
J. Fluid Mech. (2011), vol. 667, pp. 403–425. c© Cambridge University Press 2011

doi:10.1017/S0022112010004490

403

New bounds on the sedimentation velocity for
hard, charged and adhesive hard-sphere colloids

W. TODD GILLELAND1, SALVATORE TORQUATO2

AND WILLIAM B. RUSSEL1†
1Department of Chemical Engineering, Department of Chemistry,

Princeton University, Princeton, NJ 08544, USA
2Department of Physics, Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA

(Received 6 February 2010; revised 18 July 2010; accepted 20 August 2010)

The sedimentation velocity of colloidal dispersions is known from experiment and
theory at dilute concentrations to be quite sensitive to the interparticle potential
with attractions/repulsions increasing/decreasing the rate significantly at intermediate
volume fractions. Since the differences necessarily disappear at close packing, this
implies a substantial maximum in the rate for attractions. This paper describes
the derivation of a robust upper bound on the velocity that reflects these trends
quantitatively and motivates wider application of a simple theory formulated for hard
spheres. The treatment pertains to sedimentation velocities slow enough that Brownian
motion sustains an equilibrium microstructure without large-scale inhomogeneities in
density.
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1. Introduction
Dispersions of submicron particles in water or organic liquids are essential to a wide

range of technologies. Whether synthesized from small molecules or ground to the
colloidal state from larger chunks, formulation and processing as a fluid dispersion is
generally inevitable as dry powders of such small particles are unmanageable (Hunter
1987). Hence, the nature of the thermodynamic state and the mechanical properties
of the dispersions as a function of the composition have long been the prime focus
of the field. As with molecular fluids, transport properties of fluid dispersions of
colloidal particles depend on the spatial distribution of the particles, as well as the
driving forces causing the motion and the viscous stresses that result (van de Ven
1989; Pusey 1991; Russel et al. 1991). The transport coefficients that receive the most
attention are the self and mutual diffusion coefficients, the sedimentation velocity and
the shear viscosity for spherical particles in Newtonian fluids. The spatial distribution
of particles in an equilibrium fluid phase is governed by the thermodynamics,
i.e. the balance between thermal energy (kT) and interparticle potentials Φ that
yields the lowest energy state. Since an external force F can perturb the equilibrium
distribution significantly, we focus here on the weak force limit, i.e. F � kT /a for
spheres of radius a, for which the flow only slightly perturbs the microstructure
and the response is linear. This distinguishes the phenomena from aF/kT � 1, i.e.
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non-Brownian (Nguyen & Ladd 2005), or aF/kT ∼ O(1) (Moncha-Jorda et al.
2010), in which the slowly decaying velocity field associated with individual settling
particles can produce large-scale velocity and concentration fluctuations. In colloidal
dispersions, thermodynamic interactions tend to suppress large-scale concentration
fluctuations except in regions of the phase diagram where attractive interparticle
potentials encourage phase separation.

The sedimentation velocity U (φ) of colloidal dispersions at finite volume fractions
φ is widely recognized to depend strongly, both quantitatively and qualitatively, on
the interparticle potential (Buscall et al. 1982; Jansen et al. 1986; de Kruif et al.
1987; Brady & Durlofsky 1988; Paulin & Ackerson 1990; Thies-Weesie et al. 1995).
Though rarely exploited these days for diagnostic purposes, the fact that attractions
increase the rate of settling, while repulsions decrease it, provides a clear signal of
the character of the interactions. Of course, the practice of flocculating dispersions
in order to accelerate the separation of solids from the liquid is a long-standing
technology with polymeric flocculants that adsorb on and bridge between particles
the most common additive, though depletion due to non-adsorbing polymers also
occupies a niche market (Napper 1983; Fleer et al. 1993). For dispersions, in which
the interactions are predominantly repulsive, the sedimentation velocity decreases
monotonically with increasing volume fraction. For dispersions of hard spheres, the
simplest repulsion, the behaviour is well characterized experimentally and, to some
extent, theoretically. For charged spheres, the velocity is understood to be bounded
from above by hard spheres and from below by the theoretical result for face-centred
cubic arrays (Zick & Homsy 1982; Brady & Durlofsky 1988), which can be achieved
with very strong or long-ranged potentials.

Aside from hard spheres and ordered arrays, fundamental understanding is limited
to rigorous results for the dilute limit for spheres with model potentials captured
in a general sense by an excluded volume of diameter so normalized on the sphere
radius a and an adhesive attraction of dimensionless strength 1/τ . This generalized
potential yields a pair correlation function g(s) at dilute volume fractions φ � 1 of
g(s) = exp(−Φ(s)/kT ) = H (s − so) + δ(s − so)/6τ and a dilute limit of the form

U/Uo = 1 − (Ko − K1/τ )φ + O(φ2), (1.1)

with Uo the Stokes settling velocity for a sphere, Ko and K1 accounting for
hydrodynamic interactions via the method of reflections (Russel et al. 1991) and

H (s) =

{
0 s < 0,

1 s > 0,
δ(s) =

dH

ds
. (1.2)

This reduces to

U/Uo = 1 − 6.55φ + O(φ2) (1.3)

for hard spheres with so =2 (Batchelor 1972),

U/Uo = 1 − 3
2
[ln(α/ln(α/ln(α/ . . .)))/aκ]2φ + O(φ2), (1.4)

with so = ln(α/ln(α/ln(α/ . . .)))/aκ and α = 4πεεoψ
2
s a

2κ exp(2aκ)/kT � 1 for charged
spheres with surface potential ψs and Debye screening length 1/κ (eeo =
dielectric permittivity), and

U/Uo = 1 − (6.55 − 1.02/τ )φ + O(φ2). (1.5)

for adhesive hard spheres.
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Figure 1. Dilute limit for dimensionless sedimentation velocity for charged (so = 2 (—),
3 (- · -), and 4 (- · · -)) and adhesive hard spheres (τ = 0.250 (- · -), 0.125 ( ), 0.083 (– –),
0.062 (- - -) and 0.05 ( ) compared with the master curve (1.6) for hard spheres.

The only approximate theory recognizing both hydrodynamic interactions and
the equilibrium microstructure of disordered dispersions was formulated by Brady &
Durlofsky (1988), with pairwise additive hydrodynamics in the far-field approximation
of Rotne–Prager. This leads to a simple approximation

UBD/Uo = 1 − 5φ − 1

5
φ2 + 3φ

∫ ∞

2

h(s)s ds, (1.6)

where h = g − 1 is the total correlation function. Though applicable in general to
the full range of interparticle potentials, this theory has not been evaluated or tested
except for hard spheres. To illustrate the corresponding range of behaviours, we
compare these dilute limits for charged and adhesive hard spheres with the master
curve constructed from experimental data for hard spheres

U/Uo = (1 − φ)5.4/(1 + 1.15φ) (1.7)

in figure 1. Clearly, the dilute theories imply a remarkable sensitivity to the interparticle
potential at finite concentrations, for which little is known quantitatively except that
all should converge to the hard-sphere limit as the volume fraction approaches close
packing.

To provide guidance on the behaviour at volume fractions beyond the dilute limit,
we report here rigorous upper bounds on U for the range of interaction potentials
described above. The bound is derived from an energy balance equating the rate of
work Ẇ done by the gravitational force Fg with the rate of viscous dissipation Ḋ due
to the sedimentation process, i.e.

Ẇ = NFgU = Ḋ = V 〈τ : τ/2µ〉 (1.8)

for a volume V containing N particles (Luke 1992, 1993). By constructing
approximations for the stress fields τ to estimate the rate of dissipation, which is
minimized by the exact fields, one can construct, in principle, increasingly accurate
bounds on the sedimentation velocity as proposed by Torquato & Beasley (1987)
and Torquato (2002). Here we take only the first step, employing the single-particle
‘trial’ velocity fields, i.e. the first step in the method of reflections, with accurate
approximations for the volume fraction-dependent pair distribution function to
construct a two-point bound. The beauty of the approach, which improves on the
earlier work by Luke, is that even a crude approximation for the hydrodynamics yields
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considerable quantitative information about sedimentation, because of the dominant
role of ‘backflow’ identified by Batchelor (1972) in his dilute theory.

2. Bulk properties from energy dissipation
The key to developing upper and lower bounds on the macroscopic properties

of dispersions is their relationship to a microscopic energy balance. The energy
conserved or dissipated is directly related to the bulk property and the macroscopic
boundary conditions. For example, the dissipation of energy by simple shear flow
is characterized by the macroscopic viscosity and rate of strain. In a similar
manner, the sedimentation velocity, fluid permeability, electrical conductivity, nuclear
magnetic resonance decay rate, elastic moduli and other transport properties can
be represented rigorously in terms of macroscopic energy relations (Torquato
2002). Once a relation is developed between the transport property of interest
and the overall energy balance, statistical mechanics can be invoked to connect
the microscopic and macroscopic formulations. The ensemble average of the
volume integral of the exact microscopic energy dissipation equals that of the
bulk system. From this, integral bounds are developed and evaluated from
estimates of the microscopic dissipation derived from approximate trial velocity
fields.

Since particle trajectories are not known a priori in a flowing suspension, trial fields
that match exactly the motion of the particle cannot be constructed. To derive an
applicable upper bound, we synthesize a new proof, drawing from Torquato (2002) the
concept of bounding the minimum complementary energy in terms of the deviatoric
stress and the minimum principle based on the rate of strain (Luke 1992, 1993).
The new proof specifies the total force and torque on the particle instead of point-
wise velocities or stresses, providing an approach amenable to flowing suspensions.
The resulting trial stress field σ̂ then differs from the unknown exact solution σ by
the variational field σ ′. The trial field must satisfy the Stokes equation with prescribed
forces and torques on the particles,

∇ · σ̂ = 0, ∇ · û = 0, inVf∫
Ai

σ̂ · n d2x = F,

∫
Ai

(x − xi ) × σ̂ · n d2x = 0.

⎫⎬
⎭ (2.1)

This formulation requires the stress and velocity fields to be divergence-free but
imposes no constraint on the velocity at the particle surfaces as long as the total force
and torque conditions are met.

While proving the minimum principle based on the full stress σ would seem
preferable, an exact solution for the pressure component of the stress is unknown.
Thus, cross-terms between σ and σ̂ ≡ σ [û], with [ ] indicating a functional
dependence, cannot be eliminated. In contrast, one can prove the traceless form
of the minimum principle,〈

1

2µ
τ [u] : τ [u]

〉
�

〈
1

2µ
τ [û] : τ [û]

〉
, (2.2)

with the deviatoric stress τ = σ − (1/3)tr(σ )δ. The use of (2.2) with Torquato’s
constraints and trial fields yields a lower bound on the sedimentation velocity, but
substitution of our traceless stress field transforms that into an upper bound on the
sedimentation velocity.
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To prove the minimum principle (2.2), we expand the product τ̂ : τ̂ in terms of the
exact and variational fields τ and τ ′ as〈

1

2µ
τ [û] : τ [û]

〉
=

〈
1

2µ
τ : τ

〉
+

〈
1

2µ
τ ′ : τ ′

〉
+ 2

〈
1

2µ
τ : τ ′

〉
. (2.3)

The exact deviatoric stress depends on the strain rate τ =2µe, so that

1

2µ
τ = e =

1

2
(∇u + (∇u)T). (2.4)

Since

e : p′δ = p′e : δ = (∇ · u)p′ = 0, (2.5)

the cross-term can be written as〈
1

2µ
τ : τ ′

〉
= 〈e : τ ′〉 = 〈e : (τ ′ + p′δ)〉 = 〈e : σ ′〉

=

〈
σ ′ :

1

2
(∇u + (∇u)T)

〉
= 〈σ ′ : ∇u〉. (2.6)

With the chain rule and the momentum equation (2.1),

∇ · (σ ′ · u) = u · (∇ · σ ′) + σ ′ : ∇u = σ ′ : ∇u, (2.7)

and the ensemble average expressed as a volume integral, the cross-term becomes〈
1

2µ
τ :τ ′

〉
= 〈∇ · (σ ′ · u)〉 =

1

V

∫
V

∇ · (σ ′ · u)dV

=

N∑
l=1

1

V

∮
Al

n · (σ ′ · u)dS +
1

V

∮
A

n · (σ ′ · u)dS ≡ E1 + E2. (2.8)

Note that the divergence theorem casts the integral onto the surfaces of the particles
Ai and the solid surface of the container A on which u = 0, so that E2 = 0.

The constraints (2.1) on the trial field, together with the solid body translation and
rotation of the actual field, now serve to reduce to zero the integrals over all the
particle surfaces, i.e.

E1 =

N∑
i=1

1

V

∮
Ai

u · σ ′ · n dS

=

N∑
i=1

1

V

∮
Ai

{U i · (σ [û] − σ [u]) + (Ω i × r) · (σ [û] − σ [u])} · n dS (2.9)

Since U i is constant and the forces for the trial and exact solution match so that
F[û] − F[u] = 0, the first term vanishes. By transposing the cross-product to identify
the torque and recognizing that Ω i is constant and the torques for the trial and exact
solution are both zero, the second term integrates to zero, so that∮

Ai

(Ω × r) · (σ [û] − σ [u]) · n dS =

∮
Ai

Ω · {r × (σ [û] − σ [u]) · n}dS

= Ω i · (T [û] − T [u]) = 0. (2.10)

Thus, both parts of the first integral E1 vanish.



408 W. T. Gilleland, S. Torquato and W. B. Russel

With these results the viscous dissipation expressed in terms of the traceless stress
reduces to a Pythagorean equation〈

1

2µ
τ̂ : τ̂

〉
=

〈
1

2µ
τ : τ

〉
+

〈
1

2µ
τ ′ : τ ′

〉
�

〈
1

2µ
τ : τ

〉
, (2.11)

in which the positive dissipation from the variational stress field τ ′ proves the
minimum principle in (2.2) for trial stress fields that satisfy the constraints in (2.1).

2.1. Mean sedimentation velocity and trial fields

To relate the sedimentation velocity of a monodisperse suspension to the viscous
dissipation, we simply require the rate of work performed by gravity,

Ẇ =

N∑
i=1

U i · F ≡ nV FU, (2.12)

with the mean sedimentation velocity U and n= N/V the number density of particles,
to be equal to the rate of viscous dissipation, and less than the trial estimate expressed
as an ensemble average at a point, which yields an upper bound on the sedimentation
velocity as

nUF =

〈
1

2µ
τ : τ

〉
�

〈
1

2µ
τ ′: τ ′

〉
. (2.13)

To evaluate (2.13) as a two-point upper bound requires three steps: construction of
a trial velocity field satisfying the requisite constraints (2.1), formulation of the local
dissipation in terms of pair statistics for the particles, and integration to create the
bound. A final physical constraint is necessary to prevent non-convergent integrals.
This is achieved by constraining the sum of velocities into and out of any volume
or across any plane to be zero or equivalently requiring the ensemble average of the
velocity to be zero at every point. This is fully equivalent to the renormalizations
constructed by Batchelor (1972) and O’Brien (1979).

The ensemble average is over all possible points in the volume, within and outside
of particles, with a viscosity and strain appropriate to the test point. Partitioning the
ensemble average to distinguish the strain fields êp inside a particle and êf in the
fluid yields

〈2µê : ê〉 = 〈2µêf : êf I f 〉 + 〈2µp êp : êpIp〉, (2.14)

with binary phase indicator functions, Ip and I f , for the particle and fluid phases
defined by

I f (x) =
N

Π
i=1

H (|x − r i |/a) with
〈
I f (x)

〉
= 1 − φ,

Ip (x) =

N∑
i=1

(1 − H (|x − r i |/a)) with 〈Ip (x)〉 = φ,

⎫⎪⎪⎬
⎪⎪⎭ (2.15)

and H (|x − r i |/a) the Heaviside step function. Since the viscous dissipation is
identically zero within elastic or hard particles, the overall dissipation becomes

〈2µê : ê〉 =
〈
2µêf : êf I f

〉
. (2.16)

This ensemble average of the inner product of two trial strain fields multiplied by
the fluid phase indicator I f requires information on three locations, the sampling
point and the centres of the two particles generating the strain fields. Evaluation
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Figure 2. Schematic of trial strain field: (a) spheres of different sizes have centres that lie
on a horizontal plane containing a dashed line that passes through the centre of the leftmost
sphere. (b) The magnitude of the lowest-order term in the disturbance field generated by each
individual sphere along the dashed line. (c) The trial strain field is the sum of the individual
fields and, therefore, is non-zero within the spheres. (d ) The product of the trail strain field and
the phase indicator function If makes the strain zero within each particle. The approximation
of If = 0 loosens the upper bound by counting dissipation in the volume occupied by the
particles.

of this quantity results in a three-point bound as demonstrated previously for hard
spheres (Beasley & Torquato 1989).

Here, to obtain a more tractable computation, we reduce the order of the bound
by noting that I f � 1, so that approximating I f = 1 retains an upper bound as

nUF =

〈
1

2µ
τ : τ

〉
� 〈2µêf : êf 〉. (2.17)

The subscript indicates that sampling points within either of the two particles still
yield no dissipation.

For simplicity we take the trial velocity field û for a particular configuration of
particles as the sum of the single particle velocity fields uo outside of the source
particle, minus the mean trial velocity,

û (x) =

N∑
i=1

uo (x − r i) H (|x − r i |/1) − n

∫
uo (x − r) H (|x − r i |/a) dr i (2.18)

with

uo (r) = F ·
(

1 +
a2

6
∇2

)
I (r) with I (r) =

1

8πµr

(
δ +

r r
r2

)
. (2.19)

The single particle eo and trial êf strain fields follow as

eo (r) =
1

2
(∇uo (r) + (∇uo (r))T)

= − F
8πµr2

{
3

r r r
r3

(
1 − 5a2

3r2

)
+

δr + rδ + (δr)t

r

a2

r2
− rδ

r

}
,

ê (x) =

N∑
i=1

eo (x − r i) H (|x − r i |/a) − n

∫
eo (x − r) H (|x − r i |/a) d3r.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.20)

This amounts to the first term in a method of reflections in the standard terminology
for hydrodynamic interactions among particles. The consequences of this trial strain
field, which satisfies the constraints prescribed above, are depicted in figure 2,
displaying the superimposition of single particle fields (2.18) and discounting the
fluid phase indicator function (2.15).
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2.2. Simplification of the two-point bound

The technique developed by Beasley & Torquato (1989) represents the trial fields in
terms of scalar Legendre polynomials to reduce the six-dimensional integral required
by the ensemble average to three dimensions. The first step is to separate the scalar
decay in the disturbance fields eo from the angular dependence represented by tensorial
products of the unit normal n and the applied force F as

eo (r) = − a2

8πµr4

(
nF + Fn − 2

3
n · Fδ

)
− 3

8πµr2

(
1 − 5a2

3r2

)
n · F

(
nn − 1

3
δ

)
.

(2.21)

Aligning the z-axis of the coordinate frame with the applied force as F = F δz,
converting to spherical coordinates with f = F/8πµa2, a(r) = − a2/r4, and b(r) =
−3(1 − 5a2/3r2)/r2, and expressing the double inner product of disturbance fields
e1(r1) : e1(r2) in terms of Legendre polynomials Pn(x) eventually leads to

f −2eo (r1) : eo (r2) = 2a (r1) a (r2)
(
n1 · n2 + 1

3
P1 (x1) P1 (x1)

)
+ 2

3
a (r1) b (r2) (n1 · n2 (P0 (x2) + 2P2 (x2)) − P1 (x1) P1 (x2))

+ 2
3
a (r2) b (r1) (n1 · n2 (P0 (x1) + 2P2 (x1)) − P1 (x1) P1 (x2))

+ b (r1) b (r2)
(
n1 · n2P1 (x1) P1 (x2) − 1

3
P1 (x1) P1 (x2)

)
. (2.22)

Expanding the weighting functions, represented as an arbitrary function of two
vectors, yields

χ (r1) χ (r2) h (r12) = χ (r1) χ (r2) [g (r12) − 1] ≡ k (r1, r2) =

∞∑
n=0

Kn (r1, r2) Pn (n1 · n2),

(2.23)
with r1 = |r1| and n1 = r1/r1 and the expansion coefficients

Kn (r1, r2) =
2n + 1

2

∫ +1

−1

k (r1, r2)Pn (n1 · n2) d (n1 · n2). (2.24)

The total integral for the dissipation

I =

∫∫
k (r1, r2) e1 (r1) : e1 (r2) dr1 dr2 (2.25)

can be reorganized by setting r1 = ri n̂i , with dn̂i a differential element of solid angle,
and inserting the expansion for the distribution function to obtain

I =

∫ ∞

0

∫ ∞

0

∞∑
i=0

Ki (r1, r2) r2
2 dr2r

2
1 dr1. (2.26)

To evaluate the last pair of angular integrals over dn̂1 dn̂2, we apply the addition
theorem

Pn (n1 · n2) = Pn (cos θ1) Pn (cos θ2)

+ 2

n∑
m=1

(n − m)!

(n + m)!
P m


 (cos θ1) P m
n (cos θ2) cos (m (φ1 − φ2)), (2.27)
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and the Legendre polynomial representation of the angular components:

∞∑
i=0

Fi (r1, r2)

∫ ∫
Pi (n1 · n2) e1 (r1) : e1 (r2) dn1dn2

= f 2

∞∑

=0

Ki (r1, r2)

∫ ∫ [
Pi (cos θ1) Pi (cos θ2)

+ 2

i∑
m=1

(i − m)!

(i + m)!
P m

i (cos θ2) cos (m (φ1 − φ2))

]

×
{

2a (r1) a (r2)

[
n1 · n2 +

1

3
P1 (cos θ1) P1 (cos θ2)

]

+
2

3
a (r1) b (r2) [n1 · n2 (P0 (cos θ2) + 2P2 (cos θ2)) − P1 (cos θ1) P1 (cos θ2)]

+
2

3
b (r1) a (r2) [n1 · n2 (P0 (cos θ1) + 2P2 (cos θ1)) − P1 (cos θ1) P1 (cos θ2)]

+ b (r1) b (r2)

[
(n1 · n2)

2 P1 (cos θ1) P1 (cos θ2) − 1

3
P1 (cos θ1) P1 (cos θ2)

]}
dn1 dn2.

(2.28)

To evaluate Kn requires conversion of dn1 · n2 to dr12 by expressing the distance as
r2
12 = r1 · r1+ r2 · r2 −2r1 · r22 = r2

1 +r2
2 −2r1r2n1 · n so that n1 · n2 = (r2

1 + r2
2 − r2

12)/2r1r2

and d (n1 · n2) = −r12/r1r2 dr12. The limits of the integration follow as r12 = |r1 + r2|,
corresponding to n1 · n2 = − 1, and r12 = |r1 − r2|, corresponding to n1 · n2 = + 1.
Finally, the integral in terms of dr12 is

I =
f 2

60µ2

∫ ∞

0

χ (r1)

∫ ∞

0

χ (r2)

∫ r1+r2

|r1−r2|

r12

r1r2

h (r12)

×
{

6

r2
1 r

2
2

P1(�r2) + b (r1) b (r2) P3(�r2)

}
r2
1 r

2
2 dr1 dr2 dr12 (2.29)

with �r2 ≡ (r2
1 + r2

2 − r2
12)/2r1r2. The two-particle integral then can be simplified to a

scalar integral in one dimension over the pair correlation function:

I =
f 2

3µ2

[∫ ∞

2

sh (s) ds −
∫ 2

0

(
s2 − 1

4
s3

)
ds

]
=

f 2

9µ2

[
−5 + 3

∫ ∞

2

sh (s) ds

]
. (2.30)

The second integral, for 0 � s = r/a � 2, where h (x) = −1, accounts for the hard
sphere excluded volume.

With the value of the integral I , the two-point upper bound on sedimentation takes
the form

U/U0 � 1 − 5φ + 3φ

∫ ∞

2

sh (s) ds, (2.31)

with −5φ corresponding to the contribution from ‘backflow’ calculated by Batchelor
through renormalization of a non-convergent integral (Batchelor 1972). Here the same
result is reached through conservation of volume enforced by normalizing the trial
fields to zero mean in (2.18) and (2.20). Note that this upper bound corresponds to
UBD/Uo + φ2/5, so the approximation of Brady & Durlofsky (1.6) satisfies the upper
bound for all volume fractions and all interparticle potentials, a point that has not
been exploited.
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3. Pair correlation functions for model colloids
In colloidal suspensions, one encounters a broad range of interparticle potentials,

depending on the composition and size of the particles and the nature and
composition of the intervening fluid. Potentials vary from the simple repulsive or
adhesive contact of hard or sticky spheres through electrostatic repulsions that can
extend to separations of a micron. When the solvent and any solutes equilibrate
thermodynamically much faster than the particles, their effects can be lumped into
a potential of mean force that is employed as the interparticle potential. If not, the
dispersion must be treated as a multi-component mixture. Here we consider three
representative pair potentials to demonstrate the sensitivity to the microstructure
of the upper bound on the sedimentation velocity. The equilibrium pair correlation
function g(r), which follows from the potential, characterizes the microstructure of
the dispersion. In a disordered fluid phase, particles become uncorrelated at large
separations, so the distribution function asymptotically approaches unity.

Here we seek the pair distribution function for hard, charged and adhesive hard
spheres from infinite dilution to as high a volume fraction as possible. The total
correlation function h can be calculated through the Ornstein–Zernike equation
(Hansen & McDonald 1986),

h(r12) = c(r12) + n

∫
c(r13)h(r13) dr3, (3.1)

which defines the direct correlation function c(r). Applying a Fourier transform
produces

Ĥ (k) = Ĉ(k) + nĤ (k)Ĉ(k), (3.2)

where Ĥ and Ĉ are the Fourier transforms of h and c, respectively. This provides a
basis for calculating pair correlations in real space through closure approximations
for the direct correlation function. The Percus–Yevick (PY) approximation consists of

c (r) = g (r) [1 − exp(Φ(r)/kT )], (3.3)

while the hypernetted chain approximation follows from

c (r) = −Φ (r) /kT + h (r) − ln [h (r) + 1]. (3.4)

The modified hypernetted chain approximation adds a bridge function to the right-
hand side that provides an additional short-range repulsion adjusted to reproduce the
accurate equation of state for hard spheres. For charged spheres the separations are
simply rescaled with the effective hard-sphere diameter deff /2a > 1.

For hard spheres

Φ

kT
(s) =

{
∞ s < 2

0 2 < s
(3.5)

the PY solution for g(r) is available analytically (Baxter 1970) or through a numerical
fast Fourier transform of the simpler analytical static structure factor. Verlet & Weis’
(1972) (VW) correction to the PY solution provides a form that matches empirically
results from simulations. Both approaches are valid for the equilibrium liquid phase
from infinite dilution to φ = 0.494, beyond which a face-centred cubic crystal emerges
at φ = 0.545. However, a metastable fluid phase often persists until random close
packing at φ = 0.64.

Since both the PY and VW results will err near random close packing, we
also performed Monte Carlo (MC) simulations, adopting the general technique of
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Figure 3. Comparison of distribution functions from Percus–Yevick g(r) without (- - -) and
with (—) the VW correction with MC (· · · · · · · ·) results at φ = 0.60.

Metropolis sampling (Allen & Tildesley 1987) with several enhancements at the
highest densities. Initial configurations were generated by random sequential addition
followed by particle growth augmented by vector growth displacement (Clarke &
Wiley 1987) as implemented previously (Rintoul & Torquato 1996). To the latter
we added a damping factor to the amplitude of the move or half moves when the
full displacement generated an overlap. During the simulation, local bond order, as
indicative of face-centred cubic structure, was monitored through calculation of Q6

(Steinhardt et al. 1983; Rintoul & Torquato 1998),

Q6 =

(
4π

13

6∑
m=−6

∣∣Q̄6m

∣∣2)1/2

with Q̄6m =
1

nb

nb∑
i−1

Y6m (θ (r i), φ (r i)), (3.6)

where Ylm are the spherical harmonics, Nb =number of bonds, θ , φ and r i are
the bond angles and bond vector. Simulation boxes of 18 particle diameters
on a side contained 600–7500 particles, depending on the volume fraction. The
most meaningful measure of order proved to be Q6

√
Nb, which is 2 for a face-

centred cubic crystal, the equilibrium state for hard spheres at φ > 0.494. For our
simulations, 1 <Q6

√
Nb < 1.4 and changed little for simulations at 0.25 <φ < 0.625,

which indicated a fluid microstructure. Only at the very highest volume fraction
did this measure creep upward during the simulation (Gilleland 2004). Figure 3
demonstrates the correspondence before and after correction with MC results at the
extreme volume fraction of φ = 0.60. The split peaks most noticeable in MC data
indicate a tendency towards the face-centred cubic structure.

For spheres bearing Q charges, modelled by a Yukawa potential with a hard core
(Thies-Weesie et al. 1995),

Φ

kT
(s) = ∞H (2 − s) +


b

a

Q2 exp [−aκ (s − 2)]

(1 + aκ)2 s
, (3.7)

the Debye screening factor κ increases with volume fraction from that for the initial
solution κo as

(aκ)2 = (aκo)
2 +


b

a

3φ

1 − φ
Q, (3.8)

due to the volume occupied by particles and the counterions accompanying the particle
charge. Note that the potential is specified by three dimensionless parameters, a/λb
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Figure 4. Distribution functions for charged spheres with a/λb =12.6, Q = 75 and aκo = 5
for φ = 0.001–0.157.

with 
b = e2/4πεoεkT the Bjerrum length, Q the number of charges per particle, and
aκo = (4π
b

∑
z2

knk)
1/2 with zk and nk the valence and concentration of ions, in addition

to the volume fraction. Numerical solutions to the Ornstein–Zernicke equation with a
modified hypernetted chain closure via an existing computer code (Lionberger 1996)
produced pair distribution functions (figure 4) at a/lb =12.6 (a = 9 nm), Q =75,
aκo = 5 and the full range of volume fractions for which the code convergences. Note
the shift of the peak to smaller separations with increasing concentration due to
crowding and increased screening. Figure 5 for aκo = 5 and Q =30–900 demonstrates
the dependence of aκ , the effective hard-sphere diameter deff /2a (defined as the
position of the first peak in g(r)) and the effective volume fraction φeff = φ(deff /2a)3

on φ. The increase in the ionic strength and aκ with volume fraction is quite
significant, decreasing deff /2a by as much as 20 % at the highest charge. Nonetheless,
with φ � 0.30 and aκ � 5 the effective volume fraction rises as high as 0.64 at the
highest charge, thereby reaching well into the metastable fluid regime.

For adhesive hard spheres (Baxter 1968) with

Φ

kT
(s) = − ln

δ (s − 2)

6τ
s � 2, (3.9)

the singular attraction that increases with 1/τ is defined such that the second virial
coefficient in the osmotic pressure takes the form A2 = 4 − 1/τ . Here we obtained the
pair distribution function through an inverse fast Fourier transform of a closed-form
solution for the static structure factor in the PY approximation (Regnaut & Ravey
1989),

S−1 (q̄) =

{
1 − 3φ

2q̄3

[
2A (2q̄ cos 2q̄ − sin 2q̄) + Bq̄ (cos 2q̄ − 1) +

λq̄2

3
sin 2q̄

]}2

+

{
3φ

2q̄3

[
2A(2q̄ sin 2q̄ + cos 2q̄ − 1 − 2q̄2) + Bq̄ (sin 2q̄ − 2q̄)

+
λq̄2

3
(1 − cos 2q̄)

]}2

A = [1 + 2φ − λφ(1 − φ)]/2(1 − φ)2, B = −[3φ − λφ(1 − φ)]/(1 − φ)2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)
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Figure 5. (a) Dimensionless screening length aκ , (b) effective hard-sphere diameter deff /2a,
(c) and effective volume fraction φeff , for Yukawa potential with a/λb = 12.6, aκ =5, Q =
30–900.

with

λ =
6

φ(1 − φ)

{
φ + (1 − φ)τ ±

[
(φ + (1 − φ)τ )2 − φ

3

(
1 +

1

2
φ

)]1/2
}

, (3.11)

and q̄ = aq , the wavenumber scaled on the particle radius. This strategy provides
reasonable results (figure 6) for φ � 0.50, which agree with those from Chiew & Glandt
(1983). Note the delta function at contact with lims→2 g (s) = λ/12δ (s − 2), which
requires careful treatment in the inversion, the discontinuity at r/2a =2, indicating
strong binding to the second neighbour shell, and the discontinuity in slope at
r/2a =4.

The phase diagram for adhesive hard spheres (Rosenbaum et al. 1996) in figure 7
identifies an equilibrium fluid–solid transition, the metastable binodal with an
associated spinodal, and the dynamic percolation and gelation boundaries (Seaton
& Glandt 1987; Grant & Russel 1993). The pair distribution functions in figure 6
correspond to points in the non-percolated equilibrium fluid (φ =0.10 and 0.29,
τ = 0.35) and the non-percolated metastable fluid (φ = 0.10 and 0.11), whereas the full
calculations sampled (φ, τ ) = (0–0.40, 0.07–1.0), except the portion that lies within the
spinodal where the theory fails. This includes points beyond the gelation boundary
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Figure 7. Phase diagram for adhesive hard spheres (Rosenbaum et al. 1996) indicating the
fluid–solid transition ((- - -), the spinodal (�), the meta-stable binodal (– –) and the dynamic
percolation transition (Chiew & Glandt 1983; Seaton & Glandt 1987) ...., �, ×, �), and the gel
line (+ +) from experiments (Grant & Russel 1993) (with permission).

as defined by the experimental points. The equilibrium fluid distribution function
varies smoothly across the percolation transition and the gel transition, exhibiting no
evidence of the dynamic long-range connectivity associated with the former or the
localization responsible for the latter.

4. Bounds on the sedimentation velocity
As shown in the derivation of the upper bound, the rate of sedimentation depends

upon the structure of the suspension through the first moment of the pair correlation
function h(r) = g(r) − 1. In this section, the requisite integrations are performed to
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indicating the average of two extrema, which coincides with the convergent I1(∞).

determine the bounds for monodisperse dispersions of hard, charged and adhesive
hard spheres as a function of volume fraction, which are then compared with data
for model dispersions where available in the literature.

4.1. Hard spheres

The pair distribution function as depicted in figure 3 is zero within the excluded
volume 0 < r/2a < 1, which includes the physical volume of the sphere plus a shell of
equal thickness into which a second hard sphere cannot penetrate. The probability
jumps discontinuously at contact, generally to a value greater than unity due to
interactions of the pair with other particles in a crowded dispersion. The nearest
neighbour excludes other spheres, in turn producing a depleted layer farther out that
generates the first of a series of decaying oscillations. These persist to large separations
at high volume fractions, but the probability decays to unity at long distances, since
the bulk dispersion is disordered.

Evaluation of the integral of the first moment, i.e.

I1(r/2a) =

∫ r/2a

1

sh(s) ds, (4.1)

acquires much of its ultimate value within the first shell but at high concentrations
takes many oscillations to settle into the final, asymptotic value, as illustrated in
figure 8. Fortunately, the midpoints of the oscillations become predictive of the
final asymptote well before the oscillations decay completely as illustrated in the
figure. One striking observation (Gilleland 2004) is that distribution functions from
Percus–Yevick, Percus–Yevick corrected by Verlet–Weis, and MC simulations produce
essentially the same value for I1(∞), despite significant differences in the contact
value and decay rate. Figure 9 illustrates this for the latter two distributions. A
small discrepancy between Verlet–Weis and Monte Carlo for φ > 0.55, i.e. within the
metastable fluid region, may arise from the different shape in the second neighbour
shell, where the MC results exhibit a stronger split peak with less area under the
curve. Nonetheless, the difference falls within the uncertainty of the MC simulations
and the extrapolation of the VW correction.
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for simulations.

The results for the upper bound on U/Uo from both distributions are compared
in figure 10 with published data from several different hard-sphere dispersions:
polystyrene/water (Buscall et al. 1982), silica/cyclohexane (de Kruif et al. 1987),
PMMA/decalin (Paulin & Ackerson 1990) and silica/ethylene glycol (Xue et al. 1992).
The fact that I1(∞) > 0 for hard spheres reflects the excess of nearest neighbours, which
compensates in part for the −5φ retardation of the sedimentation velocity in (2.31)
due to backflow in the excluded shell. Thus, the upper bound lies well above the
dilute limit of U/Uo =1−6.55φ. The graph confirms that the available experimental
data are bounded from above by the upper bounds derived here, fairly tightly at the
dilute end but quite loosely at the concentrated end.

The line correlating the data in figure 10,

U/Uo = (1 − φ)5.4, (4.2)

appears in figure 11 for comparison with other theoretical results. Note that the new
upper bounds are much closer to the data than Luke’s (1992, 1993) earlier version.
The theory of Brady & Durlofsky (1988) cited above falls closer to the data beyond
the dilute limit where the two coincide according to (1.6). Lastly, the figure includes
an upper bound calculated with additional terms in the velocity fields that yield no
force or torque on the particles but reduce the dissipation (Beasley & Torquato 1989).
These do in fact bring the bound closer to the data, but only by a small amount for
φ > 0.40.

In conclusion, our evaluation of an upper bound on sedimentation velocity for hard
spheres is sensitive to the structure of the equilibrium pair correlation function, but
not particularly sensitive to the details. This provides a sound basis for investigating
the effect of other interparticle potentials, which are known to affect profoundly the
sedimentation velocity.

4.2. Charged spheres

For charged spheres the pair distribution function resembles that of hard spheres but
with a larger excluded volume due to the electrostatic repulsion, as reflected in the
larger effective diameter deff > 2a and larger effective volume fraction φeff >φ. This
additional excluded volume translates into a quite negative first moment of the pair
distribution I1(∞) for φ < 0.15, as illustrated in figure 12 for a/λb = 12.6 (a = 9 nm),
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Figure 10. Upper bound on sedimentation velocity for hard spheres compared with data
(Jansen et al. 1986; Buscall et al. 1982; Paulin & Ackerson 1990; Xue et al. 1992) and the
resulting correlation (· · · · ·).
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Figure 11. Normalized sedimentation velocity for hard spheres as a function of volume
fraction from Verlet-Weis and Monte Carlo distributions compared with the correlation,
theory (Brady & Durlofsky 1988), and Luke’s (1993) upper bound.

aκo = 5 and Q =30–900. Note that the much larger excluded volume masks the small
amplitude oscillations evident for hard spheres. At higher volume fractions, many-
body interactions force the particles closer together and I1(∞) asymptotes to that for
hard spheres or Q =0.

Substitution of the set of I1(∞) into (2.31) produces upper bounds in figure 13 that
tend towards the bound for hard spheres (-�-) at high volume fractions and lower
charges and approach the sedimentation velocity expected for a face-centred cubic
array (-�-) for larger charge densities and volume fractions. Note that the calculation
of the face-centred cubic array accounts fully for hydrodynamic interactions, so our
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Figure 13. Sedimentation velocity for charged spheres as a function of volume fraction for
Q =30–900 at aκo = 5 and a/λb =12.6 compared with hard spheres (�) and a face-centred
cubic array (�), which might be considered Q = ∞.

result should be an upper bound for that limit even though the structure does not
approach the face-centred cubic. The second plot of results in figure 14 reinforces
this with bounds for a/λb = 12.6, Q =100 and aκo =1–25. Note that the curves
for aκo = 1 and 2 merge with the face-centred cubic curve as the effective volume
fraction becomes volume-filling. In both figures the uppermost bound strays slightly
above the hard-sphere limits, probably reflecting inconsistencies in the thermodynamic
approximations for the pair distribution functions.

Figure 15 compares the bounds with sedimentation velocities measured by Klein
and coworkers (Thies-Weesie et al. 1995) for silica spheres (a =386 nm) in ethanol at a
range of ionic strengths corresponding to aκo = 0–19, based on the added electrolyte.
Given the considerable difference in particles size from our calculations, the only
feasible comparison is at aκo = 5 for their experiment with Q =350 and a = 386 nm
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Figure 14. Sedimentation velocity for charged spheres as a function of volume fraction for
a/λb = 12.6 and Q = 100 at aκo = 1–25 compared with hard spheres (�) and a face-centred
cubic array (�).
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Figure 15. Data from Thies–Weesie et al. (1995) for silica dispersions in ethanol with aκo = 0
(�), 5 (�), 10 (�) and 19 (�, �) with a/λb = 541 and Q = 350 (assumed), compared with upper
bounds for a/λb = 12.6, aκo = 5 and Q = ∞ (—), 50 (- - -), 0 ( ) from bottom to top.

and our bound for Q =50 and a = 9 nm. In this case, the prefactor in the Yukawa
potential (3.7) for our upper bound (λb/a)Q2 = (0.714/9) × 502 = 198 is close to that
for their experiment (0.714/386) × 3502 = 227, though the sensitivity of the ionic
strength to volume fraction (3.8) differs somewhat due the dependence on (λb/a)Q.
The bound is almost coincident with the data, providing some support for the theory.

4.3. Adhesive hard spheres

The graphs in figure 16 reveal the cumulative integral I1 for adhesive hard spheres to
be positive with a step change at contact due to clustering produced by the singular
attraction and a steady increase with separation for several additional shells before
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Figure 16. Calculations of I1 from the PY distribution for adhesive hard spheres compared
to results from Chiew & Glandt (1983) for three sets of conditions.
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Figure 17. The upper bound on the sedimentation velocity for adhesive hard spheres for
τ = 0.07, 0.09, 0.10, 0.11, 0.12, 0.15, 0.25, 1.0 and 100 (hard spheres) from top to bottom with
the percolation transition noted (�).

converging. The magnitude of the step function approximates the integral over the
delta function and is proportional to 1/τ . The positive sign for I1 indicates that
clustering in the accessible volume, i.e. r > 2a, dominates any short-range depletion.
Though not shown, I1 increases with volume fraction from infinite dilution to about
φ = 0.15 and then decreases monotonically as packing considerations disrupt the
delicate network set up by the adhesive contacts (Gilleland 2004). The integral
eventually converges with the positive hard-sphere limit as the structure becomes
homogeneous at higher concentrations.

The corresponding results for the upper bound on sedimentation of adhesive
spheres presented in figure 17 for τ = 0.07–100 are bounded from below by the
hard-sphere result corresponding to τ = ∞. Gaps in the curves for τ =0.07 and 0.09
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Figure 18. Experimental data reproduced from Bickert & Stahl (1996) for adhesive hard
spheres of unknown τ .

reflect inaccessible points within the spinodal, where the PY theory breaks down,
and the circles indicate the dynamic percolation transition (Seaton & Glandt 1987).
The bound increases dramatically with the adhesive strength at intermediate volume
fractions with a maximum in the vicinity of the critical point. Beyond that the
increasingly homogeneous packing brings the bound down, presumably to eventually
converge with that for hard spheres.

While rapid sedimentation for flocculated dispersions has been known and exploited
technologically for many decades, quantitative measurements of rates over a full range
of volume fraction are rare. One of the few examples, albeit without a measure of
the strength of the attraction, is depicted in figure 18 (Bickert & Stahl 1996). Note
the rapid increase at low concentrations, suggesting a dilute limit of U/Uo = 1 +100φ

and, therefore, 1/τ ∼ 50. The shape of the curve departs significantly from the upper
bounds in figure 17 for equilibrium, albeit metastable, fluids. This may reflect a
consequence of the gel transition, which imposes a solid-like structure that resists
gravity and slows sedimentation dramatically (Buscall & White 1987). This, of course,
falls outside of the scope of the upper bounds calculated here and, therefore, limits
their applicability.

5. Conclusions
The upper bounds on the sedimentation velocity presented here illustrate both the

sensitivity of this transport property to the thermodynamic state of the dispersion and
the power of bounds based on relatively crude approximations to the hydrodynamics.
Of course, the sedimentation velocity, like the mutual diffusion coefficient, is most
sensitive to collective motion of nearest neighbours, unlike the shear viscosity and self-
diffusion coefficient that require relative motion. The bound constructed here clearly
surpasses that published earlier by Luke but is far from the most accurate that might
be constructed. To tighten the bound, however, would require tedious evaluation
of higher-dimension integrals and higher-order correlation functions only accessible
through simulations. In the meantime, the bound supports the application of the
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formula from Brady & Durlofsky (1988) for dispersions beyond hard spheres, with
either attractive or longer range repulsive interactions, thereby providing confidence
in estimating sedimentation velocities for systems that have yet to attract the attention
of Stokesian dynamics or other simulations.
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