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It is well known that two regular tetrahedra can be combined with
a single regular octahedron to tile (complete fill) three-dimensional
Euclidean space R3. This structure was called the “octet truss” by
Buckminster Fuller. It was believed that such a tiling, which is the
Delaunay tessellation of the face-centered cubic (fcc) lattice, and its
closely related stacking variants, are the only tessellations of R3
that involve two different regular polyhedra. Here we identify and
analyze a unique family comprised of a noncountably infinite
number of periodic tilings of R?> whose smallest repeat tiling unit
consists of one regular octahedron and six smaller regular tetrahe-
dra. We first derive an extreme member of this unique tiling family
by showing that the “holes” in the optimal lattice packing of octa-
hedra, obtained by Minkowski over a century ago, are congruent
tetrahedra. This tiling has 694 distinct concave (i.e., nonconvex)
repeat units, 24 of which possess central symmetry, and hence is
distinctly different and combinatorically richer than the fcc tetrahe-
dra-octahedra tiling, which only has two distinct tiling units. Then
we construct a one-parameter family of octahedron packings that
continuously spans from the fcc to the optimal lattice packing of
octahedra. We show that the “holes” in these packings, except for
the two extreme cases, are tetrahedra of two sizes, leading to a
family of periodic tilings with units composed four small tetrahedra
and two large tetrahedra that contact an octahedron. These tilings
generally possess 2,068 distinct concave tiling units, 62 of which
are centrally symmetric.

space-filling | nonoverlapping solids | polytopes

ilings have intrigued artists, architects, scientists, and mathe-

maticians for millenia (1). A“tiling” or “tessellation” is a par-
tition of Euclidean space R? into closed regions whose interiors
are disjoint. Tilings of space by polyhedra are of particular inter-
est. Certain periodic polyhedral tilings are intimately connected
to lattices (2-5) and crystal states of matter (6), and can provide
efficient meshings of space for numerical applications (e.g.,
quadrature and discretizing partial differential equations) (7).
Polyhedral tilings arise in the structure of foams and Kelvin’s pro-
blem (3, 8, 9, 10). Remarkably, crystalline forms of DNA can be
generated by using specifically constructed mathematical tiling
analogs (11). Some aperiodic tilings of Euclidean space underlie
quasicrystals (12, 13), which possess forbidden crystallographic
symmetries, and glassy states of matter (14). Tilings of high-di-
mensional Euclidean space also have important applications in
communications, cryptography, information theory, and in the
search for gravitational waves (2, 15).

Tilings of two-dimensional (2D) Euclidean space R? by regular
polygons have been widely used since antiquity. Kepler was the
first to provide a systematic mathematical treatment of 2D tiling
problems in his book entitled Harmonices Mundi (16). Kepler
showed that there are just 11 uniform tilings of R? with regular
polygons. A tiling is uniform if the symmetry group of the tiling
acts transitively on its vertices. The 11 uniform tilings of R? con-
sist of the three regular tilings composed of regular polygons
(regular triangles, squares, and hexagons, see Fig. 1) and eight
semiregular (Archimedean) tilings, six of which are made of two
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Fig. 1. The three regular tilings of the plane: (A) A portion of the tiling by
triangles with a fundamental cell containing two triangles with two different
orientations (shown by different shadings). (B) A portion of the tiling by
squares. (C) A portion of the tiling by hexagons.

regular polygons and the remaining two of which are made of
three regular polygons.

The analogous classification of the tilings of three-dimensional
(3D) Euclidean space R3 is much more difficult and has not
yet been completely solved to date. However, we do know that
high-symmetry tilings of R? are rarer compared to such tilings
of the plane. For example, there is only a single uniform tiling
of R3 by a regular polyhedron (any of the five Platonic solids),
namely, the regular tessellation of cubes. This tiling is uniform
with respect to the vertices, edges, and faces of the cubes. The
only other known such uniform tiling of R? consists of repeat
tiling units made up of two regular tetrahedra and one regular
octahedron, which is the Delaunay tessellation (17) of the face-
centered cubic (fcc) lattice. The latter is the network obtained
by inserting “bonds” between nearest-neighbor lattice sites.
Until the present work, it was believed that such a tiling, called
the “octet truss” by Buckminster Fuller, and its associated stack-
ing variants were the only tessellations of R that involve two
different regular polyhedra.

Here we identify and analyze a unique family of periodic tilings
of R?, parameterized by the single scalar & € (0,1/3], whose smal-
lest repeat tiling unit consists of one regular octahedron and
six smaller regular tetrahedra. We first derive an extreme member
of this unique family of tilings by showing that the “holes” of the
optimal lattice packing of octahedra, which was first discovered
by Minkowski over one hundred years ago, are congruent tetra-
hedra whose edge length is one third of that of the octahedron.
We find that this tiling possesses 694 distinct concave (i.e., non-
convex) repeat tiling units, 24 of which are centrally symmetric,
and thus is distinctly different and combinatorically much richer
than the fcc tetrahedra-octahedra tiling, which only has two dis-
tinct tiling units with only one possessing central symmetry. We
then construct a one-parameter family of octahedron packings
that correspond to a continuous deformation of the fcc lattice
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packing with a = 0 that ultimately ends with the optimal lattice
packing of octahedra with a = 1/3. We find that the holes in
these packings, except for the two extreme cases (i.e., a =0
and 1/3) are tetrahedra of two sizes, leading to periodic tilings
having smallest repeat tiling units composed of four small tetra-
hedra and two large tetrahedra that contact an octahedron,
whose structural characteristics are even richer. In particular,
the tilings with a € (0,1/3) possess 2,068 distinct concave repeat
tiling units, 62 of which are centrally symmetric. As one trans-
verses the tilings in this family starting from the fcc tetrahedra-
octahedra tiling (o = 0), the small tetrahedra grow and the large
ones shrink until they become equal in size in the tiling associated
with the optimal lattice packing of octahedra (@ = 1/3). These
tilings could be used to model complex multicomponent molecu-
lar and nano-particle systems and enable one to design building
blocks for targeted self-assembly (18, 19).

A New Tiling of R? by Tetrahedra and Octahedra Derived
from the Optimal Lattice Packing of Octahedra

Recently, an efficient polyhedron packing protocol, called the
adaptive-shrinking-cell scheme, was employed to provide strong
evidence that the optimal lattice packings of the centrally sym-
metric Platonic (cube, octahedron, dodecahedron, and icosahe-
dron) and Archimedean solids are the densest packings (20, 21).
A polyhedron is centrally symmetric if it contains a point of
inversion symmetry. This recent work on polyhedron packings
brought attention to a classical century-old result of Minkowski
(22) in which the optimal lattice packing of octahedra was first
reported. What is remarkable is that in all this time no one seems
to have recognized that the holes in the optimal lattice packing of
octahedra are equal-sized regular tetrahedra and that one can
associate a concave unit consisting of a single octahedron in this
packing and a certain subset of six contacting tetrahedra (which
fill the holes) that periodically tiles or fills 3D space.

Why did it take so long to make this discovery? First, the lattice
associated with the optimal octahedron packing does not possess
striking symmetries, such as those possessed by the fcc lattice.
Second, studies of particle packings have focused mainly on sphe-
rical objects and analysis of the holes in sphere packings has
primarily involved characterizing the centroids of the holes, not
their shapes. Third, graphical visualizations of the optimal octa-
hedron packing aided in bringing our attention to the intriguing
hole structure and geometry. This unique tetrahedron-octahe-
dron tiling and the fact that there are many distinct concave units
consisting of a single octahedron and six contacting tetrahedra
are some of the central results of this paper.

We begin our analysis by examining the optimal lattice packing
of octahedra. An octahedron is defined via the relation

Py ={x € R3: [x;| + [xo| + P3| < 1}. (1]

Each lattice site is specified by the lattice vectors a;, a,, and a3 of
the optimal lattice packing of octahedra:

I C N TN AL AR I AT
1 — 37373 s 2 — 3ss3 s 3 = 37373 .

(2]
The optimal lattice packing has a density (fraction of R* covered
by the nonoverlapping particles) of ¢ = 18/19 (22). The octahe-
dra make partial face-to-face contact with one another in a com-
plex fashion to form a dense packing with small regular tetra-
hedral holes. The edge length of a tetrahedron is only one third
of that of the octahedron and therefore the ratio of the volume
of a single octahedron to that of a tetrahedron is 108. Insertion
of tetrahedra of appropriate size into the holes results in the
unique tetrahedron-octahedron tiling of R3, which is illustrated
in Fig. 24.
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Fig. 2. A new tiling of 3D Euclidean space by regular tetrahedra and octa-
hedra associated with the optimal lattice packing of octahedra. (A) A portion
of the 3D tiling showing “transparent” octahedra and red tetrahedra. The
latter in this tiling are equal-sized. (B) A 2D net of the octahedron (obtained
by cutting along certain edges and unfolding the faces) with appropriate
equal-sized triangular regions for the tetrahedra highlighted. The integers
(from 1 to 6) indicate which one of the six tetrahedra the location is asso-
ciated. Although each octahedron in this tiling makes contact with 24 tetra-
hedra through these red regions, the smallest repeat tiling unit only contains
six tetrahedra, i.e., a tetrahedron can only be placed on one of its four pos-
sible locations. The adjacent faces of an octahedron are colored yellow and
blue for purposes of clarity. (C) Upper box: A centrally symmetric concave
tiling unit that also possesses threefold rotational symmetry. Note that
the empty locations for tetrahedra highlighted in (B) are not shown here.
Lower box: Another concave tiling unit that only possesses central symmetry.
Observe that the empty locations for tetrahedra highlighted in (B) are not
shown here.

Fig. 2B shows a 2D net of an octahedron (obtained by cutting
along certain edges and unfolding the faces) in which the 24 small
triangular regions (locations) associated with the tetrahedra are
highlighted. A single tetrahedron in this tiling contacts four oc-
tahedra. When an octahedron is mapped into a 2D unfolded net,
because of the periodicity of the tiling, there are four locations for
each of the six tetrahedra in the periodic repeat unit labelled 1, 2,
3,4, 5, and 6, as shown in Fig. 2B. The coordinates of the vertices
for the tetrahedra can be written as (n,/3,n,/3,n3/3), where
ny,ny,n3 =0,+£1,+£2,£3. Once a tetrahedron is placed on
one of its four possible locations, no tetrahedron can be placed
on the remaining three locations. However, each octahedron in
this tiling makes contact with 24 small tetrahedra through all of
the 24 triangular regions, but this contact configuration is not a
repeat unit. The coordinates of the 24 locations are given in the
SI Appendix.

As can be seen from Fig. 2B, because there are many possible
ways for placing the six tetrahedra, it is clear that this tiling must
have many distinct concave units (i.e., those that are not related
by any symmetry operations). A simple counting would lead to
4% = 4,096 possibilities, but not all of them are distinct from
one another. We explicitly construct all of the 4,096 possible tiling
units and find that there only 694 distinct ones, among which 24
possess central symmetry. Fig. 2C shows two of the centrally
symmetric tiling units and we present all of 694 units in the
SI Appendix.

FCC Tetrahedra-Octahedra Tiling
It is useful to contrast the aforementioned tetrahedron-octahe-
dron tiling associated with the optimal lattice packing of octahe-
dra with the well known fcc tetrahedron-octahedron tiling or
“octet truss.” We have noted that the latter tiling can be derived
from the fcc lattice packing of octahedra. In particular, consider
the octahedron defined by Eq. 1, which is placed on the lattice
sites specified by
a; = (1,1,0)7,

a,=(-11,007, a;=(0.1,D)7. [3]

Conway et al.
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In this octahedron packing with a density ¢ =2/3, four octa-
hedra, each making contacts by sharing edges perfectly with the
other three, form a regular-tetrahedron-shaped hole with the
same edge length with that of the octahedra. If tetrahedra of
proper size are inserted into the holes of the packing, the fcc
tetrahedron-octahedron tiling is recovered.

A single tetrahedron in this tiling make perfect face-to-face
contact with four octahedra. When an octahedron is mapped
into a 2D unfolded net, because of the periodicity of the tiling,
there are four locations for each of the two tetrahedra in the
periodic repeat unit labelled 1 and 2, as shown in Fig. 3B. Due
to the central symmetry of an octahedron, this tiling only has two
distinct tiling units, as shown in Fig. 3. By placing the tetrahedra
on two centrally symmetric faces of the octahedron, one can con-
struct a centrally symmetric rhombohedron that tiles space
(upper box of Fig. 3C). The coordinates of the vertices for the
tetrahedra in this unit are {(1,0,0),(1,1,1),(0,1,0),(0,0,1)} and
{(-1,0,0),(-1,-1,-1),(0,-1,0),(0,0, — 1)}. The other unit
can be obtained by placing a pair of tetrahedra on two adjacent
faces of an octahedron, leading to a concave polyhedron with a
mirror-image symmetry (lower box of Fig. 3C). The coordinates
of the vertices for the tetrahedra in this unit are {(1,0,0),
(1,1,1),(0,1,0),(0,0,1)} and {(0,0,1),(0,1,0),(=1,1,1),(=1,0,0)}.
We note that in this fcc tiling, each octahedron makes perfect
face-to-face contacts with eight tetrahedra. It is clear that this
tetrahedron-octahedron tiling is considerably structurally simpler
than the tiling of R? by tetrahedra and octahedra associated
with the optimal lattice packing of octahedra reported here.

A Continuous Family of Tetrahedra-Octahedra Tilings

It is noteworthy that the aforementioned fcc packing of octahedra
is not “collectively” jammed. Following Torquato and Stillinger
(23), a packing is locally jammed if no particle in the system
can be translated while fixing the positions of all other particles.
A collectively jammed packing is a locally jammed packing such
that no subset of particles can simultaneously be continuously
displaced so that its members move out of contact with one
another and with the remainder set. A packing is strictly jammed
if it is collectively jammed and all globally uniform volume non-
increasing deformations of the system boundary are disallowed

Fig. 3. The well known tiling of 3D Euclidean space by regular tetrahedra
and octahedra associated with the fcc lattice (or “octet truss.”) (A) A portion
of the 3D tiling showing “transparent” octahedra and red tetrahedra. (B) A
2D net of the octahedron obtained by cutting along certain edges and un-
folding the faces. Each octahedron in this tiling makes perfect face-to-face
contact with eight tetrahedra whose edge length is same as that of the
octahedron. Thus, we do not highlight the contacting regions as in Fig. 2B.
The integers (1 and 2) on the contacting faces indicate which one of the
two tetrahedra the face is associated. As we describe in the text, the smallest
repeat unit of this tiling contains two tetrahedra, each can be placed on one
of its four possible locations, leading to two distinct repeat tiling units shown
in (C). The adjacent faces of an octahedron are colored yellow and blue
for purposes of clarity. (C) Upper box: The centrally symmetric rhombohedral
tiling unit. Lower box: The other tiling unit which is concave (nonconvex).

Conway et al.

by the impenetrability constraints. Readers are referred to ref. 23
for further details.

In the fcc packing of octahedra, adjacent square layers of
octahedra can slide relative to one another. This fact implies that
in general there should be a noncountably infinite number of
continuous deformations of the fcc packing that densifies the
packing until the densest lattice packing of octahedra is reached.
Because both the fcc and optimal lattice packings of octahedra
correspond to tetrahedra-octahedra tilings, it is natural to ask
whether there exists a very special deformation for which each
intermediate packing between the fcc and optimal lattice packing
also corresponds to a tetrahedra-octahedra tiling. Indeed, we
show below that there is a unique deformation that provides a
continuous family of tetrahedra-octahedra tilings.

Consider the following one-parameter family of lattice pack-
ings of octahedra with the basis vectors:

a,=(1-al-a2a0)7, a,=(-1+ala)l,

- [4]
a3 = (—a,1 = 2a,1 + a)7,

where a € [0,1/3]. This one-parameter family provides a contin-
uous set of octahedron packings that span from the fcc packing
when a = 0 to the optimal lattice packing when @ = 1/3 and it is
constructed by comparing the lattice vectors of the two extreme
packings. The packing density ¢ as a function of « is given by

2 1

e — 5
¢ 31 -2a+4a? -2a° [5]

When a =0 and 1/3, one recovers from Eq. 5 ¢ =2/3 and
¢ = 18/19 for the fcc packing and optimal lattice packing, respec-
tively.

As a moves immediately away from zero, each octahedron in
the packing makes partial face-to-face contact with 14 neighbors,
leading to 24 tetrahedron holes for each octahedron, three on

Fig. 4. A member of the continuous family of tetrahedra-octahedra tilings
of 3D Euclidean space with a = 1/4. (A) A portion of the 3D tiling showing
“transparent” octahedra and red tetrahedra. (B) A 2D net of the octahedron
(obtained by cutting along certain edges and unfolding the faces) with
appropriate sites for the tetrahedra highlighted. As we describe in the text,
the tetrahedra in the tiling are of two sizes, with edge length v/2a and
\/2(1 — 2a). The integers (from 1 to 6) indicate which one of the six tetrahedra
the location is associated. Although each octahedron in this tiling makes con-
tact with 24 tetrahedra through these red regions, the smallest repeat tiling
unit only contains six tetrahedra (two large and four small). As a increases
from 0 to 1/3, the large tetrahedra shrinks and the small ones grow, until
a = 1/3 at which the tetrahedra become equal-sized. For a = 1/4, the edge
length of the large tetrahedra is twice of that of the small ones. The adjacent
faces of an octahedron are colored yellow and blue for purposes of clarity.
(C) Upper box: A centrally symmetric concave tiling unit corresponds to
that shown in the upper box of Fig. 2C (with a = 1/3). Note that the empty
locations for tetrahedra highlighted in (B) are not shown here. Lower box:
Another centrally symmetric concave tiling unit corresponds to that shown
in the lower box of Fig. 2C (with @ = 1/3). Observe that the empty locations
for tetrahedra highlighted in (B) are not shown here.
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each faces of the octahedron, with edge length v/2a, v/2a, and
v2(1 = 2a) (see Fig. 4). When « is small, one of the three tetra-
hedra on a triangular face of an octahedron is much larger than
the remaining two, almost occupying the entire triangular face.
The large tetrahedra with edge length v/2(1 — 2a) correspond to
the tetrahedra with edge length /2 in the fcc tetrahedra-octahe-
dra tiling (with @ = 0). Thus, a repeat tiling unit only contains two
large tetrahedra, each of which can be placed on one of the four
possible triangular regions (locations) on the faces of an octahe-
dron, as in the fcc tetrahedra-octahedra tiling (see Fig. 3B and
Fig. 4B). However, here each tiling unit also contains four addi-
tional small tetrahedra with edge length «, each of which can be
placed on one of four possible locations (see Fig. 4B). Therefore,
these tiling units are combinatorically richer than those of the
fcc tetrahedra-octahedra tiling and the tiling associated with the
optimal lattice packing of octahedra that we discovered here. In
particular, any tiling with & € (0,1/3) (not including the extreme
cases) possesses 2,068 distinct concave repeat tiling units, 62 of
which have central symmetry. The coordinates of the triangular
regions (i.e., the locations of tetrahedra contacting an octahe-
dron) and all of the tiling units are given in the SI Appendix.

As o increases from 0 to 1/3, the octahedron packing continu-
ously deforms from the fcc packing to the optimal lattice packing
(see the Movie cited in the SI Appendix). In the corresponding
tilings, the large tetrahedra shrink while the small ones grow until
all of the tetrahedra become equal in size in the tiling associated
with the optimal lattice packing of octahedra. Thus, we explicitly
construct a continuous family of tetrahedra-octahedra tilings that
span two aforementioned extremes.

Conclusions and Discussion

We have discovered a unique one-parameter family of periodic
tilings of R3 whose smallest repeat tiling unit consists of one reg-
ular octahedron and six smaller regular tetrahedra. We obtained
this family of tilings by explicitly constructing a family of octahe-
dron packings that continuously spans from the fcc packing
(a =0) to the optimal lattice packing of octahedra (a = 1/3)
and then showing that the holes are tetrahedra. All members
of this family of tilings with a € (0,1/3) possess 2,068 distinct
concave repeat tiling units composed of two large tetrahedra
and four small tetrahedra contacting an octahedron, 62 of which
are centrally symmetric. In the extreme case of @ = 1/3, the tiling
has 694 distinct concave repeat tiling units composed of six con-
gruent tetrahedra contacting an octahedron, 24 of which possess
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central symmetry. As one transverses the tilings in the family
starting from the well known fcc tetrahedra-octahedra tiling (not
a member of the aforementioned tiling family), the small tetra-
hedra grow and the large ones shrink until they become equal in
size in the tiling associated with the optimal lattice packing of
octahedra. We also demonstrated that the tilings with a in (0,1/3)
are distinctly different and combinatorically richer than the fcc
tetrahedra-octahedra tiling (a = 0). Note that the principle that
packings in R¢ which are not collectively jammed can lead to
denser packings by either infinitesimal or finite motions (transla-
tions and rotations) of the particles is quite general, applying to
packings of particles with arbitrary shape. The class of noncollec-
tively jammed packings in which infinitesimal or continuous
motions densify the packings (such as the ones found here) is
more restrictive, but includes convex polytopes and hyperspheres,
among other objects.

Do tilings similar to the ones reported in this paper exist in
other Euclidean space dimensions? In R?, the analogs of the tet-
rahedron and octahedron are the equilateral triangle and square,
respectively. The closest 2D analog of the fcc tetrahedra-octahe-
dra tiling consists of alternating strips of squares and equilateral
triangles, in which each fundamental cell contains one square and
two triangles. However, this tiling does not possess square sym-
metry, nor do the squares touch one another along all lattice vec-
tors, which is to be contrasted with the fcc tetrahedra-octahedra
tiling in which octahedra form perfect edge-to-edge contacts
with their neighbors. In R*, the analogs of the tetrahedra and oc-
tahedra are 4D regular simplex and orthoplex (or cross-poly-
tope), which are not associated with a tiling of R*. It is worth
noting that the analog of fcc lattice in R* is the 4D checker-board
lattice D,, the Delaunay tessellation of which is composed of
4D orthoplices and hemicubes (instead of simplices) (24). We are
not aware of any nontrivial analogs of our tetrahedra-octahedra
tilings in other dimensions. These observations imply that tiling
problems are generally dimension specific and the results for a
particular dimension cannot be simply generalized to other di-
mensions.
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