dimensional covering radius, quantizer error and asymptotic number variance.
To understand these differences, Torquato has shown that, while the number variance,
covering and quantizer problems are described by soft, bounded interactions, the packing
problem is described by a short-ranged pair potential that is zero whenever two spheres
do not overlap and infinite when they do [1]. Furthermore, although the number variance
problem can be interpreted as the determination of the ground state of a short-ranged soft
pair interaction [2, 1], the covering and quantizer problems involve one-body, two-body,
three-body and higher-order interactions [1]. Therefore, for d ≥ 4, the solutions for each
of these problems are not necessarily the same. One notable exception occurs in R

24,
where the Leech lattice Λ24 [9] likely provides the globally optimal solution for all four
problems [1]. It is currently unknown whether such globally optimal solutions exist for
dimensions other than d = 1, 2 and 24. It was shown [1] that disordered saturated sphere
packings provide both good coverings and quantizers in relatively low dimensions and
may even surpass the best known lattice coverings and quantizers in these dimensions.
We shall return to this point in section 4.

3. High-dimensional generalizations of the kagomé and diamond crystals

Our constructions of the d-dimensional generalizations of the kagomé and diamond crystals
will involve an underlying Ad Bravais lattice structure. All angles between the basis vectors
for the Ad lattice are π/3 radians, implying that ej · ek = a2/2 for all j �= k, where a is
the magnitude of each basis vector ej .

6 It is therefore possible to identify a coordinate
system in which the generator matrix MAd

is triangular. The two-dimensional A2 lattice
is the usual triangular lattice, which is the known densest packing in R

2. Similarly, the
A3 lattice is one representation for the FCC lattice, which is the densest packing in three

6 Using these properties, one can recursively write down the basis vectors ej for the Ad lattice. For example,
assuming a = 1, we have in two dimensions e1 = (1, 0)T and e2 = (1/2,

√
3/2)T. The basis vectors for d = 3

are e1 = (1, 0, 0)T, e2 = (1/2,
√

3/2, 0)T and e3 = (1/2,
√

3/6,
√

6/3)T. The d = 4 vectors are e1 = (1, 0, 0, 0)T,
e2 = (1/2,

√
3/2, 0, 0)T, e3 = (1/2,

√
3/6,

√
6/3, 0)T and e4 = (1/2,

√
3/6,

√
6/12,

√
10/4)T.
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dimensions [11]. However, for d ≥ 4, the Ad is no longer optimally dense, even among
Bravais lattices.

3.1. The d-dimensional diamond crystal

The fundamental cell for the Ad lattice is a regular rhombotope, the d-dimensional
generalization of the two-dimensional rhombus and three-dimensional rhombohedron.
Therefore, the points {0} ∪ {ej}d

j=1, where ej denotes a basis vector of the Ad lattice, are
situated at the vertices of a regular d-dimensional simplex. The d-dimensional diamond
crystal can therefore be obtained by including in the fundamental cell the centroid of this
simplex:

ν =
1

d+ 1

d∑

j=1

ej , (20)

resulting in a periodic crystal with two points per fundamental cell. By construction, the
number of nearest neighbors to each point in the d-dimensional diamond crystal is d+ 1,
corresponding to one neighbor for each vertex of the regular simplex. One can verify by
translation of the fundamental cell that all points of the d-dimensional diamond crystal
are topologically equivalent. Note that the two-dimensional diamond crystal is the usual
honeycomb lattice, in which each point is at the vertex of a regular hexagon.

We mention that our construction of the diamond crystal is distinct for all d �= 3
from the D+

d structure mentioned by Conway and Sloane [9]. The Dd lattice is obtained
by placing points using a ‘checkerboard’ pattern in R

d [9]:

Dd =

{
(x1, . . . , xd) ∈ Z

d :

d∑

j=1

xj = 2m for some m ∈ Z

}
. (21)

The structure D+
d is then obtained by including the translate vector ν =

(1/2, 1/2, . . . , 1/2) in the fundamental cell. Although in three dimensions theD+
d structure

does provide an equivalent construction of the diamond crystal, the relationship to our
structure does not hold for any other dimension. Indeed, D+

d is a Bravais lattice for all
even dimensions, which is not true for our construction of the d-dimensional diamond
crystal. For example, in two dimensions, D+

2 is equivalent to a rectangular lattice with
generator matrix

MD+
2

=

(
a/2 0
0 a

)
, (22)

where a determines the fundamental cell size. Each point in this structure possesses
two nearest neighbors and is therefore distinct from the honeycomb crystal, in which the
coordination number of each particle is three.

3.2. A d-dimensional kagomé crystal

The two-dimensional kagomé crystal is obtained by placing points at the midpoints of each
nearest-neighbor bond in the honeycomb crystal, resulting in a non-Bravais lattice with
three particles per fundamental cell. Similarly, the three-dimensional kagomé crystal,
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also known as the pyrochlore crystal [37], can be constructed by placing points at the
midpoints of each nearest-neighbor bond in the three-dimensional diamond crystal. We
therefore generalize the kagomé crystal to higher dimensions using the aforementioned
construction of the d-dimensional diamond crystal, placing points at the midpoints of
each nearest-neighbor bond. With respect to the underlying Ad Bravais lattice structure,
these points are located at

x0 = ν/2 (23)

xj = ν + ηj/2 (j = 1, . . . , d), (24)

where

ηj = ej − ν (25)

denotes a ‘bond vector’ of the d-dimensional diamond crystal. By translating the
fundamental cell such that the origin is at x0, we can also represent the d-dimensional
kagomé crystal as Ad ⊕ {vj}, where

vj = ej/2 (j = 1, . . . d). (26)

The d-dimensional kagomé crystal therefore has d+1 points per fundamental cell, growing
linearly with dimension. Each point of the d-dimensional kagomé crystal is at the vertex of
a regular simplex obtained by connecting all nearest neighbors in the structure, implying
that each point possesses 2d nearest neighbors in d Euclidean dimensions [38]7. We
illustrate our constructions of the two-dimensional kagomé and diamond (honeycomb)
crystals in figure 1.

3.3. Other high-dimensional kagomé crystals

Our simple construction of the d-dimensional kagomé crystal suggests that there exists
a large family of ‘kagomé-like’ crystals obtained by including the midpoints of the basis
vectors for a Bravais lattice within the fundamental cell. A simple example is to include
basis-vector midpoints into the d-dimensional integer lattice Z

d. A more interesting
example is obtained in R

4 by including the midpoints of the basis vectors for the D4

lattice, the densest known packing in four dimensions, into the fundamental cell. The
packing density of the resulting structure is φ′ = 5π2/256 ≈ 0.1928, which should be
compared to the density of the four-dimensional kagomé crystal φ =

√
5π2/128 ≈ 0.1724.

Note, however, that this kagomé-like structure does not possess the same relationship to
the d-dimensional diamond crystal as our construction above, and we therefore focus the
remainder of the discussion on the more natural generalization of the kagomé crystal in
terms of vertex-sharing simplices in Euclidean space R

d.

7 Our constructions of the d-dimensional kagomé and diamond lattices were suggested in the article by Torquato
and Stillinger and are equivalent to, but somewhat simpler than, similar constructions given by O’Keeffe. However,
while Torquato and Stillinger were interested in the mathematically precise notion of jamming in hard-sphere
packings, O’Keeffe’s work makes reference only to so-called ‘rare’ sphere packings, which are distinct from
jammed packings. Neither paper considers the covering or quantizer problems for these structures nor references
a decorrelation principle for periodic lattices.
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Figure 1. Portion of the honeycomb crystal (two-dimensional diamond) with the
A2 fundamental cell (rhombus). The points of the honeycomb crystal are the
vertices of the regular hexagons. The kagomé crystal (circular points) is then
constructed from the midpoints of the bonds between nearest neighbors in the
honeycomb crystal. The kagomé crystal consists of vertex-sharing simplices, the
centroids of which recover the honeycomb crystal.

4. Structural properties of the high-dimensional kagomé and diamond crystals

4.1. Packing densities and coordination numbers

The packing density associated with a periodic point pattern is the maximal fraction of
space that can be occupied by decorating each of the points with a sphere of radius RP,
where RP is the packing radius, defined as the maximal value of R for which EV(R) exactly
obtains its one-point lower bound at unit number density ρ:

RP ≡ sup
ρ=1

{R : EV(R) = 1 − v(R)}. (27)

Note that this definition is consistent with our discussion of the packing radius in
section 2.3, involving decorating each of the points in a point pattern with a sphere
of maximal radius RP such that none of the resulting spheres overlap. However, the
definition (27) helps to elucidate the remarkable connections among the packing, covering,
quantizer and number variance problems. For lattices, this formulation is equivalent to
identifying the minimal lattice vector at unit number density, which can be obtained from
the in-radius of the Voronoi cell for a given lattice point [9]. Note that we have the
following weak upper bound on the packing radius for any Euclidean dimension d:

RP ≤ Γ1/d(1 + d/2)/
√
π ≤ RC, (28)

where RC is the covering radius. Substantially improved upper bounds [39] and conjectural
lower bounds [12] have been provided for the packing radii of the densest sphere packings
in any Euclidean dimension d.

To calculate the packing density of the d-dimensional kagomé crystal, we first consider
the Ad Bravais lattice at unit number density, which has a known packing density [9]

φAd
= v(R

(Ad)
P ) =

πd/2

2d/2Γ(1 + d/2)
√
d+ 1

, (29)
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where R
(Ad)
P is the corresponding packing radius:

2R
(Ad)
P =

(
2d/2

√
d+ 1

)1/d

. (30)

By construction, the d-dimensional kagomé crystal has the same fundamental cell with
d+ 1 particles, and the associated packing radius is

R
(Kagd)
P = (2d/2

√
d+ 1)1/d/4 = (d+ 1)1/dR

(Ad)
P /2. (31)

Therefore

φKagd
= v(R

(Kagd)
P ) = (d+ 1)φAd

/2d (32)

=
πd/2

√
d+ 1

23d/2Γ(1 + d/2)
. (33)

The packing density of the d-dimensional diamond crystal can be calculated similarly.
In particular, the packing radius of the diamond crystal in d Euclidean dimensions is

R
(Diad)
P = ‖ν‖/2 = 21/d

√
d

2(d+ 1)
R

(Ad)
P , (34)

where ν is the translate vector (20) corresponding to the centroid of the regular simplex
formed by the basis vectors for the Ad Bravais lattice. The norm of this translate vector
can be evaluated by induction and the recursion relation

Kd =

∥∥∥∥∥

d∑

j=1

ej

∥∥∥∥∥ =
√
K2

d−1 + d. (35)

It follows that the packing density of the d-dimensional diamond crystal is

φDiad
= 2

(
d

2(d+ 1)

)d/2

φAd
(36)

=
(πd)d/2

2d−1(d+ 1)(d+1)/2Γ(1 + d/2)
. (37)

Figure 2 compares the packing densities of the d-dimensional kagomé and diamond
crystals for increasing dimension d. It is interesting to note that, for d ≤ 3, the kagomé
crystal is a denser packing than the diamond crystal; however, this trend reverses for
all d ≥ 4. We will argue in the following sections that this behavior is related to
the distribution of the void space external to the particles in the lattices. Specifically,
the d-dimensional kagomé structure has increasingly large holes within the fundamental
cell, skewing the void exclusion probability function EV(R) to higher values of R. This
behavior implies that the kagomé crystal is effectively ‘filamentary’ in asymptotically
high dimensions, in the sense that the net of bonds between nearest neighbors consists
of strands that branch at each point of the crystal but are separated by increasingly
large holes within the fundamental cell. While this argument should also hold for the

doi:10.1088/1742-5468/2011/10/P10017 15

http://dx.doi.org/10.1088/1742-5468/2011/10/P10017


J.S
tat.M

ech.
(2011)

P
10017

High-dimensional kagomé and diamond crystals

Figure 2. Scaled packing densities 2dφ of the d-dimensional kagomé and diamond
crystals.

d-dimensional diamond crystal, the placement of a particle at the centroid of the regular
simplex formed by the basis vectors for the fundamental cell apparently prevents the
lattice holes from growing more rapidly than in the kagomé structure.

We have also determined the coordination numbers for both the d-dimensional
diamond and kagomé crystals up to at least the first 100 coordination shells. Such
calculations are helpful in the evaluation of lattice sums for these structures and provide
insight into the coordination structure of the crystals [2, 38] (see footnote 7). Table 1
provides abridged results up to d = 5. Note that, although both structures possess
nearest-neighbor coordination numbers growing linearly with dimension, the kagomé
crystal in high Euclidean dimensions has a much larger number of nearest neighbors
than the diamond crystal. This observation implies that the kagomé crystal is a much
more ‘branched’ structure (in the sense defined above) than the diamond crystal with
highly coordinated particles separated over increasingly large length scales by holes in the
fundamental cell. This observation also has implications for the number variance of the
kagomé structure and the decorrelation principle for periodic point patterns, which we
discuss in further detail in subsequent sections.

4.2. Void exclusion probabilities, covering radii and quantizer errors

As previously mentioned, the covering radius RC and scaled dimensionless quantizer error
G can be determined from knowledge of the void exclusion probability function EV(R)
of a point pattern, which contains information about the distribution of the void space
external to the particles. This connection to EV was first explicitly mentioned recently by
Torquato [1] and we have been unable to find studies of this function for any periodic
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Table 1. Coordination numbers for the d-dimensional diamond (Diad) and
kagomé (Kagd) crystals. The square-coordination distance r2

k is given in
parentheses, followed by the number of neighboring particles Zk at the distance
rk. The nearest-neighbor distance determines the length scale for each structure.

Shell number Dia2 Kag2 Dia3 Kag3 Dia4 Kag4 Dia5 Kag5

1 (1) 3 (1) 4 (3) 4 (4) 6 (2) 5 (1) 8 (5) 6 (1) 10
2 (3) 6 (3) 4 (8) 12 (12) 12 (5) 20 (3) 24 (12) 30 (3) 40
3 (4) 3 (4) 6 (11) 12 (16) 12 (7) 30 (4) 20 (17) 60 (4) 30
4 (7) 6 (7) 8 (16) 6 (20) 12 (10) 30 (5) 48 (24) 90 (5) 120
5 (9) 6 (9) 4 (19) 12 (28) 24 (12) 30 (7) 72 (29) 90 (7) 200
6 (12) 6 (12) 6 (24) 24 (32) 6 (15) 60 (8) 30 (36) 140 (8) 90
7 (13) 6 (13) 8 (27) 16 (36) 18 (17) 80 (9) 56 (41) 240 (9) 190
8 (16) 3 (16) 6 (32) 12 (44) 12 (20) 60 (11) 96 (48) 270 (11) 360
9 (19) 6 (19) 8 (35) 24 (48) 24 (22) 60 (12) 60 (53) 210 (12) 140

10 (21) 12 (21) 8 (40) 24 (52) 36 (25) 120 (13) 144 (60) 360 (13) 520

crystal in the literature. Here, we determine EV for the d-dimensional kagomé and
diamond crystals and use our results to provide estimates for the covering radii and
quantizer errors for these systems.

Our calculations involve Monte Carlo sampling of the void space within the
fundamental cell for the underlying Ad Bravais lattice. Periodicity of the point pattern
implies that EV must have compact support, and it is therefore sufficient only to sample
within a single fundamental cell, subject to periodic boundary conditions, to obtain the
full distribution EV. Noting that any point r within the fundamental cell can be expressed
as an appropriate linear combination of the Bravais lattice basis vectors:

r = MAd
x, (38)

where x = (xj)
d
j=1 with 0 ≤ xj ≤ 1 for all j, we can efficiently sample the void space by

placing points randomly and uniformly in the d-dimensional unit cube and then mapping
those points to the fundamental cell with the generator matrix MAd

as in (38). The void
exclusion probability function is then obtained by measuring nearest-neighbor distances
between the sampling points and the particles of the crystal. Note that this calculation
of the void exclusion probability function is more efficient than direct calculation of the
Voronoi tessellation for the crystals in high dimensions, thereby providing a facile means
of obtaining estimates for RC and G.

Our results are shown in figure 3. Table 2 summarizes our results for the covering
radii and quantizer errors of the diamond and kagomé crystals. The d-dimensional kagomé
crystal possesses relatively large covering radius in each dimension, implying that the
covering of Euclidean space with the kagomé crystal involves much more than pairwise
overlap potentials, even in two dimensions. This behavior follows directly from the
increasing sizes of holes within the fundamental cell in high dimensions. Since all of
the particles in the kagomé crystal are relegated to the boundary of the fundamental cell,
the majority of the space in the fundamental cell is void space, thereby increasing the
value of the covering radius relative to the Ad Bravais lattice.
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Figure 3. Void exclusion probability functions EV(R) for the Ad, d-dimensional
diamond (Diad) and d-dimensional kagomé (Kagd) crystals at unit number
density: (a) d = 2. (b) d = 3, (c) d = 4 and (d) d = 5.

Table 2. Estimates of the covering radius RC and quantizer error G for the Ad,
d-dimensional diamond Diad and d-dimensional kagomé Kagd lattices. Errors for
the calculations are ±0.0004 for the covering radii and ±0.000 04 for the quantizer
errors, as estimated by comparison with exact results for the Ad lattice in two
and three dimensions. The covering radii for the A2, A3, Dia2 and Kag2 lattices
are known exactly [9, 1], and these exact results are reported here; also reported
are the exact values for the quantizer errors of the A2 and A3 lattices [1].

d = 2 d = 3 d = 4 d = 5

RC G RC G RC G RC G
Ad 0.6204 0.080 18 0.7937 0.078 75 0.8816 0.077 80 0.9984 0.077 69
Diad 0.8774 0.096 27 0.8640 0.091 12 1.0472 0.088 25 1.0776 0.086 49
Kagd 0.9306 0.096 15 1.0384 0.099 25 1.2048 0.099 73 1.2824 0.099 39
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Figure 4. Void exclusion probability functions EV(R) at unit number density for
the five-dimensional kagomé crystal and a disordered, uncorrelated Poisson point
process. Also included is the one-point series lower bound 1 − v(R).

However, it is interesting to note that the quantizer error for the two-dimensional
kagomé crystal is actually smaller than the associated error for the honeycomb (two-
dimensional diamond) crystal. Indeed, we recall that the kagomé crystal generates
a denser sphere packing in two dimensions than the honeycomb crystal, implying by
definition that EV(R) = 1 − v(R) at unit density for a larger range in R. The void
exclusion probability of the kagomé crystal is therefore relatively ‘tight’ compared to the
honeycomb crystal in such a way that the longer tail does not substantially affect the first
moment of the distribution. The two-dimensional kagomé crystal therefore provides an
interesting example of how increasing the complexity of a crystal structure can conceivably
improve the quantizer error; ‘simpler’ structures are not always better quantizers, even
in low dimensions.

This behavior changes drastically in higher dimensions, where the quantizer error
for the d-dimensional kagomé structure is unusually high relative to the d-dimensional
diamond and Ad structures. Indeed, the bulk distribution of the void space for the
five-dimensional kagomé crystal is seen to be larger than the corresponding curve for a
Poisson-distributed point pattern (see figure 4), consisting of uncorrelated random points
in Euclidean space. This unusual property implies that the quantizer error for the five-
dimensional kagomé crystal is larger even than Zador’s upper bound (18) for the minimal
quantizer error. It is highly counterintuitive that a disordered point pattern should be a
better quantizer than a periodic crystal with relatively low complexity and in relatively
low dimensions. Nevertheless, this observation is consistent with the prevalence of large
void regions in the high-dimensional kagomé crystal and supports our description of this
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system as being effectively ‘filamentary’ in high dimensions8. This result also suggests
the onset of a decorrelation principle for the d-dimensional kagomé crystal, an issue we
explore in more detail in section 5.

4.3. Number variance coefficients

As previously mentioned, the asymptotic scaling of the number variance provides a
quantitative metric for the extent of order within a structure over asymptotically large
length scales with respect to the mean nearest-neighbor separation between points [2, 3].
Since we are utilizing the d-dimensional kagomé crystal to probe the applicability of the
decorrelation principle to periodic structures, it is therefore of interest to calculate the
surface area coefficient B (cf, (9)) governing surface area fluctuations in the local number
density. Note that periodicity of the fundamental cell implies the presence of full long-
range order in both the d-dimensional kagomé and diamond crystals, which is sufficient
to induce hyperuniformity.

Unfortunately, this long-range order also implies that the integral (9) diverges;
however, Torquato and Stillinger have reformulated this expression using a convergence
‘trick’ [40] to ensure a properly convergent expression for periodic crystals [2]. Specifically,
we rewrite the expression (9) for the coefficient B as

B = lim
β→0+

−ρκ(d)
D

∫
exp(−βr2)r[g2(r) − 1] dr, (39)

where κ(d) = Γ(1 + d/2)/{Γ[(d + 1)/2]Γ(1/2)} and r = ‖r‖. Expanding this integral
implies that

B =
ρdπ(d−1)/2

2Dβ(d+1)/2
− ρκ(d)

D

∫
exp(−βr2)rg2(r) dr (β → 0+), (40)

and the remaining integral involving the pair correlation function can be interpreted as the
average pair sum for the pair interaction v(r) = exp(−βr2)r over the underlying crystal
structure, which is convergent for all β > 0. Writing the average pair sum explicitly, we
find

B =
ρdπ(d−1)/2

2Dβ(d+1)/2
− κ(d)

ND

∑

j,�,p

′
exp(−β‖p + νj − ν�‖2)‖p + νj − ν�‖ (β → 0+), (41)

where the prime on the summation means that the vector p = 0 is excluded when νj = ν�.
To remove the dependence of B on the length scale D, we report the scaled coefficient
η1/dB, where η = ρv(D/2), as has previously been done in the literature [2, 3].

Table 3 reports our results for the number variance coefficients of the d-dimensional
diamond and kagomé crystals. It is helpful to compare these results to similar calculations
performed for certain so-called g2-invariant processes [28]. A g2-invariant process involves
constraining a chosen non-negative form for the pair correlation function g2 to remain
invariant over a nonvanishing density range while keeping all other relevant macroscopic

8 Note that EV for a Poisson point pattern decays exponentially as EV(R) = exp[−ρv(R)], implying that this
structure possesses an infinite covering radius. However, the long tail of this function does not contribute
substantially enough for the quantizer error to be larger than the kagomé lattice in sufficiently high dimensions.
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Table 3. Number variance coefficients η1/dB for the Ad, d-dimensional kagomé
Kagd and d-dimensional diamond Diad crystals. Here, we have taken η to be
the packing density of the structure. The last two entries correspond to g2-
invariant processes as discussed in the text. The approximate error for each
entry is ±0.000 05 by comparison with previously reported results [2, 3].

d Ad Kagd Diad Step function Step + delta-function

2 0.127 09 0.146 75 0.141 76 0.212 21 0.150 05
3 0.155 69 0.207 40 0.177 37 0.281 25 0.190 86
4 0.177 34 0.273 30 0.205 55 0.339 53 0.223 42
5 0.195 79 0.354 12 0.231 44 0.390 63 0.250 92

variables fixed [28]. We consider the following two examples of g2-invariant processes: the
so-called ‘step function g2’, in which the pair correlation function has the form

g2(r) = Θ(r −D) (42)

for some length scale D and the ‘step + delta function g2’, given by

g2(r) = Θ(r −D) +
Z

ρs(D)
δ(r −D), (43)

where Z can be interpreted as an average contact coordination number [2]. Both of these
processes correspond to disordered point patterns that are hyperuniform at the critical
densities

ηc = 1/2d (step-function) (44)

ηc = (d+ 1)/2d+1 (step + delta-function). (45)

Strong numerical evidence has been presented to suggest that these pair correlation
functions are indeed realizable as point processes at the critical densities [41]. Torquato
and Stillinger have used g2-invariant processes to define a optimization procedure
that places lower bounds on the maximal sphere-packing density in d Euclidean
dimensions [12, 28].

Torquato and Stillinger have analytically evaluated the number variance coefficients
for these g2-invariant processes:

Bstep =
d2Γ(d/2)

4Γ[(d+ 3)/2]Γ(1/2)
(46)

2dηcBdelta+step =
d2(d+ 2)Γ(d/2)

16Γ[(d+ 3)/2]Γ(1/2)
, (47)

and these results are included in table 3. One notices that, for all d ≥ 3, the d-dimensional
kagomé crystal possesses a higher number variance coefficient than the step + delta-
function process, suggesting that there exists a disordered configuration of points in
high dimensions that is more ordered over asymptotically large length scales than this
periodic structure. This result is surprising since points in the step + delta-function point
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pattern are completely decorrelated from each other beyond the constrained hard-particle
diameter. Furthermore, the average contact coordination number for this process is [2]

Z = d/2, (48)

which is, for all dimensions d, less than the nearest-neighbor coordination number of the
d-dimensional kagomé crystal, ZKagd

= 2d.
To understand this behavior, we first note that the packing density (45) is less than

the corresponding density (33) for the d-dimensional kagomé crystal for all d ≤ 4; however,
for d ≥ 5, the step + delta function process possesses a higher packing density than the
kagomé crystal. This observation implies that the local ordering between points induced by
the delta-function contribution to the pair correlation function of the step + delta-function
process is sufficient to regularize the void space in such a way that the packing radius RP

remains relatively high compared to the kagomé structure. In particular, the large holes
within the kagomé fundamental cell control the structural properties of the point pattern
in high Euclidean dimensions and it is these holes that increase the asymptotic number
variance coefficient in such a way that the point pattern can no longer be distinguished
from correlated but disordered point patterns. This behavior is in accordance with an
effective decorrelation between the points of the kagomé structure over large length scales
and supports the presence of a decorrelation principle for this system.

It is important to note that the increasing nearest-neighbor coordination number of
the d-dimensional kagomé crystal implies that correlations between nearest neighbors are
increasing with increasing dimension. For this reason, the number variance coefficient
governing surface area fluctuations is always smaller than the corresponding coefficient
for the simple step-function process in any dimension; these constrained correlations are
never removed by the dimensionality of the system. However, correlations over several
nearest-neighbor distances apparently diminish in an effective manner, which we make
more precise in section 5, and it is this type of decorrelation that we claim is responsible
for unusually large asymptotic local-number-density fluctuations in the kagomé structure.
Note also that these results are consistent with our analysis of the quantizer errors for the
d-dimensional kagomé crystals.

5. The decorrelation principle for periodic point patterns

5.1. Universality of decorrelation in high dimensions

The decorrelation principle [12] states that unconstrained asymptotic n-particle
correlations vanish in sufficiently high dimensions, and all higher-order (n ≥ 3) correlation
functions can be expressed in terms of the pair correlation function within some small
error. Although originally stated in the context of hard-sphere packings, certain ‘soft’
many-particle distributions, including points interacting in the Gaussian core model [14]
and noninteracting spin-polarized ground-state fermions [15], are also known to exhibit
this effect, even in relatively low dimensions d = 1–6. No rigorous proof for this principle
has been found to date, but it is based on strong theoretical arguments and has been
shown to be remarkably robust in theoretical and numerical studies.

Does the decorrelation principle apply in some generalized sense to periodic crystals?
It is not trivial to extend the decorrelation principle to periodic crystals, which inherently
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Figure 5. Intensity A(d) = Z1(d)/(2ddφ) associated with the first δ-function
peaks of the pair correlation functions for the d-dimensional kagomé and
hypercubic Z

d crystals. Also shown for comparison is the result for the g2-
invariant step + delta-function process (43).

possess long-range order owing to the regular arrangement of points within a lattice
structure. This full long-range order induces deterministic correlations as manifested by
Bragg peaks in the power spectrum. In particular, we recall from (3) that the angularly
averaged pair correlation function consists of consecutive Bragg peaks at each coordination
shell; it is convenient to express this relation in terms of the packing fraction φ and
associated packing diameter D:

g2(r) =
+∞∑

k=1

Zk

2ddφ

(
D

rk

)d−1

δ[(r − rk)/D]. (49)

The intensity of each peak in the pair correlation function is therefore determined by
the coordination number Zk of the kth coordination shell, the packing density φ and the
distance rk to the kth coordination shell.

It is interesting to examine the behavior of the intensity

A(d) = Z1(d)/(2
ddφ) (50)

associated with the first peak of the pair correlation function for the d-dimensional kagomé
and hypercubic Z

d crystals, shown in figure 5. Note that both of these crystals possess
a nearest-neighbor contact number Z1(d) = 2d, equivalent to the isostatic condition9.

9 Isostaticity, where Z = 2df with df equal to the number of degrees of freedom per particle, has been closely
linked to the notions of ‘generic’ or ‘random’ jammed sphere packings. However, for packings with high symmetry,
including the hypercubic Z

d and kagomé crystals, the isostatic condition does not imply collective or strict
jamming. See [13] for a more complete discussion of this fundamentally important point.
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After an initial drop in relatively low dimensions, the intensity A(d) increases without
bound for both of the periodic systems. Furthermore, the d-dimensional kagomé crystal
possesses a first-shell intensity that grows much more rapidly with dimensions than even
the hypercubic lattice Z

d, which is a direct consequence of the exponentially diminishing
packing density and the prevalence of large holes in the fundamental cell. In both
cases, nearest-neighbor correlations asymptotically increase with dimension d and it is
therefore unclear whether a decorrelation principle should hold for periodic crystals.
This behavior should be contrasted with corresponding results for the disordered g2-
invariant step + delta-function process (43), where the first-peak intensity A(d) = 1/(d+2)
diminishes for all dimensions d.

Nevertheless, one can consider a disordered point pattern to be a realization of
a non-Bravais lattice with a large number of particles randomly distributed in the
fundamental cell. This observation suggests that periodic crystals with anM-particle basis
growing with dimension may exhibit the same decorrelation properties as a disordered
many-particle distribution. If this notion is true, then the effects of decorrelation
should then be readily observed even in relatively low dimensions as with disordered
packings [12, 16, 17, 14, 15, 4]. It is therefore intriguing to test the decorrelation principle
for the d-dimensional kagomé lattice which, as previously mentioned, possesses d + 1
particles per fundamental cell.

The deterministic long-range order of a periodic crystal implies that the decorrelation
principle, if it applies, cannot be directly observed from the pair correlation function (49)
itself, but rather from some smoothed form of g2. Instead, the pair correlation function of
a crystal must be interpreted in the sense of distributions [42]; it gains physical meaning
only when integrated with an admissible function. Therefore, the appropriate function to
consider is the ‘smoothed’ pair correlation function:

g
(a)
2 (r) =

+∞∑

k=1

ZkD

2ddφa
√
π

(
D

rk

)d−1

exp{−[(r − rk)/a]
2}, (51)

corresponding to a convolution of (49) with a Gaussian kernel [42, 43]. Note that

g
(a)
2 (r) → g2(r) for r ∈ [0,+∞) (in the sense of distributions) as a→ 0.

Figure 6 compares the smoothed pair correlation functions for the d = 2 and 4 kagomé
lattices. Remarkably, asymptotic pair correlations are observed to diminish even in the
relatively low dimensions shown (as with disordered point patterns [12, 14, 15, 4, 16, 17]),
implying that the pair correlation function approaches its asymptotic value of unity in
sufficiently high dimensions. Importantly, this effect at large pair separations is observed
for any nonzero choice of the smoothing parameter a with only qualitative differences
in the pair correlation function, corresponding to localization of the δ-function peaks.
Our results therefore suggest that the decorrelation principle applies to the d-dimensional
kagomé crystal in the sense that any delocalization of the local density field is sufficient to
cause asymptotic pair correlations to diminish with respect to increasing dimension. Note
that these observations are consistent with our calculations for the asymptotic number
variance coefficient for the kagomé crystal, which is higher than the corresponding result
for the disordered step + delta-function process even in low dimensions.

Additional calculations suggest that this approach to the decorrelation principle for
periodic structures is applicable even to crystals withM-particle bases that do not increase
with dimension. Figure 7 provides calculations of the smoothed pair correlation function
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Figure 6. Smoothed pair correlation function for the kagomé crystal in
dimensions d = 2 and 4. The smoothing parameter a = 0.1D (cf (51)).

Figure 7. Smoothed pair correlation function for the hypercubic Bravais lattice
Z

d in dimensions d = 2, 4 and 20. The smoothing parameter a = 0.1D.

for the hypercubic Bravais lattice Z
d. Like the kagomé crystal, decorrelation is readily

apparent even in low dimensions, and upon reaching d = 20 the system is essentially
completely decorrelated beyond a few nearest-neighbor distances. Since any point pattern,
disordered or not, can be modeled as a periodic point pattern, potentially with a
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large number of points per fundamental cell, these observations support the remarkable
statement that the decorrelation principle is a universal feature of high-dimensional point
patterns, including those distributions associated with sphere packings. In particular, the
principle should apply not only to disordered point patterns as originally discussed by
Torquato and Stillinger [12] but also to periodic crystals.

The smoothing operation that we have introduced for the pair correlation function
allows us to observe the effects of decorrelation in periodic crystals in relatively low
dimensions. In asymptotically high dimensions, the widths of the Gaussians can be made
arbitrarily small since consecutive coordination shells are tightly clustered. Decorrelation
is therefore a fundamental feature of the pair correlation function itself of a high-
dimensional periodic point pattern, whether it is a simple Bravais lattice or a crystal
with many points per fundamental cell. This principle supports the claim that higher-
order correlation functions do not provide additional information beyond that contained
in g2, meaning that the pair correlations alone completely determine the packing in high
dimensions.

5.2. Implications for the maximal density of sphere packings

The onset of decorrelation in high dimensions for periodic crystals has important
implications for optimal lower bounds on the maximal sphere-packing density. Minkowski
provided a nonconstructive proof that the asymptotic behavior of the maximal density of
sphere packings is bounded from below by [12, 44]

φmax � 1

2d
(d→ +∞). (52)

This scaling is quite distinct from the Kabatiansky–Levenshtein upper bound on the
maximal sphere-packing density [45]

φmax ≤ 1

20.5990d
(d→ +∞). (53)

Utilizing the decorrelation principle for disordered sphere packings, Torquato and
Stillinger derived a conjectural lower bound on the maximal sphere-packing density that
provides putative exponential improvement over Minkowski’s bound [12]:

φmax � d1/6

20.778 65...d
(d→ +∞). (54)

This bound was derived using the aforementioned g2-invariant optimization procedure for
a ‘test’ pair correlation function that in the high-dimensional limit becomes a step + delta
function. It is a conjectural bound because it has yet to be shown that such a pair
correlation function with packing density (54) is realizable by a point process, an issue to
which we will return. The gap between the Kabatiansky–Levenshtein upper bound and
the Torquato–Stillinger lower bound remains relatively large in high dimensions, and it
is therefore an open problem to determine which bound provides the ‘correct’ asymptotic
scaling.

To gain some insight into this issue, we note that in sufficiently high dimensions the
distances between subsequent coordination shells become increasingly small, implying
that the smoothing parameter a used to observe the decorrelation effect in the pair
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correlation function does not need to be chosen very large. In the asymptotic dimensional
limit, it follows that any choice of the smoothing parameter is sufficient to ‘collapse’
the pair correlation function onto its asymptotic value of unity with the exception of
nearest-neighbor correlations, which are dominant in high dimensions. We therefore
emphasize that the smoothing operation we have employed in this work is only a
convenient tool that allows us to observe the decorrelation principle in even relatively low
dimensions. The decorrelation principle itself is apparently a fundamental and universal
phenomenon of any high-dimensional point pattern, ordered or not, manifested in the pair
correlation function since higher-order correlation functions do not introduce additional
information [12]. In summary, decorrelation suggests that the pair correlation functions of
general periodic point patterns tend to the step + delta-function form, which is precisely
the same asymptotic form as the test function that Torquato and Stillinger used to
obtain the lower bound (54) [12, 46]. The appendix contains an analytical demonstration
of the decorrelation effect for the previously mentioned g2-invariant step-function and
step + delta-function processes.

However, the asymptotic scaling of the packing density for a sphere packing will
depend inherently on the manner in which the pair correlation function approaches this
asymptotic form. Since the dominant correlations in asymptotically high dimensions will
be from nearest neighbors in a sphere packing, owing to the well-defined exclusion region in
the pair correlation function, the decorrelation principle suggests that all sphere packings
in high dimensions possess pair correlation functions of an effective step + delta-function
form, which is precisely the same asymptotic form as the test function that Torquato
and Stillinger used to obtain the lower bound (54) [12, 46]. The intensity A(d) of the
associated delta-function peak is given by (50). Whether this intensity increases (as with
the d-dimensional kagomé and hypercubic Z

d crystals) or diminishes (as with the g2-
invariant step + delta-function process at its critical density (45)) in asymptotically high
dimensions therefore depends on the relative scalings of Z(d) and φ(d).

Using the same linear programming techniques introduced in [12], Scardicchio,
Stillinger and Torquato have numerically explored the Z(d)–φ(d) parameter space
associated with the step + delta-function process when hyperuniformity is not enforced a
priori (as it is at the critical density (45)) [46]. Their results provide the same exponential
improvement on Minkowski’s lower bound for the maximal sphere-packing density as the
Torquato–Stillinger lower bound (54). Additionally, this scaling is robust in the sense that
it is recovered for test pair correlation functions containing any number of delta-function
peaks [46]. This latter observation implies that next-nearest-neighbor correlations, even if
they persist in high dimensions, do not provide additional exponential improvement over
the Torquato–Stillinger lower bound (54) for the maximal sphere-packing density.

Since the g2-optimization procedure identifies the maximal packing density obtainable
with the step + delta-function form, which is also obtained by high-dimensional periodic
sphere packings by the decorrelation principle, our results support the remarkable
possibility that the Torquato–Stillinger lower bounds may, in fact, be optimal in
asymptotically high dimensions. If confirmed, this result would imply that the
Kabatiansky–Levenshtein upper bound (53) therefore provides a suboptimal high-
dimensional estimate. This conclusion is consistent with similar arguments put forth
in [45]. If this claim is true, it is interesting to note that the results of Scardicchio,
Stillinger and Torquato suggest that the intensity of the nearest-neighbor peak in the
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pair correlation function of maximally dense sphere packings in high dimensions should
diminish with increasing d [46], implying that the full pair correlation function completely
decorrelates to a step-function form. It follows that certain periodic point patterns such
as the d-dimensional kagomé and hypercubic Z

d crystals cannot be maximally dense in
high dimensions, thereby providing direct evidence that the manner in which the pair
correlation function approaches the asymptotic step + delta-function form reflects the
high-dimensional asymptotic scaling of the packing density. Indeed, the maximally dense
sphere packings in high dimensions may therefore likely be disordered (i.e. with a pair
correlation function decaying to unity sufficiently fast in the infinite-volume limit [12]) as
first suggested by Torquato and Stillinger [12].

6. Concluding remarks

We have provided constructions of the high-dimensional generalizations of the kagomé
and diamond crystals. The d-dimensional diamond crystal is obtained by including in
the Ad fundamental cell the centroid of the regular simplex formed by the lattice basis
vectors. The d-dimensional kagomé crystal can then be constructed by placing points
at the midpoints of the ‘bonds’ in the diamond crystal. The kagomé crystal possesses a
nearest-neighbor contact number Z = 2d in d Euclidean dimensions, which is equivalent
to the isostatic condition for jammed sphere packings. In two dimensions, the kagomé
crystal is locally but neither collectively nor strictly jammed [47] under periodic boundary
conditions; however, it can be reinforced to obtain the lowest-density strictly jammed
subpacking of the triangular lattice. In three dimensions, the pyrochlore crystal has
clustered equilateral-triangle vacancies. In contrast to d = 2, the d-dimensional kagomé
crystal is therefore not strictly jammed for any d ≥ 3 [38] (see footnote 7).

Using these constructions, we have derived analytically the packing densities of these
structures and have shown that, while the kagomé crystal generates a denser sphere
packing for d = 2 and 3, the diamond crystal is denser for all d ≥ 4, at which point the
holes in the kagomé lattice become substantially large. These observations are supported
by numerical calculations for the void exclusion probabilities of the kagomé and diamond
crystals. Surprisingly, the bulk of the void-space distribution for the kagomé lattice
in dimensions d ≥ 5 is larger than the corresponding result for the disordered, fully
uncorrelated Poisson point pattern.

Our results have implications for the quantizer errors and covering radii of these
structures in high dimensions. The diamond crystal provides a thinner covering of space
than the kagomé crystal for all d ≥ 2, even though the kagomé crystal is a better quantizer
in two dimensions. However, the large holes in the fundamental cell for the kagomé lattice
rapidly increase its quantizer error in high dimensions such that it even exceeds Zador’s
upper bound and, therefore, also Torquato’s improved upper bound [1], in as low as
d = 5. This observation implies that disordered point patterns can be better quantizers
than certain periodic structures even in relatively low dimensions, which is consistent with
the properties of certain disordered point patterns reported in [1].

We have also calculated the asymptotic surface area coefficients for the number
variance of the kagomé and diamond crystals. Interestingly, the d-dimensional kagomé
lattice possesses a larger asymptotic number variance coefficient even than the disordered
step + delta-function g2-invariant process for all d ≥ 3. Since the number variance
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coefficient provides a quantitative measure of structural order over large length scales [2, 3],
this result counterintuitively suggests that periodic crystals may possess less long-
range structural order than prototypical ‘disordered’ point patterns in sufficiently high
dimensions, which is consistent with a generalized decorrelation principle for periodic
structures. By calculating a ‘smoothed’ pair correlation function for the d-dimensional
kagomé crystal, we have provided direct evidence for the decorrelation principle in periodic
point patterns. Indeed, the decorrelation principle appears to be universal, applying also
to Bravais lattices as shown by corresponding calculations for the hypercubic lattice Z

d

in high dimensions.
Our work has important implications for the maximal sphere-packing density in

high Euclidean dimensions. In particular, the suggested universality of the decorrelation
principle for both disordered and periodic sphere packings suggests that the putative
exponential improvement obtained by Torquato and Stillinger [12] on Minkowski’s lower
bound for the maximal packing density is, in fact, optimal, which is consistent with
previously reported results in the literature [46]. The pair correlation functions of high-
dimensional sphere packings apparently possess a general step + delta-function form and
optimization of the packing structure through the Z–φ parameter space [46], where Z
is the mean nearest-neighbor contact number and φ is the packing density, suggests
that maximally dense packings undergo a complete decorrelation in high Euclidean
dimensions. In particular, the intensity of the nearest-neighbor peak in the pair
correlation function diminishes in high dimensions, which should be contrasted with the
corresponding behaviors for the d-dimensional kagomé and hybercubic Z

d crystals. These
latter structures therefore cannot be maximally dense in high dimensions, which is in
accordance with the notion that the densest packings for asymptotically large d are, in
fact, disordered [12]. Importantly, this work provides the foundation for a rigorous proof
of the Torquato–Stillinger lower bound on the maximal-sphere packing density and its
optimality in high dimensions. Future work is also warranted to explore the implications
of the decorrelation principle for the covering, quantizer and number variance problems.
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Appendix. Analytical demonstration of the decorrelation principle for a simple
example

Here we examine the step-function and step + delta-function g2-invariant processes at
their critical densities (cf (42)–(45)). Our goal is to probe the manifestation of the
decorrelation principle in delta-function contributions to the pair correlation function.
As mentioned in the text, the step + delta-function g2-invariant process is expected to
provide a good approximation to the effective pair correlation function of periodic crystals
in asymptotically high Euclidean dimensions. Consider the linear average of g2 over some
radial length scale L:

G(L) =
1

L

∫ L

0

g2(r) dr. (A.1)
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For the step-function process, this linear average is given by

Gstep(L) =

(
1 − D

L

)
Θ(L−D) (A.2)

for all dimensions. By contrast, for the step + delta-function process, we find

Gstep+delta(L) =

[
1 −

(
d+ 1

d+ 2

) (
D

L

)]
Θ(L−D), (A.3)

which converges to Gstep(L) as d → +∞. This is precisely the statement that
‘effective’ pair correlations in the step + delta-function process asymptotically vanish in
high dimensions, which is the decorrelation principle as we have presented it for periodic
structures.

We can also show that the cumulative coordination number Z(R) (cf (4)), a particular
smoothing operation on the pair correlation function, can be insensitive to decorrelation
in disordered point patterns and is therefore not the appropriate quantity to examine for
periodic structures. Direct calculation of Z(R) for the g2-invariant processes above shows
that the cumulative coordination numbers for both systems are identical and are given by

Z(R) = [ρv(R) − 1]Θ(R−D), (A.4)

which is equivalent to the hyperuniformity condition Z(R) + 1 = ρv(R) as R → +∞.
Therefore, although Z(R) can distinguish hyperuniform and non-hyperuniform point
patterns, it provides little information about the behavior of asymptotic correlations in
high dimensions.
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