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We derive rigorous upper and lower bounds on the bulk and shear moduli of suspensions of 
spheres of variable penetrability distributed throughout a matrix (or fluid), for all possible 
phase property values, through second order in the sphere volume fraction ¢2' The bounds, at 
the very least, capture the salient qualitative features that come into play when particles 
overlap, and, in some instances, are shown to be quantitatively very sharp. Among other 
results, we use these bounds to obtain good estimates of the bulk and expansion viscosities of 
an incompressible fluid containing spherical air bubbles and thus extend the corresponding 
results of Taylor in which pair interactions were neglected. 

I. INTRODUCTION 

In previous articles l
-

3 (henceforth denoted by I, II, and 
III, respectively), we studied the problem of determining the 
effective electrical conductivity (and mathematically analo­
gous properties) of suspensions of spheres. This work is con­
cerned with the prediction of mechanical properties (e.g., 
elastic moduli and viscosities) of suspensions of spheres at 
nondilute concentration by considering interactions 
between pairs of particles. Specifically, for some general ef­
fective property K* we seek to study the following relation: 

K* 2 - = 1 + al ¢2 + a2¢v (1) 
KI 

where K; and ¢; is the property value and volume fraction 
associated with the ith phase (i = 1,2), respectively. Here 
we take phase 1 to be the matrix (which may either be an 
elastic material or a fluid) and phase 2 to be the included or 
particle phase. 

The first-order coefficient a l depends upon the individ­
ual phase property values and the solution of the boundary­
value problem for an isolated sphere in an infinite matrix (or 
fluid), and hence does not contain information about the 
local structure of the medium. The second-order coefficient 
a2 not only involves the same information contained in a 1 but 
depends upon the solution to the two-sphere boundary-value 
problem and the low-density limit of the radial (or pair) 
distribution function go (r). 

The analysis of mechanical properties of suspensions 
originated with Einstein,4 who calculated the effective shear 
viscosity of a very dilute suspension of equisized rigid 
spheres in an incompressible fluid and found that a l = 5/2 
for such a system. By mathematical analogy, a l = 5/2 for 
the problem of determining the shear modulus of a compos­
ite consisting of rigid spheres in an incompressible matrix. 
This analogy fails to hold for the second-order coefficient a2 

since the distributions of the particles in the two cases are 
different. In the case of a fluid suspension, the bulk motion 
will strongly affect go(r), whereas in the elasticity problem 
the infinitesimal applied strain has negligible effect on go (r). 

In recent years, a large number of papers have dealt with 
the calculation ofthe second-order coefficient a2 for various 
mechanical properties of suspensions of impenetrable 
spheres in which the average coordination number (i.e., 
average number of spheres physically touching each sphere) 
is implicitly taken to be zero.5

-
9 Although exact results for a2 

of such systems have been obtained for the effective bulk 
modulus for all phase property values, analogous results for 
the effective shear modulus (due to the difficulty of solving 
the interaction problem for two elastic spheres in a strain 
field) have been presented only for the limiting cases of rigid 
particles and cavities.9 

Of particular interest is the extent to which the connec­
tedness of pairs of inclusions influences a2 and hence K*. 

Connectedness shall be introduced by allowing the spheres 
to be penetrable to one another in varying degrees. Such 
sphere distributions may serve as useful models of certain 
polymer solutions, porous media, sintered materials, and 
composite materials: media characterized by a nonzero aver­
age coordination number. To our knowledge, the effect of 
interparticle overlap on a2 for the elasticity problem has 
heretofore not been investigated. This is due to the fact that it 
is a nontrivial task to exactly obtain the solution to the 
boundary-value problem for two overlapping spheres. Short 
offinding this exact solution, the next best means of studying 
and estimating a2 for penetrable spheres, for all possible 
phase property values, is to derive bounds on a2, as shown 
below. 

The purpose of this note is to study the effect ofinterpar­
tide overlap on a2 for various mechanical properties of sus­
pensions. This is accomplished by first obtaining bounds on 
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a2 for the bulk and shear moduli of a suspension of spheres 
distributed with arbitrary degree of penetrability. The 
bounds on the second-order coefficient, at the very least, 
capture the essential qualitative features that come into play 
when particles overlap, for a wide range of phase property 
values. In certain instances, the bounds on the elastic moduli 
are shown to be quantitatively very sharp. From these re­
sults, sharp bounds on the bulk viscosity and expansion vis­
cosity are derived for an incompressible fluid containing air 
bubbles. 

II. LOW-DENSITY BOUNDS ON THE ELASTIC MODULI 

Third-order bounds on the effective conductivity of a 
dispersion of spheres have been shown to yield useful esti­
mates of this property through second order in the sphere 
volume fraction tP2.2,3 By third-order bounds we generally 
mean those bounds which are exact through third order in 
the difference of the phase property values (i.e., K 2-K I ). Ber­
an and Molyneux (BM}lO and McCoyll have derived such 
bounds for the effective bulk modulus K * and shear modulus 
G * of composites, respectively. 

The BM bounds on K * are given by 

K!<K*<.K'r!, (2) 

where 

K* = [(K) _ 3tPI!2(K2 _KI}2] (3) 
u 3(K)+4(G)t ' 

K* = [(11K) _ 4,p14>2~lIK2 -lIKI}2] -I (4) 
L 4(lIK)+3(lIG)t' 

and where I is the integral operator defined by 

(S) 

(6) 

I [ ] = lim lim iL 

dr iL 

ds II dJ.t[ ]P2( p,). (7) 
L~", A-O A r A S -I 

Here S3 (r,s, p,) is the three-point probability function which 
gives the probability of finding the vertices of a triangle, with 
sides oflength rand s and included angle cos - 1 ( p, ), in phase 
1; P2 ( p,) is the Legendre polynomial of order two. For any 
arbitrary property K, (K) = KltPl + K2tP2' (K) = KltP2 + K2tPI' 
and (K)t = Kltl + K~2' To summarize, the BM bounds on 
K * depend not only upon KIJ K2, GI, G2, and tP2' but on a 
microstructural parameter tl ( = 1 - t2) which is an inte­
gral over the three-point probability function. 

The McCoy bounds on G * are given by 

G!<G*<G'r!, 
where 

(8) 

(9) 

and 

The quantities () and E depend not only uponKI' K2, GI, G2, 

tP2' t2' but on another three-point parameter defined by 

(11) 

112 = 1 - 111' (12) 

where 

J [ ] = lim lim i L 

dr rL 

ds II d}L[ ]P4 ( p,}. (13) 
L~", 4-0 A r J4 S -I 

Here P4 ( p,) is the Legendre polynomial of order four. The 
parameters ti and 11 i lie in the closed interval [0,1]. Both () 
and E are linear in ti and 11 i and are given explicitly in Ref. 
12. 

The bounds (2) and (8) actually represent the simpli­
fied forms of the BM and McCoy bounds obtained by Mil­
ton. 12 These bounds improve upon the corresponding Ha­
shin-Shtrikmanl3 and Walpolel4 second-order bounds on 
K * and G * and hence do not include three-point information 
(i.e .• ti and 11i)' 

For suspensions of spheres, the BM and McCoy bounds 
expanded through second order in tP2 are given by 

k
l

= (a-l)(4YI+3), 
4YI + 3a 

S( {3 - 1)(4YI + 3} 
gl = 3(2{3 + 3} + 4YI(3{3 + 2} 

kf= 3(a-l}2[4YI+3+4eIYI({3-1)], 
(4YI + 3a}2 

kf= 3(a-1)2[{3(4YI+3)+4eIYI({3-1)], 
{3(4YI + 3a)2 

(14) 

(1S) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

u 6( {3 - 1)2{S(2YI + 1)(4YI + 3) + Se lyd3YI( {3 - 1) + 2(a +{3 - 2)] + II( {3 - I)(YI + 3)2} 
g2 = [3(2{3 + 3) + 4YI (3{3 + 2) F ' (22) 

and 

gf _ 6( {3-1)2{S(2YI + 1)(4YI + 3} + SeIYI[3YI(1-lI{3) - 2(lIa + 1I{3- 2)] +/1(1-l1{3)(Yl + 3)2} 
2- . [3(2{3+3)+4YI(3{3+2)]2 . 

(23) 
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Assuming that the parameters ~2 and 7]2 can be expanded in 
powers of rfJ2' the coefficients el [appearing in Eqs. (20)­
(23)] and!1 [appearing in Eqs. (22) and (23)] are defined 
through the relations 

~2 = el rfJ2 + O(rfJD, (24) 

(25) 

As described below, the coefficients el and!1 depend upon 
the zero-density limit of the radial distribution function 
goer). InEqs. (18)-(23), 

G· 
y. =-' (i= 1,2). 

, Ki 

Only three of these ratios are independent since ay 2 = {3y I' 
Moreover, because Yi = (3 - 6vi )/(2Vi + 2), where Vi is 
Poisson's ratio for the ith phase (0<vi <0.5), then 
O<Yi<1.5· 

It is important to note that the low-density bounds on 
K * [(14) and (15)] and on G * [Eqs. (16) and (17)] are 
exact through first order in rfJ2' Hence, the actual second­
order coefficients k2 andg2 are bounded by kt<k2<k f and 
rl<g2<gf. 

Consider the computation of k t, k f, rl, and gf for par­
tially penetrable spheres in the permeable-sphere (PS) mod­
el. 16 In the PS model spheres of radius R are assumed to be 
noninteracting when nonintersecting (i.e., when r> 2R, 
where r is the distance between sphere centers), with prob­
ability of intersecting given by a radial distribution function 
g(r), that is, 1 -,1.,0<,1.<1, independent ofr, when r<2R. 
Therefore, A. = 0 and A. = 1 correspond to the extreme limits 
of fully penetrable and totally impenetrable spheres, respec­
tively. In order to calculate the bounds on the second-order 
coefficients k2 and g2 as a function of the impenetrability 
parameter A., we must evaluate the coefficients el and!1 de­
fined by Eqs. (24) and (25). Such a calculation involves the 
use of the low-density expansion of the three-point matrix 
probability function S3 in conjunction with Eqs. (5)-(7) 
and Eqs. (11)-(13). The integral el was already computed 
in II for the PS model using a spherical-harmonics expansion 
technique. 17 In light of this we merely present the final re­
sults: 

el = 0.210 68 + 0.350 78(1 -A.), 

iJ = 0.482 74 + 0.264 07( 1 - A.). 

(26) 

(27) 

Equation (27) for!1 in the PS model has heretofore not been 
given. For the special case of totally impenetrable spheres 
(A. = 1)'/1 has been evaluated analytically elsewhere. 18 The 
first terms in both Eqs. (26) and (27) give the contributions 
to el and!I' respectively, for a reference system of totally 
impenetrable spheres which possesses a radial distribution 
function, which in the zero-density limit, is equal to zero for 
r < 2R and unity otherwise. The second terms in Eqs. (26) 
and (27), therefore, give the contributions to el and!I' re­
spectively, in excess of the reference system value, due to 
interparticle overlap (see I-III). 

Interestingly, for the case of fully penetrable spheres 
(A. = 0), the linear expressions (24) and (25) provide re­
markably good approximations of the exact ~2 and 7]2' re­
spectively, over the whole range of the sphere volume frac-

tion. For example, Table I compares Eq. (25) for A. = 0 
(with!1 = 0.74681) as a function of rfJ2 with the exact eva­
luation of 7]2 for the entire range of rfJ2 obtained by Torquato, 
Stell, and Beasley.19 It is seen that ~2 and 7]2 for A. = 0 are 
essentially determined by the zero-density limit of the radial 
distribution function goer). The reason for this is that fully 
penetrable spheres, because of the absence of exclusion vol­
ume effects, are characterized by a relatively high degree of 
"randomness. ,,20 

For cases in which the phase properties are not very 
different (e.g., I <{3 < 10), the upper and lower bounds on 
k2 and g2 are generally sufficiently close to one another to 
provide good estimates of the second-order coefficients. As 
the difference between the phase properties increases, the 
bounds, as is well known, diverge from one another. This, 
however, does not mean that the bounds become useless for 
such cases. For reasons similar to these given in II and III, 
the lower bounds k t and rl will provide an estimate of k2 
and g2' respectively, for the case of a suspension of spheres in 
a weaker matrix. If the converse is true, the upper bounds k f 
and gf yield estimates of the second-order coefficients. 

In Fig. 1 we plot the lower bound k t for a > 1 and the 
upper bound k f for a < 1, for A. = 0, 0.5, and 1. Here 
Y I = Y 2 = 0.5 and hence a = {3. Figure 2 gives the analogous 
curves for the second-order coefficient associated with the 
shear modulus. It is seen that increasing the degree of inter­
particle overlap (decreasing the impenetr~bility parameter 
A.), for a = {3 > 1, increases the value of k tor rl. It is ex­
pected that the actual second-order coefficients will behave 
in a similar fashion since the stiffer material forms a "more 
continous" phase as A. -+ O. Similarly, decreasing the impen­
etrability parameter A., for a = {3 < 1, decreases the value of 
k for gf. Again, this is not surprising since the weaker mate­
rial here is the one that forms the more continuous phase. 

III. INCOMPRESSIBLE MATRIX 

A. Spherical cavities or bubbles 

Here we compute the upper bounds K 1; [Eq. (14)] for 
spherical but penetrable cavities (K2 = G2 = 0) in an in­
compressible matrix (KI = oo,GI finite) for the PS model. 
From this calculation we obtain corresponding results for 
the bulk and expansion viscosities of an incompressible fluid 
containing air bubbles. 

For this case (as noted by Chen and Acrivos9), it is 
useful to first rewrite Eq. (14) as follows: 

TABLE I. Comparison of Eq. (25) for A. = 0 (with I, = 0.746 81) as a 
function of t/J2 with the exact evaluation of 1/2 for all t/J2 obtained in Ref. 19. 

0.1 
0.3 
0.5 
0.7 
0.9 

1/2 
[Eq. (25) with A. = 0] 

0.075 
0.224 
0.373 
0.523 
0.672 

1/2 
[Exact result for A. = 0] 

0.075 
0.222 
0.367 
0.512 
0.658 
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--- 0.5 

k 
2 

y=y=O.5 
1 2 
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-3 -2 -1 o 
log ex. 

1 2 3 

FIG. 1. Upper bound k f [Eq. (20)] for a < I and lower bound kf [Eq. 
(21) 1 for a> I in the PS model forA = 0, 0.5, and 1. Here r. = r2 = 0.5 
and hence a = p. 

In the limit as K ..... O and r ..... O, we find 

K* _ [ 3 '" 
u - 4G. + 3K

2 
",2 

+ 12Gd 1 - e1 (,8 - 1)] tP2 + O(tPJ)J -.. (29) 
(4G. + 3K2 )2 2 2 

In the special case of spherical cavities in an incompressible 
matrix, Eq. (29) yields 

K *<X 1, = 4G. _..±. (1 + e. )G. + O(tP2) 
3tP2 3 

= 4G. _..±. [1.210 68 + 0.350 78(1 - A)] G. 
3tP2 3 

+ O(tP2)' (30) 

where we have used Eq. (26). Since the effective Lame con­
stant A! = K* - 2G */3 and G * = G. + O(tP2)' then we 
also have that 

A······· 0 
--- 0.5 
-1 4 

3 

-3 -2 -1 0 1 
log f3 

y=y=O.5 
1 til 

ex.=p 

2 3 

FIG. 2. Upper bound gf [Eq. (22)] for p < I and lower bound gf [Eq. 
(23) 1 for p> 1 in the PS model for A = 0, 0.5, and 1. Here r. = r2 = 0.5 
and hence a = p. 

A!"'; 4G. - (2 +..±. e. )G1 + O(tP2) 
3tP2 3 

= 4G1 
_ [2.28091 +0.46771(1-A)]G. +O(tP2)' 

3tP2 
(31) 

The constant term in Eq. (31), which estimates two sphere 
interactions, is equal to 2.748 61 G. and 2.280 91G. for the 
case of fully penetrable (A = 0) and totally impenetrable 
(A = 1) cavities, respectively. Equation (31) indicates that 
as the degree of overlap increases, the effective Lame con­
stant decreases, as expected. For the special case of totally 
impenetrable spheres, Chen and Acrivos9 exactly found 

A! = 4G. - 2.399G. + O(tP2)' (32) 
3tP2 

Since the bound (31) is very sharp in this instance, it is ex­
pected that it remains sharp for all A. 

Interestingly, a composite consisting of spherical cav­
ities in an incompressible matrix is equivalent to an incom­
pressible fluid containing air bubbles. For a Newtonian flu­
id, the relationship between the stress tensor a ij and rate of 
strain tensor €;} is given by 

aij = - p8ij + 1] €kk8ij + 2p,€ij' 

where p is the pressure, 1] is the expansion viscosity (or sec­
ond coefficient of viscosity), and p is the shear viscosity. 
Comparison oftbis expression to the linear stress-strain re­
lation of elasticity reveals that the Lame constant A L is anal­
ogous to 1], G is analogous to p, and the analog of K is the 
bulk viscosity; = 1] + 2p,/3. For this case, Taylorl found 
the expansion viscosity to be given by 

(33) 

Therefore, Eq. (31) extends Taylor's results by taking into 
account pair interactions between spherical bubbles that 
penetrate one another in varying degrees. 

Penetrable spherical bubbles do not exist in any stable 
equilibrium sense. Surface tension effects would tend to 
smooth out the sharp comers where the two spheres inter­
sect. However, as demonstrated in II and III, the field in­
duced within two overlapping spheres of radius R (whose 
centers are separated by a distance x) is approximately the 
same as the field introduced in a single ellipsoid having a 
major axis of length R + x/2 and two minor axes of length 
R. Therefore, for A < 1, Eq. (31) is expected to yield useful 
estimates of the expansion viscosity of an incompressible flu­
id containing a mixture of spherical and ellipsoidal bubbles. 

B. Rigid spherical particles 

Consider the calculation of the lower bound G! [Eq. 
( 17)] for rigid but penetrable spherical particles ( {3 = 00) 

in an incompressible matrix (K. = 00, G. finite).22 In this 
limit, Eq. (17) becomes 

G! 5 (5 3 ) 2 - = 1 + - tP2 + - + -II tP2' 
G1 2 2 2 

(34) 

Combination ofEqs. (27) and (34) gives, in the PS model, 
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G * ;;. 1 + .2.- <P2 + [3.22411 + 0.396 11 (1 - A) ]<p~. (35) 
G1 2 

Bound (35) gives the exact first-order coefficient calculated 
by Einstein.4 This equation hence extends Einstein's result 
for the elastic problem of rigid but penetrable spheres in an 
incompressible matrix by approximately accounting for pair 
interactions. In the extreme limits of fully penetrable and 
totally impenetrable spheres, the second-order coefficient is 
equal to 3.62022 and 3.224 11, respectively. This supports 
our intuition that increasing the penetrability of rigid parti­
cles increases the effective shear modulus at the same sphere 
volume fraction. For rigid but totally impenetrable spheres 
in an incompressible matrix, Chen and Acrivos9 exactly pre­
dict the second-order coefficient to be 5.01 (with a possible 
error in the third digit). The agreement between the bound 
(35) and the exact result9 for G * in this case is clearly not as 
good as the agreement between the bound (31) and the exact 
result9 for the effective Lame constant of cavities in an in­
compressible matrix. Nonetheless, Eq. (35) captures the sa­
lient features that come into play when rigid particles22 over­
lap. For reasons described in the Introduction, the analogy 
between elasticity and fluid mechanics does not hold for Eq. 
(35). 
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