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The microstructure of a two-phase random medium can be characterized by a set of general n -point 
probability functions, which give the probability of finding a certain subset of n -points in the matrix phase 
and the remainder in the particle phase. A new expression for these n -point functions is derived in terms of 
the n -point matrix probability functions which give the probability of finding all n points in the matrix phase. 
Certain bounds and limiting values of the S. follow: the geometrical interpretation of the S. and their 
relationship with n -point correlation functions associated with fluctuating bulk properties is also noted. For a 
bed or suspension of spheres in a uniform matrix we derive a new hierarchy of equations. giving the S. in 
terms of the s-body distribution functions p, associated with a statistically inhomogeneous distribution PN of 
spheres in the matrix, generalizing expressions of Weissberg and Prager for S 2 and S 3' It is noted that 
canonical ensemble of mutually impenetrable spheres and the associated set of p, define, in the limit of an 
unbounded system, a statistically homogeneous and isotropic medium, as does (trivially) a canonical ensemble 
of mutually penetrable spheres. 

I. INTRODUCTION 

The determination of the relation between the macro­
scopic or bulk properties of a material to its microscop­
ic structure is the goal of statistical mechanics. Most 
of the effort directed toward this goal has been for cases 
such as those found in liquid-state theory or kinetic the-
0ry' where the term microscopic structure refers to the 
geometrical arrangement and motion of individual mole­
cules. In other important instances, however, the term 
microscopic structure can refer to the geometrical ar­
rangement and local properties on an intermediate 
length scale which is much larger than the molecular 
length scale but still much smaller than the dimensions 
of the bulk material sample. The types of systems of­
ten referred to as "heterogeneous media," "composite 
materials," and "multiphase flow systems" typically 
fall under this latter category. 

We shall examine those media composed of two phases 
which are separately homogeneous. One of the phases 
will be in the form of discrete inclusions or particles 
which are distributed throughout the other phase, a 
continuously connected matrix (which may either be flUid, 
solid, or void) according to some probability density 
function. We use the general term "two-phase random 
media" to refer to such systems. Our goal, ultimately, 
is to relate the bulk or effective properties of a two­
phase random medium, such as, e. g., the dielectric 
constant, rigidity and bulk moduli, and viscosity, to its 
microscopic structure. 

Since the well-known calculations of the effective elec­
trical conductivity and viscosity of a dilute suspension 
of spherical particles obtained by Maxwell1 and Einstein,2 
respectively, a great deal of effort has been expended on 
the extension of these, and analogous results, toparticles 
of more general shape and to higher concentrations. 3 

The former extension, though far from trivial, has 

proved to be a far more tractable problem than the lat­
ter, upon which progress has been impeded by a lack 
of full understanding of the relationships among various 
higher-order statistical functions as well as a means 
to accurately evaluate them. In particular, the set of 
probabilities we term n-point matrix probability func­
tions' which gives the probability of finding n-points in 
the matrix phase, arise quite naturally in the study of 
transport in two-phase random media4•5 but because 
of a lack of reliable assessment of the 2 -point and 3-
point matrix functions for most useful models, progress 
continues to be hampered. 6 The main aim of this paper 
is to initiate a new program of systematically repre­
senting and evaluating the n-point matrix functions for 
a certain class of random media. 

II. THE n-POINT PROBABILITY FUNCTIONS 

A. Definitions of the general n-point probability 
functions 

The random medium is a domain of space D of volume 
V which is composed of two regions: a matrix phase 
(the continuously connected phase) Do with volume frac­
tion cf> and a particle phase D1 with volume fraction 
1 - cf>. We introduce a stochastic variable at position x 
as follows: 

I(X)={1, 

0, 

if XE Do, 

otherwise. 
(1 ) 

The quantity I(x) is a discrete random variable taking on 
the values 1 or 0 depending upon whether the position 
vector is in the matrix or particle phase. A complete 
knowledge of I(x) gives a total specification of the ma­
trix phase. 

Consider obtaining the ensemble average of the dis­
crete random variable I(x) for a two-phase medium. 
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Here we use notation similar to that of Frisch. 1 Con­
sider the family of joint probabilities S.I.2 ••.•• (hence­
forth referred to as the general n-point function), asso­
ciated with an ensemble of two-phase media, defined 
to be 

S.I.2 ••.•• (Xto x2,· .. x.) 

= P[I(Xl) = EI and I(x2) = E2 and •.• ,I(x.) == E.] , (2) 

with p[ • .. J standing for the probability of [ .•. ] and 

if XI EDI , 

otherwise. 

2 • 
The general n-point function S't' •••• is the probability 
that at Xto I(xI) = EI and at X2, I~) = E2 and, ..• , at x., 
I(x.) = E.. For example SIOI (Xto x2' x3) is the probability 
that there is particle phase at XI and x3 and matrix phase 
at x2• Since S.I.2 .•.•• is a set of joint probabilities we 
have 

(3) 

and 

(4) 

for 1:;; k <no 

By a statistically homolfeneous medium we shall mean 
one in which all the correlation and probability functions 
will depend upon the relative positions rather than on ab­
solute positions, so that 

S.I.2 •••• .(XtoX20 •.• x,,)==S.I.2··· •• (X12'X13' ., ,XI.) , 

where 

XII =x l -XI' 

By an isotropic medium we mean one in which the cor­
relation and probability functions further depend upon 
the relative positions only through the absolute differ­
ences of the xlJO 1. e., only through IXI -xJI. 

Employing the definitions above, the ensemble aver­
age of the random variable I(x) is given by 

1 1 1 

{I(x) = L L'" L I(XI)S.j.2··· •• 
.1-0 .2 -0 ••• 0 

I 

= LI(X)S.(X) .-0 
(5) 

where angular brackets denote an ensemble average. The 
mean value of I(x) is found to be equal to the probability 
of finding a point in the matrix region (which in turn is 
equal to the volume fraction of the matrix phase ¢ for 
a statistically homogeneous medium). Similarly, the 
ensemble average of the product I(Xl)[1 -I(X2)] may be 
shown to be 

(6) 

i. e., the 2-point correlation function (I(xl)[1 -I(X2)]) 
is equal to the probability of finding matrix phase at xI 
and particle phase at X2' More generally, it may be 
shown that 

(7) 

which states that the general n-point correlation func­
tion is equivalent to the general n-point probability func­
tion' which may be expressed in terms of the joint prob­
abilities associated with simultaneously finding k points 
(1;:;; k ;:;; n) in the matrix phase (henceforth referred to as 
the k-point matrix probability functions) i. e., Sel.f"" 
for 1;;;; k;:; n such that EI = 0 for l:5i ;;;; k. Rephrasmg 
Eq. (7), we have 

S.I.2··· •• (Xto~, ... ,x.) =(U[1 + hII(XI)]) lJ E I 

= [1 + ~ h,So(x l )+ L ~hPoo(x/OxJ) 
T.t I<J 

+ L hlhJhkSOOO(X/OXJ,x.)+ ••• J tIEl' (8) 
I<J<k 1.1 

where 

hi = (1 -2EI)/EI . 

Given all k-point matrix functions (k = 1, 2, ... , n) one 
may obtain any general n-point probability function. For 
most of what follows, therefore, we consider only the 
n-point matrix probability function. 

If EI = 1 for 1;:;; i;:;; n in Eq. (8), one obtains the prob­
ability of finding n-points in the particle phase in terms 
of the k -point matrix functions (k = 1, 2, ... , n): 

• 
SU"'I(Xh X2,'" ,x,,)= 1- L SO(XI)+ LSoo(xlOxJ) ,.1 I<J 

(9) 

Note that the 1th sum in Eq. (9) carries the factor 
(- 1 )', It shall be convenient to denote the probability 
of finding n points in the matrix phase, the n-point ma­
trix function, by S.(XhX 20 ••• ,x.) and the~probability of 
finding n pOints in the particle phase by S.(Xh X2, •.. ,x,,) 
as these particular probability functions arise frequent­
ly. The n-point matrix functions (n ;;:;2), in general, 
cannot be expressed in terms of lower order k -point 
(k <n) matrix functions. (In the special case of a 
"symmetric" random medium1 it is possible to deter­
mine S2m.l from S2m, S2m-to ••. and SI' Bya sym­
metric random medium we mean a random medium 
having the symmetry such that 

S.I.2 .. • •• (Xto~, ... ,x,,) 

(10) 

where ET = 1 - EI' 

Such a medium is realizable if ¢ = t and if it is 1m­
possible to distinguish the geometry of one phase from 
the other. Applying the more compact notation men­
tioned above to Eq. (9) gives 

For a symmetric random medium we have, therefore, 
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We see that for a symmetric medium, the odd probabil­
ity functions Sam.1 can be expressed in terms of lower 
order even and odd probability functions. From Eq. 
(11) one can see, however, that the even functions 
S2m cannot be expressed in terms of lower order prob­
ability functions as the last term is always positive. 
For m = 1 Eq. (12) gives, e. g., that 

S3(Xh Xa, X3)= HS2(Xt. X2) 

+ Sa(Xh X3) + S2(X2, X3) - t] 

in a symmetric medium.) 

(13 ) 

Since I(x) may be either zero or unity, then, by defini­
tion of the Sn, we have the bounds 

Sn(XhXa,'" ,xn)o:Sn.l(Xh X2,"· ,xn.d 

with 1 i:: Sl' 

(14) 

For a statistically homogeneous medium Sl is simply 
the volume fraction of the matrix phase cpo Therefore, 
for such a medium, cp is an upper bound on Sn for all n. 
The upper bounds expressed by Eq. (14) is intuitively ob­
vious as it states that the probability of finding n points 
at positions Xh x2, ... , xn in the matrix phase is greater 
than the probability of finding n + 1 pOints at positions 
Xh X2' ... , xnol in the matrix phase. 

It shall also be useful, for a homogeneous medium, 
to define the cumulant function S: as follows: 

(15 ) 

For example, for n = 1, 2, and 3 we have 

Sf(Xl)=O, (16a) 

Sr(Xh X2) = S2(Xh x2) - Sl (Xl)Sl (X2) , (16b) 

Sr{Xh X2' X3) = S3{Xh x2, x3) - S2{Xh X2)S1 (X3) 

- S2(Xh X3)S1 (Xa) - S2(X2, X3)S1 (Xl) 

+ 2S1 {Xl )Sl (X2)S1 (X2) , (16c) 

respectively. The S: are cumulant functions that stand 
to the Sn as Ursell or cluster functions of statistical 
mechanics stand to the distribution functions, 9 apart 
from the trivial quantity Sf. (The statistical mechani­
cal function corresponding to Sf' is equal to unity for 
a homogeneous medium. ) 

B. Geometrical interpretation of the S n 

The geometrical significance of the n-point matrix 
functions is easily seen for any particle geometry. Let 
Fn be a polyhedron with n vertices located at xh X2, 
... , xn• Then Sn is the probability that all n vertices 
of Fn when thrown randomly into D lie in Do. 

If we assume the particle phase of a statistically homo­
geneous two-phase random medium to be composed of 
N spheres of radius R, we may infer yet another geo­
metrical interpretation of these functions. Consider 
the one -point matrix function SI = (I(x). This may be 
interpreted as the probability that a randomly chosen 

point is not contained in a particle in the system. This 
is equivalent to the probability that no sphere center is 
within a distance R of a randomly chosen point, which in 
turn is equal to the probability that a region of a sphere 
volume is empty of sphere centers. Similarly, the 2-
point matrix function S2{X12)= (I{X1)I{Xa) may be inter­
preted to be the probability that two randomly chosen 
points, separated by distance Xu = IXul, are both in Do. 
This is equivalent to the probability that a region, the 
union volume of two spheres of radius R whose centers 
are separated by xu, contains no sphere centers. In 
general, the n-point matrix probability function 

Sn{XU,X13,··· ,Xln)=ZUI{XI)) , 

for a particle phase of spheres of radius R, may be inter­
preted to be the probability that a region O<n), the union 
volume of n spheres of radius R, contains no sphere 
centers. A similar geometrical interpretation may be 
inferred for particles of arbitrary shape. 

C. Limiting values of the Sn 

We determine values of the Sn, for certain limits of 
its arguments, which apply to any statistically inhomo­
geneous two-phase random medium. By definition of the 
Sn, we have, when any subset of q + 1 points coinCide, 
so that XII =XI2 =··· =XI .. I' 

S.{Xh ... , xn) - S._.{Xh ... , XII' •.. , XI .. 1' .•. , Xn) 

= (I(XI)' .. I{xll )· .. I(XI .. I)· .. I(x.), (17) 

where a bar above a quantity indicates its absence. For 
a statistically homogeneous medium, the left-hand side 
of Eq. (24) is equal to 

Sn_.(XIl"" 'XIII"" ,XII .. I'··· ,XI.)' 

Let us now consider partitioning the set {Xh xa. ... , 
x.} into L subsets: {Xl}, {x2, X3}, {x(, xs, Xs}, .... Let 
all of the relative distances between the m elements of 
these subsets remain bounded, and let F~ be the polyhe­
dron with m vertices located at the pOSitions associated 
with the ith subset. We denote the centroid of the F~ by 
RI' Then we have, assuming no long-range order, that 

lim Sn(Xh x2", "xn) 
allRlr'" 

= SI (Xl )S2{X2, X3)S3{X4, XS, Xs)' • " L products . 

Here R IJ is the relative distance between the centroids 
of F~ and F~, where i and j are all possible values such 
that 1 ~ i < j ~ L. The above partition, however, is just 
one of the possible ways to partition the set {Xh x2, .•• , 
x.}. In general, for any partition into sets {y}, each 
with k{y) elements, we have 

lim S.{Xh x2, ... ,x.) 
all R",S-'" 

where R",s is the distance between the centroids of sets 
a and {3. 
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III. THE Sn FOR A SYSTEM OF SPHERES 

We shall derive expressions for the n-point matrix 
probability functions Sn for the case of a bed or suspen­
sion of N spheres of radius R in terms of the spatial cor­
relations between sphere centers for arbitrary number 
density of spheres. We present two different procedures 
for obtaining the Sn. The first method makes direct use 
of the ensemble concept of statistical mechanics and is 
the more formal of the two, whereas the second employs 
simple probabilistic arguments (given in Appendix A) 
and is the more intuitive approach of the two. The pro­
cedures outlined below may be easily generalized to 
particles of arbitrary shape. 

Ensemble method 

Consider, for concreteness, the particle phase of a 
two-phase random medium to be composed of N spheres 
of unit radius distributed in space according to some 
ensemble. The quantity I(x) for such a system is seen 
to be a function of the positions of all of the N spheres, 
denoted by r1> r2' .•• , rN (==yN), which. clearly, are 
known only in a statistical sense. Varying the positions 
of the spheres changes the matrix space Do and its com­
plement Dl and thus causes I(x) to change. Let us de­
fine an indicator function m such that 

m(lx -r,1 )={1 • 
0, 

if!x-r l l<1, 

if Ix - r ,I> 1 • 

(19) 

where r I is the position of the center of the ith sphere 
and x - r I is the position vector originating from the 
center of the ith sphere. We have 

N 

I(x; rN
) = II [1 - m (I x - r II )] . (20) 

1=1 

Equation (19) gives the relationship between the quantity 
I(x) and the configuration of the spheres in space. There­
fore we may define the ensemble average of the product 
IIi' =1 I(x l ; rN

) as 

(UI(x,;r
N») = f··· f J[UI(X,;r

N
)] 

xPN(rN)drN =Sn(xn
) • (21) 

where drN == drt. dr2, ...• fir N' Here we define, for 
an ensemble, 

PN(rt.rU •••• rN)drldr2··· dr N 
as the probability of simultaneously finding the center 
of particle 1 in the volume drl about rl, the center of 
particle 2 in the volume dr2 about r2, ..• , and the cen­
ter of particle N in the volume drN about r N • (The can­
onical ensemble defines a particular P N for a system of 
impenetrable spheres that we discussed in Appendix A. ) 
The probability density PN is normalized in such a way 
that 

f··· f P N(r
N

)drl'" drN = 1 , 

where each volume integral is over the volume V. 

We now proceed to obtain the relationship between the 
n-point matrix functions and the n-body distribution 
functions of statistical mechanics Pn (see Appendix B). 
Expanding the right-hand side of Eq. (19) gives 

N 

I(x;rN)= 1 - L m(lx -r,l) 
'=1 

N N 

+ Lm(lx-rll)m(lx-rjl)- L m(lx-r,l) 
I<j I<j<k 

(22) 

The first sum is over all the N particles, the second sum 
is over all distinguishable pairs of particles and as such 
contains N(N -1)/2 terms, and, in general, the sth sum 
is over all distinguishable s-tuplets of particles and thus 
contains N!/(N -s)lsl terms. In what follows. we con­
sider two-phase random media which are inhomogeneous. 
i. e., media for which PN(rN) is not necessarily invari­
ant under translation. 

The relationship between the 1-point matrix function 
and the Pn may be obtained by substituting Eq. (22) into 
Eq. (20) with n= 1: 

N 

SI(X)=(J(x; r N» = r .. f f PN(rN) - fu f"" f f m(lx -rll )PN(rN)dr
N 

+ t f .. · If m(lx -rll)m(lx -rjl )PN(rN)drN -'" = 1 -N r·.J f m(\x -r,1 )PN(rN)dr
N 

I<j 

+N(~-I) I ... ff m(lx-rll)m(lx-r21)PN(rN)drN_ ... , (23) 

where the third line follows because P N is invariant to 
interchange of particles, the particles being identical. 
The factor NI/(N - s )Is 1 appearing in (s + l)th term in 
Eq. (23) is the result of having Nl/(N -s )Is 1 identical 
integrations to perform. Using the definitions of Ap­
pendix B and integrating out N - (s + 1) degrees of free­
dom from the (s + 1)th term gives 

"" (_1)' f If ..,.y SI(X)=I+L-,- ... ps(rSHlm(lx-rjl)dr i , 
s=1 s . i=1 

(24) 

where PI (r) is the number of particles per unit volume 
at r (and is equal to N/V for a homogeneous system). 
Note that, in general, the I-point matrix function is an 
infinite series, the sth term involving spatial correla­
tions between s particle centers. Information concern­
ing the penetrability between spheres is contained in the 
s-body distribution function PS' For a homogeneous sys­
tem of fully overlapping spheres. e. g .• 

s 

Ps= IIpl(rl)=ps (p==N/V) 
1=1 
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since there are no correlations between the positions of 
particles. 

One of the more important n-point matrix probability 
I 

functions and one that, for most geometries, remains 
quantitatively unknown is S2' Substituting Eq. (22) into 
Eq. (20) for n = 2 and using the definitions of Appendix 
B gives, in the thermodynamic limit, through order p2, 

S2(Xt. X2) = (I(xl;rN )I(x2;rN » = 1 - f Pl(rl)[m( I xl - rll ) + m( IXl + X12 - rll ) - m( I Xl - rll ) m( IXl +X12 - rll)] drl 

+ 211 f f P2 (r h r 2)[ m ( I Xl - r 1 I ) + m ( I Xl + Xu - r 1 I ) - m ( I Xl - r 1 I ) m ( I Xl + X12 - r 11 )] 

x [me IXl - r21 ) + m( I Xl + X12 - r21 ) - m (I Xl - r21 )m( IXl + X12 - r21 )] drl dr2 + O(p3) , (25a) 

where 

XU=X2 -Xl' 

It is convenient to define a function m(2
) (Xh X2) such that 

In terms of m (2
) Eq. (25a) becomes 

+ 211 f f P2(rh r2)m(2)(l xl -rll, IXl + x12 -rll) 

x m(2)(1 xl - r21, I Xl + Xu - r21 )drl dr2 + O(p3) 

or, to all orders, 
(25b) 

S2(Xl1~) = 1 + I:( -1 )S8 If· • .J f ps(rS
) 

s=l 

x [UmI21(lxl -rJI, IXl +X12 -rJI)] drJ • (26) 

It is to be noted that the volume integral of 
m(2)(lxl-rll, IXl +x12 -r11) over all rl is the union vol­
ume of two spheres of unit radius whose centers are 
separated by the distance Xu = I Xu I. The first two 
terms of m (2

), m(1x1 - rll ) and m(lxl + Xu -rll), in­
tegrated over all rl gives twice the volume of two 
spheres of unit radius, whereas the product term 
m( IXl - rll ) m(l Xl + Xu - rtl ) integrated over all rl 
yields the volume common to two spheres of unit radius 
(the intersection volume). 

In general, for any n it may be shown that 

.. (_1)8 f If s Sn(Xh X2, .•. ,xn) = 1 + ~ -8-1- • • • ps(r ) 

s 

x II [mIn) (I Xl - r J I, I Xl + X12 - r J I, 
J=l 

. . . I Xl + Xln - r J I )] dr J , 

where 

m(n) (Xl - rJ,Xt + Xu - r J,' •• , Xl +Xln - r J) 
n 

= 1 - II [1 - m ( I Xl + Xii - r J I )] , 
1=1 

with m( IXl +xl1 - r J 1)= m(lx1 - rJI). 

(27) 

(28) 

The volume integral of the generalized indicator func­
tionmln)(lx1-rJI, IX1+x12-rJI, '" IX1+Xln -rJI) 

I 
over all rl will yield the union volume of n spheres of 
unit radius whose sphere centers are separated by the 
distances IXul, IX131, ..• , IXlnl. That such a function 
appears in the expression for the n-point function Sn is 
consistent with the aforementioned geometrical interpre­
tation of these functions. Recall that these n-point ma­
trix functions were interpreted to be the probability that 
a region, the union volume of n spheres, contain no 
sphere centers. 

It is convenient to change the dummy integration vari­
ables from rh r 2, .•. ,r n to r n+h .•. , r n+s and to replace 
the variables not integrated over Xh x2, ... , xn with 
rh r2, ... , r n' We then have 

Sn(rh r 2, ... , r n) 

.. (-l)'f f 
= 1 + 2: --I - . .. J p.(r n+h r n+2, ••• , r n+.) 

s=l 8 

n+8 

X II mln)(rJhr}2, ... ,rJn)drJ' (29a) 
Jon+l 

where 
n 

mIn) (r Jh r n, ... ,r In) = 1 - II [1 - mer jJ)] 
j=l 

rjJ= IrJ-rll . (29b) 

This is the desired representation of the Sn we set out 
to derive. It is, in general, an infinite series where 
the 8th term of the sum involves 8 -tuplets of particles. 10 

Given the 8 -body correlation functions Ps (8 = 1, 2, 3, 
.•. ) one can in principle evaluate the Sn for any n. 

In the case of a homogeneous system PN(rN) is in­
variant under translation and thus implies that the argu­
ments of the Sn will be functions of relative positions. 
For such a system it is convenient to express Sn in 
terms of another distribution function gn(rn) (see Ap­
pendix B): 

Sn(r12, r13, .•. , rln) 

= 1 + 1::(-1)2 pSI J ... ffgs(rn+h r n+2, •.. , rn+S) 
s=l 8 

xfl mln)(rJhrJ2, ••• ,rJn)drJ' 
Jon+l 

(30) 

Elsewhere11 we have demonstrated that there is a one­
to-one mapping between the n-point function Sn and the 
Mayer-Montroll equations12 for a binary mixture in 
which one of the two species consists of "point" particles 
(i. e., spheres of zero radius). in the limit of infinite 
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dilution of the point particles. There we also have 
found that for such a binary mixture the Kirkwood­
Salsburg equations13 become equations for the Sn. The 
Kirkwood-Salsburg representation of the Sn is new and 
gives us a means of approximating and bounding the Sn 
that is more powerful than that provided by the Mayer­
Montroll representation. In Appendix A we derive ex­
pressions for the Sn using Simple probabilistic arguments. 

We note that. since the g. are analytic in density, Eq. 
(30) immediately yields a power-series representation 
of Sn in density when such a representation is desired. 
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APPENDIX A: PROBABI LlSTIC METHOD OF 
DERIVING THE Sn 

We now proceed to present an alternative method of 
deriving expressions for the n-point matrix probability 
function in terms of the Pn for an inhomogeneous sys­
tem of N spheres. The derivation is a simple extension 
of the probabilistic arguments put forth by Reiss, Frisch, 
and Lebowitz14 to determine the probability of finding 
no sphere centers in a spherical region of radius r in 
a uniform system of N rigid spheres. [Their argu­
ment, which goes back to Boltzmann. leads them to 
obtain an equation equivalent to the first Mayer-Mon­
troll equation or as we shall see. the equation for S1I 
(:;:: cp) when r is equal to the radius of a sphere. 1] The 
procedure used by Reiss et al. may be exploited for the 
case of a system of N spheres with arbitrary interpar­
ticle potential and where the region. absent of sphere 
centers. is of an arbitrary configuration. This Simple 
observation coupled with the aforementioned geometrical 
interpretation of the Sn for a system of N spheres leads 
to the following probabilistic argument. 

Let Po(U). P1 (U). etc. denote the probabilities that the 
centers of exactly no particle. exactly one particle, 
etc •• lie in some region U. Here U represents some 
subset of the total volume V. It follows that 

(Al) 

This may be written as 

Po+ tPn=Po-t {[l+ (-1)]n-1}Pn 
"-=1 na1 .. .. 

=Po-LPnL: (_l)nC::' 
"=1 mal .. .. 

=Po-L: (_l)m LC::.Pn=l, (A2) 
mll1 "111m 

where C:!.=nl/(n -m)lml are the binomial coefficients. 
Solvlng Eq. (A2) for Po we have that 

Po = 1 - (P1 + 2Pa + 3P3 + ... ) + (P2 + 3Ps + 6P4 + ... ) 

-(Ps+4P4 + ... )+... . (A3) 

The first sum in parentheses in Eq. (A3) represents the 
average number of individual particles in region U. The 
second sum represents the average number of pairs 
of particles in region U, the third, the average number 
of tuplets of particles in region U, etc. In terms of 
the s-body distribution functions we have 

.. ( 1)' J f J Po(U)=1+tt~ .. · g 

xp,(rhra •... ,r.)drldra··· drs, (A4) 

since the volume integral of the quantity ps(rh ra, ... , 
r s)/ s lover all rlo r2, ... , r. contained in U is, in the 
thermodynamic limit, the expected number of (unor­
dered) s -tuplets of particles in U. In order to make 
the connection between Po(U) and Sn we must be more 
specific about the region U. Recall that Sn may be inter­
preted to be the probability that a region Uln) contains 
no sphere centers, Uln) being the region of the union vol­
ume of n spheres of radius R at positions Xii x2, ... , 
xn. It is clear, therefore, that Sn = Po(U( n). In order 
to explicitly specify the region of integration we must 
insert, into the integrand of Eq. (A4), the generalized 
indicator function, Eq. (28). thus rederiving the re-
sult (27). 

APPENDIX B: PROBABI LlTY DENSITY FUNCTIONS 

The n-body probability density Pn{n<N) is obtained 
from P N by integrating over the remaining N - n par­
ticles; we have 

P n(rh r 2,· .. ,rn)= J .. ·ff PN(rN)drn+tdrn+2'" dr N • 

(B1) 
If we let 

Pn(rlo ra, ..• , rn) drt dr2' •• dr n 

be the probability that the center of exactly one (unspeci­
fied) particle is in drh the center of exactly one other 
(unspecified) particle is in dr2• etc .• then 

Pn(rn)=N(N -1)·" (N -n+ l)Pn(rn) 

NI ( ") 
= (N -n)1 P n r . (B2) 

In the case of a homogeneous system (i. e .• in the 
"thermodynamic limit," N-oo, V_oo. and p=N/V 
fixed), it is convenient to define another distribution 
function 

(B3) 

Note that gn(rn) - 1 for all n as the mutual distances 
between the n particles increase indefinitely since 
Pn(rn) - p". For an isotropic system and n = 2. we find 
that 

(B4) 

where r = I r 2 - rll. Here g{r) denotes the well-known 
radial distribution function of liquid state theory.1S 

In the canonical ensemble of equilibrium statistical 
mechanics. for a system of rigid particles with poten­
tial energy independent of orientation, 

P N= Q'i/ exp - (341 N(rN) • (B5) 

where Qil is the normalization constant that. from Eq. 
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(21) must be given by 

QN= f exp -f3~N(rN)drH • (B6) 

Here t3 is (kBTr1
, where k13 is Boltzmann's constant 

and T is absolute temperature, while ~N is the poten­
tial energy associated with the N particles. For a sys­
tem of impenetrable spheres of diameter 2R we have 
(as long as all particles remain in a container or sam­
ple of volume V) 

{
OO, if I r I - r i I < 2R for any i and j, i '" j , 

4>N= 
and 0 otherwise. (B7) 

if I r I - r i I < 2R for any i and j , 

and Q'N 1 otherwise (B8) 

For fully overlapping (penetrable) spheres, 4>N is triv­
ially zero so that QN = yN, and 

(B9) 

Because ~ Nand P N are functions of the r N only through 
the I r I - r i I (as long as we neglect the potential energy 
changes associated with particles passing out of the 
container or sample), the media defined by these hard­
sphere ensembles are statistically homogeneous and 
isotropic. (The neglect of the energy changes asso­
ciated with interaction between particles and the con­
tainer boundaries becomes fully justified only when we 
take the thermodynamics limit V_OO, N-oo, p fixed. ) 
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