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This article reviews recent inverse statistical-mechanical methodologies that we have devised to

optimize interaction potentials in soft matter systems that correspond to stable ‘‘target’’ structures. We

are interested in finding the interaction potential, not necessarily pairwise additive or spherically

symmetric, that stabilizes a targeted many-body system by generally incorporating complete

configurational information. Unlike previous work, our primary interest is in the possible many-body

structures that may be generated, some of which may include interesting but known structures, while

others may represent entirely new structural motifs. Soft matter systems, such as colloids and polymers,

offer a versatile means of realizing the optimized interactions. It is shown that these inverse approaches

hold great promise for controlling self-assembly to a degree that surpasses the less-than-optimal path

that nature has provided. Indeed, we envision being able to ‘‘tailor’’ potentials that produce varying

degrees of disorder, thus extending the traditional idea of self-assembly to incorporate both amorphous

and crystalline structures as well as quasicrystals. The notion of tailoring potentials that correspond to

targeted structures is motivated by the rich fundamental statistical-mechanical issues and questions

offered by this fascinating inverse problem as well as our recent ability to identify structures that have

optimal bulk properties or desirable performance characteristics. Recent results have already led to

a deeper basic understanding of the mathematical relationship between the collective structural

behavior of many-body systems and their interactions, as well as optimized potentials that enable self-

assembly of ordered and disordered particle configurations with novel structural and bulk properties.
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I. Introduction

The term ‘‘self-assembly’’ typically describes processes in which

entities (atoms, molecules, aggregates of molecules, etc.) spon-

taneously arrange themselves into a larger ordered and func-

tioning structures. Biology offers wonderful examples, including

the spontaneous formation of the DNA double helix from two

complementary oligonucleotide chains, the formation of lipid

bilayers to produce membranes, and the folding of proteins into

a biologically active state.

On the synthetic side, molecular self-assembly is a potentially

powerful method to fabricate nanostructures as an alternative to

nanolithography. For example, it has been demonstrated that

intricate two-dimensional structures can emerge by the place-

ment of organic molecules onto inorganic surfaces.1 Block

copolymers can self-assemble into ordered arrays that have

possible uses as photonic band-gap materials.2 Self-assembly

based on contact electrification seems to be a powerful means to

organize macroscopic dielectric particles of various shapes into

extended, ordered structures.3 Highly robust self-assembly of

unique, small clusters of microspheres that can themselves be

used for self-assembly of more complex architectures has been

demonstrated.4 It has been shown that gold nanowires can be

assembled by functionalizing nanoparticles with organic mole-

cules.5 DNA-mediated assembly of micrometre-size polystyrene

particles in solution could enable one to build complex structures

starting from a mesoscale template or seed followed by self-

assembly.6 These examples offer glimpses into the materials

science of the future—devising building blocks with specific

interactions that can self-organize on a larger set of length scales.
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This is an emerging field with a wealth of experimental data

that has been supported theoretically and computationally using

the ‘‘forward’’ approach of statistical-mechanics.7–16 Such an

approach has generated a long and insightful tradition. The

forward approach identifies a known material system that

possesses scientific and/or technological interest, creates

a manageable approximation of the interparticle interactions

that operate in that material, and exploits simulation and

analytical methods to predict non-obvious details concerning

structural, thermodynamic and kinetic features of the system.

In the past several years, inverse statistical-mechanical

methods have been devised that find optimized interactions that

robustly and spontaneously lead to a targeted many-particle

configuration of the system for a wide range of conditions.17–27

This article reviews these nascent developments as well as other

closely related inverse realizability problems that we have

introduced,28–37 all of which are solved using various optimiza-

tion techniques.

Results produced by these inverse approaches have already led

to a deeper fundamental understanding of the mathematical

relationship between the collective structural behavior of many-

body systems and the interactions: a basic problem in materials

science and condensed-matter theory. As will be shown, such

methodologies hold great promise to control self-assembly in

many-particle systems to a degree that surpasses the less-than-

optimal path that nature has provided. Indeed, employing such

inverse optimization methods, we envision being able to ‘‘tailor’’

potentials that produce varying degrees of disorder, thus

extending the traditional idea of self-assembly to incorporate

both amorphous and crystalline structures as well as

quasicrystals.

Output from these optimization techniques could then be

applied to create de novo colloidal particles or polymer systems

with interactions that yield these structures at the nanoscopic and

microscopic length scales. Thus, this work has important impli-

cations for the future synthesis of novel materials.

Colloidal particles suspended in solution provide an ideal

experimental testbed to realize the optimized potentials, since

both repulsive and attractive interactions can be tuned (e.g., via

particle surface modification or the addition of electro-

lytes),4,6,14,38–42 and therefore offer a panoply of possible poten-

tials that far extends the range offered by molecular systems.

Effective pair interactions in colloids can contain hard-core,

charge dispersion (van der Waals), dipole–dipole (electric- or

magnetic-field induced42), screened-Coulombic (Yukawa), and

short-ranged attractive depletion contributions. Polymer systems

also offer a versatile means of realizing optimized soft interac-

tions.11,43

The idea of tailoring potentials to generate targeted structures

is motivated by the rich array of fundamental issues and ques-

tions offered by this fascinating inverse statistical-mechanical

problem as well as our recent ability to identify the structures

that have optimal bulk properties or desirable performance

characteristics. The latter includes novel crystal44–46 and quasi-

crystal25,47 structures for photonic band-gap applications, mate-

rials with negative or vanishing thermal expansion coefficients,48–50

materials with negative Poisson ratios,26,51–56 materials with

optimal or novel transport and mechanical properties,57–63 mes-

oporous solids for applications in catalysis, separation, sensors
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and electronics,64,65 and systems characterized by entropically

driven inverse freezing,66,67 to mention a few examples.

The recent inverse techniques that are reviewed here differ

from so-called ‘‘reverse’’ Monte Carlo methods68–71 in several

important respects. The latter techniques are concerned almost

invariably with obtaining a spherically symmetric pair potential

from an experimentally observed structure factor (as measured

from scattering experiments) or real-space pair correlation

function usually for stable liquid phases or glassy states of

matter. By contrast, our interest is in finding the interaction

potential, not necessarily pairwise additive or spherically

symmetric, that optimally stabilizes a targeted many-body

system, which may be a crystal, disordered or quasicrystal

structure, by incorporating structural information that is not

limited to the pair correlation function and generally accounts

for complete configurational information. Unlike previous work,

our primary interest is in the possible many-body structures that

may be generated, some of which may include interesting but

known structures, while others may represent entirely new

structural motifs. Moreover, the inverse methods described here

can be employed to find targeted structures for metastable states

as well as nonequilibrium configurations.

In Section II, we define essential terms and briefly review basic

concepts that are germane to the remainder of the article. Section

III describes inverse optimization methods for self-assembly of

crystal ground-states. In Section IV, we discuss recent applica-

tions of these methods that yield unusual crystal ground-states

with optimized, nondirectional interactions, including low-

coordinated structures, chain-like arrays, and lattices of clusters.

Section V describes and applies inverse optimization methods for

self-assembly of disordered ground-states. In Section VI, new

duality relations for classical ground-states are reviewed and

applied to some cases examined in the previous sections. Section

VII discusses the pair correlation function realizability problem

and inverse optimization procedures to construct configurations

with a given pair correlation function. In Section VIII, we discuss

inverse optimization methods to optimize interactions for tar-

geted bulk properties and specific applications. Finally, in

Section IX, we suggest problems for future work and close with

concluding remarks.
II. Basic definitions and concepts

We consider a configuration of N identical interacting particles

with coordinates rN h r1, r2, ., rN in a region of volume V in d-

dimensional Euclidean space Rd. The coordinate ri of the ith

particle generally embodies both its center-of-mass position and

orientation as well as conformation if required. In the absence of

an external field, the classical N-body potential FN can be

decomposed into 2-body terms, 3-body etc., as follows:

FN

�
rN
�
¼
XN

i\j

42

�
ri; rj

�
þ
XN

i\j\k

43

�
ri; rj ; rk

�
þ. (2.1)

Here 4n is the intrinsic n-body potential in excess of the contri-

butions from 42, 43, ., 4n�1.

A given many-body structure is specified by the local density

r(r), which can be expressed in terms of the particle coordinates

as follows:
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rðrÞ ¼
XN

i¼1

dðr� riÞ (2.2)

where d(r) is the d-dimensional Dirac delta function. The N

particle coordinates rN are statistically characterized by the

ensemble (equilibrium or not) under consideration. The

ensemble average of n products of the local densities at n different

positions yields the standard n-particle correlation functions.35

For statistically homogeneous systems in a volume V, these

correlation functions are defined so that rngn(rN) is proportional

to the probability density for simultaneously finding n particles at

locations rN h r1, r2, ., rN within the system,7 where r ¼ N/V is

the number density. With this convention, each gn approaches

unity when all particle positions become widely separated within

V. Statistical homogeneity implies that gn is translationally

invariant and therefore only depends on the relative displace-

ments of the positions with respect to some arbitrarily chosen

origin of the system, i.e.,

gn ¼ gn(r12, r13, ., r1n) (2.3)

where rij ¼ rj � ri.

The pair correlation function g2(r) is the one of primary interest

in this review. If the system is also rotationally invariant

(statistically isotropic), then g2 depends on the radial distance r

h |r| only, i.e., g2(r) ¼ g2(r). It is important to introduce the total

correlation function h(r) h g2(r) � 1, which, for a disordered

system, decays to zero for large |r| sufficiently rapidly.35

Such pair statistics can be inferred from radiation scattering

experiments via the structure factor.7 The structure factor S(k) for

an N-particle system is related to the collective-density variable

~rðkÞ ¼
XN

j¼1

exp
�
ik$rj

�
(2.4)

via the expression

SðkÞ ¼

���~rðkÞj2
N

(2.5)

where ~r(k) is the Fourier transform of r(r), defined by (2.2), and

i ¼
ffiffiffiffiffiffiffi
�1

p
. Since the structure factor is proportional to the

intensity of the scattered radiation, it is a non-negative quantity

for all k, i.e.,

S(k) $ 0 for all k (2.6)

This also mathematically follows from the non-negative form

(2.5). In the thermodynamic limit (N /N, V /N such that r is

a fixed positive constant), the ensemble-averaged structure factor

(omitting forward scattering) is defined by

S(k) ¼ 1 + r~h(k) (2.7)

where ~h(k) is the Fourier transform of the total correlation

function h(r).
The structure factor S(k) provides a measure of the density

fluctuations at a particular wave vector k. To see this important

property quantitatively, consider the point pattern defined by the

centers of particles in a many-body system at number density r.
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Let s2(R) denote the number variance of points contained within

a d-dimensional spherical window of radius R in Rd. It can be

shown72 that the number variance has the following real-space

and Fourier-space representations:

s2ðRÞ ¼ rv1ðRÞ
�

1 þ r

ð
Rd

hðrÞaðr;RÞ dr

�

¼ rv1ðRÞ
�

1

ð2pÞd

ð
Rd

SðkÞ~aðk;RÞdk
# (2.8)

where v1(R) ¼ pd/2Rd/G(1 + d/2) is the volume of the spherical

window of radius R, a(r;R) is the scaled intersection volume, equal

to the volume common to two spherical windows of radius R

(whose centers are separated by a distance r) divided by v1(R),

and ~a(k;R) is the corresponding Fourier transform of a(r;R). The

scaled intersection volume a(r;R) and its Fourier transform

~a(k;R) can be expressed explicitly in any dimension d.35,72 Thus,

we see that the structure factor is directly related to the number

variance at different wavelengths or, equivalently, for different

window radii. In the limit of an infinitely large window, the

relation above yields

lim
R/N

s2ðRÞ
rv1ðRÞ ¼ Sðk ¼ 0Þ ¼ 1 þ r

ð
Rd

hðrÞdr (2.9)

Formula (2.9) applies whether the system is in equilibrium or

not. In the special case of an equilibrium system, it is well-known

that infinite-wavelength density fluctuations, as expressed by

(2.9), are proportional to the isothermal compressibility of the

system.7

For large R, it has been proved that s2(R) cannot grow more

slowly than gRd�1 or the window surface area, where g is a posi-

tive constant.73 We note that point processes (translationally

invariant or not) for which s2(R) grows more slowly than Rd (i.e.,

window volume) for large R are examples of hyperuniform (or

superhomogeneous) point patterns.72,74 Hyperuniformity implies

that the structure factor S(k) has the following small k behavior:

lim
k/0

SðkÞ ¼ 0 (2.10)

This classification includes all crystal structures,72 point

patterns associated with periodic and certain aperiodic tilings of

space,72,74–76 one-component plasmas,72,74 distribution of matter in

the early Universe,77,78 the ground-state of superfluid helium,79

maximally random jammed sphere packings,80 and the ground-

states of spin-polarized fermions.81,82 It has been suggested that the

magnitude of the number variance may serve as a useful order

metric for hyperuniform point processes, which includes all crys-

tals and quasicrystals as well as special disordered structures.72
III. Inverse methods for crystal ground-states

We recall that a classical ground-state configuration rN is one

that minimizes the system potential energy FN(rN). Our ability to

identify ground states for a particular interaction is a highly

challenging problem,83–88 not to mention the even more difficult

inverse problem of designing interactions to achieve targeted

ground-states. Here we describe recent progress on the latter

problem. Because there is a vast (infinitely large) class of many-

body potentials, we begin, for simplicity, by considering isotropic
Soft Matter, 2009, 5, 1157–1173 | 1159



pairwise additive interactions, i.e., eqn (1) reduces to the

following form:

FN

�
rN
�
¼
XN

i\j

4
�
rij

�
(3.11)

where the pair potential 4(r) h 42(r) is a radial function, i.e., it

depends on the radial distance r ¼ |r|. Although realistic inter-

actions that operate in soft matter systems can exhibit compli-

cated many-particle characteristics, often a more economic

description is sought that uses at most singlet and pair effective

interactions that are density-dependent to take advantage of the

theoretical and computational simplifications that result.89

Therefore, our starting point of pairwise additivity (in the

absence of an external field) is a practically useful approximation

for colloids and polymers, for example.

There are many open questions even for this simple class of

potentials. For instance, a ground-state structure of a specific pair

potential is generally achieved by an infinite number of other

potential functions. How does one effectively search and select

a family of potential functions from this infinite set in order to

most robustly achieve a targeted ground state? Furthermore, the

limitations of isotropic pairwise additivity for producing target

structures are not fully known and can be probed using inverse

methods. We know that such interactions cannot produce ther-

modynamically stable chiral structures with a specified handed-

ness; equal amounts of left-handed and right-handed structures

would result. When is anisotropy in the potential required? An

answer based on intuition from molecular systems would fail

here. For example, the diamond crystal is thought to require

directional interactions because such structures found in nature

result from covalent bonding. In fact, it has recently been shown22

that a diamond structure can be created from nondirectional

interactions with strong short-range repulsions, as described in

detail below. This structure has a special status in photonics

research because a diamond crystal of dielectric spheres exhibits

a large photonic band gap across the Brillouin zone.44

Two inverse optimization schemes, called the ‘‘zero-tempera-

ture’’ and the ‘‘near-melting’’ schemes,18,19 have been devised for

the purpose of designing interactions for targeted many-particle

configurations. Specifically, the combination of these two opti-

mization techniques lead to an N-body classical system with

particles interacting via optimized potentials that has as its

ground state (i.e., global energy minimum state) the corre-

sponding target configuration in a specific volume (or density)

range. Unlike previous attempts to solve this problem, this

conclusion is arrived at only after satisfying four important

necessary criteria:

1. lattice sums show that there is a positive pressure (or,

equivalently, density) range in which the given lattice is stable;

2. all crystal normal mode frequencies are real at a specific

density;

3. defects (vacancies and interstitials) are shown to cost the

system energy;

4. and the system self-assembles in a molecular dynamics or

(Monte Carlo) simulation that starts above the freezing point

and is slowly cooled.

As concerns the last criterion, the system may start from an

entirely random configuration or with a layer of fixed particles to
1160 | Soft Matter, 2009, 5, 1157–1173
promote epitaxial growth. Hence we make the important

distinction here between homogeneous and heterogeneous nucle-

ation in self-assembly. It is of course a more stringent requirement

that the desired lattice self-assemble from a random configuration

(homogeneous nucleation). Note that sufficient criteria to ensure

that a ground state is exactly achieved do not exist.
A. Zero-temperature optimization scheme

In the zero-temperature optimization scheme, an optimized pair

potential for self-assembly of a particular target configuration at

a temperature of absolute zero is found by choosing a family of

functions 4(r;a0, a1, ., an), parametrized by the ais, and then

finding the values of the parameters that lead to the most robust

and defect-free self-assembly of the target crystal for a fixed

density or, preferably, a range of densities (or, equivalently,

a range of pressures). The objective function is chosen so that the

energetic stability of a given target crystal is maximized with

respect to competitor lattices (chosen previously) subject to the

condition that the target crystal is linearly mechanically stable.

Mechanical stability is ensured for a given potential by estab-

lishing that every phonon mode in the first Brillouin zone is real.

Thus, the structure is mechanically stable at zero-temperature.

However, this does not preclude other structures, periodic or

otherwise, from being lower in energy than the targeted one.

Therefore, the final outcome of the zero-temperature scheme

becomes the initial potential function condition for the near-

melting optimization procedure.
B. Near-melting optimization scheme

From an initial parameterized potential (final outcome of the

zero-temperature scheme), the near-melting procedure optimizes

the potential for self-assembly at a temperature near but below

the crystal’s melting point by suppressing nucleation of the liquid

phase in molecular dynamics (MD) (or Monte Carlo) simula-

tions. Specifically, simulations are repeatedly run at 80–95% of

the melting temperature (the temperature is chosen such that

phase-transition fluctuations do not render the calculations

inconsistent), each time calculating the Lindemann parameter,

defined by

Q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ðri � r
ð0Þ
i Þ2 �

 
1

N

X
i

ðri � r
ð0Þ
i Þ
!2

vuut (3.12)

where ri is the position of the ith particle (after an appropriate

amount of simulation time), ri
(0) is its initial position, and N is the

number of particles. The parameter Q2 is then taken as

the objective function for a simulated annealing calculation, and

the ai are found such that Q2 is minimized.

The ultimate criterion for self-assembly is the very strong

condition that the targeted ground state be observed in a well-

annealed molecular dynamics MD simulation starting from the

liquid state. The system is slowly annealed to T ¼ 0 until the

essentially defect-free target crystal results in reasonable

computer time. Usually only a very few defects are found at the

end of the simulation and its energy is checked to ensure that it is

higher than that of the perfect crystal.
This journal is ª The Royal Society of Chemistry 2009



IV. Optimized isotropic interactions for low-
coordinated crystal ground states

Until recently, conventional wisdom presumed that low-coordi-

nated crystal ground states require directional interactions. The

aforementioned optimization schemes were tested initially to

yield optimized isotropic (nondirectional) pair potentials that

spontaneously yield the four-coordinated square-lattice and

three-coordinated honeycomb lattice as ground-state structures

in two dimensions.18,19 The latter target choice is motivated by its

three-dimensional analog, the diamond lattice. Fig. 1 shows the

optimized honeycomb potential and corresponding phonon

spectra as well as annealed configuration at T ¼ 0. It was found

that as long as the salient features of the honeycomb potential are

kept (two local minima at distance ratio
ffiffiffi
3

p
, the first being

positive and the second negative), self-assembly is unaffected by

perturbations in the potential; i.e., the potential is robust. This is

an essential feature if this system is to be tested experimentally.

We note that the functional form of the optimized ‘‘square-

lattice’’ potential is simpler than that of the honeycomb crystal.

In a separate work, the global phase diagram for the optimized

‘‘honeycomb’’ potential was determined.90 The phase diagram

was obtained from Helmholtz free energies calculated using

thermodynamic integration and Monte Carlo simulations. These

results showed that the honeycomb crystal remains stable in the

global phase diagram even after temperature effects are taken

fully into account. Other stable phases in the phase diagram are

high- and low-density triangular phases and a fluid phase. No

evidence of gas–liquid or liquid–liquid phase coexistence was

found.

In order to test the limitations of circularly symmetric poten-

tials in two dimensions, pair potentials were devised that yielded

structurally anisotropic chain-like arrays as well as lattices of

compact clusters,19 as shown in Fig. 2. These structures are

reminiscent of ‘‘colloidal wires’’ and ‘‘colloidal clusters’’ found

experimentally by the authors of ref. 5 and 4, respectively.

Interestingly, we see that structural anisotropy (colloidal wires)

can counterintuitively be achieved with isotropic interactions

with the so-called ‘‘five-finger’’ potential.19 This potential cannot

be built in the lab with current technology, but it shows that

isotropic potentials have perhaps more flexibility than one would

immediately think. It is also very possible that a much simpler

isotropic potential could allow for a similar structure to

assemble.

These two-dimensional results were extended to the self-

assembly of low-coordinated three-dimensional crystals with

isotropic pair interactions, including the determination of an

optimized pair potential whose classical ground state is the

simple cubic lattice and which is functionally simple enough to

synthesize in the laboratory.20 The same investigation reported

optimized isotropic potentials that yield the body-centered-cubic

and simple hexagonal lattices (planes of triangular lattices

stacked directly on top of one another), which provide other

examples of non-close-packed structures that can be assembled

using only isotropic pair interactions.

Optimized isotropic pair-interaction potentials with strongly

repulsive cores have been obtained that cause the tetrahedrally-

coordinated diamond and wurtzite lattices to stabilize, as evi-

denced by lattice sums, phonon spectra, positive-energy defects,
This journal is ª The Royal Society of Chemistry 2009
and self-assembly in classical molecular dynamics simulations.22

Fig. 3 depicts one self-assembled diamond-crystal configuration

shown from three different viewpoints. Finding such a potential

via inverse methods is a highly nontrivial problem, since the dia-

mond crystal is extremely close in structure to the tetrahedrally-

coordinated wurtzite crystal in particular. Given the functional

form of the potential, the pressure (or volume) was tuned very

precisely to find a small stability range for the diamond structure,

and under such conditions, simulations readily demonstrated its

self-assembly. These results challenge conventional thinking that

such open lattices can only be created via directional covalent

interactions observed in nature and adds to our fundamental

understanding of the nature of the solid state.

Note that it has been shown that an isotropic pair potential

that models star polymer systems has a region of phase

stability that favors the diamond crystal.10 However, this

potential, in contrast to the one reported in ref. 22, possesses

a soft core, which would be difficult to synthetically produce

using colloids.
V. Inverse optimization methods for disordered
ground states

Collective-density variables r(k) [cf. (2.4)] have proved to be

useful tools in the study of static and dynamic phenomena

occurring in many-body systems.91,92 More recently, the collec-

tive-coordinate approach has been used to generate crystalline as

well as noncrystalline classical ground states for bounded or

‘‘soft’’ interactions using numerical optimization techniques in

two and three dimensions.17,27,34 Soft interactions possess great

importance in soft matter systems, such as colloids, micro-

emulsions, and polymers.10,11,15,38,43

We begin by briefly reviewing the basic description of the

collective-coordinate approach for N interacting particles in a d-

dimensional cubic box of side length L and volume U under

periodic boundary conditions. The corresponding infinite set of

wave vectors is given by

k ¼
�

2pn1

L
;

2pn2

L
; .;

2pnd

L

�
(5.13)

where the ni (i ¼ 1, 2, ., d) are positive or negative integers, or

zero. The structure factor, defined by (2.5), can be rewritten as

follows:

SðkÞ ¼ j rðkÞ j2

N
¼ 1 þ 2

N
CðkÞ

where the real collective-density variable C(k) is subject to the

following constraints:

Cð0Þ ¼ 1

2
NðN � 1Þ (5.14)

C(k) ¼ C(�k) (5.15)

� 1

2
N#CðkÞ# 1

2
NðN � 1Þðks0Þ (5.16)

The lower bound on C(k) arises because the structure factor

S(k) must be non-negative.
Soft Matter, 2009, 5, 1157–1173 | 1161



Fig. 1 Honeycomb crystal self-assembly as obtained in ref. 18. (a)

Optimized pair potential 4(r). Dimensionless energy and length units are

defined by the axes for this potential. (b) Phonon spectrum (frequency

squared) versus wave vector k for the optimized honeycomb crystal

potential at a specific area equal to 1.45. The acoustic and optical

branches are shown. (c) Corresponding 500-particle annealed ground-

state configuration. Although there are a few vacancies, these were

‘‘frozen in’’ during annealing due to the finite time of the simulation. Such

vacancies were shown to cost energy, indicating that the perfect honey-

comb crystal is the true ground state.
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Let us assume that the total potential energy FN is pairwise

additive and therefore given by (3.11). Suppose furthermore that

the pair potential 4(r) has a Fourier transform ~4(k):

~4ðkÞ ¼
ð
U

4ðrÞexpðik$rÞdr (5.17)

4ðrÞ ¼ U�1
X
k

~4ðkÞexpð � ik$rÞ (5.18)

where in the last expression the summation covers the entire set

of k values. Then it is straightforward to show that the total

potential energy for the N-particle system can be exactly

expressed in the following manner in terms of the real collective-

density variables

FN

�
rN
�
¼ U�1

X
k

~4ðkÞCðkÞ (5.19)

Consider pair interactions whose transform ~4(k) is the non-

negative radial function f(k) $ 0 (k ¼ |k|) with compact support,

i.e.,

~4(k) ¼ f(k)Q(K � k) (5.20)

where

QðxÞ ¼
	

0; x\0;
1; x$ 0;

(5.21)

is the Heaviside step function. We see that if the C(k) is driven to

its minimum value �N/2 for |k| < K, then that configuration must

be a classical ground state of the system, the absolute mini-

mum of F. Thus, density fluctuations for those k values such that

|k| < K are completely suppressed, i.e., the structure factor S(k) ¼
0 for |k| < K. Note that for the form (5.20), the corresponding

real-space pair potential 4(r) will be an oscillating potential.

However, there are choices for f(k) one can make, especially for

purposes of experimental realizability, that can appreciably

dampen the amplitudes and range of the real-space interactions.

Although the number of collective variables is infinite, the N-

particle system possesses only dN configurational degrees of

freedom, where d is the Euclidean space dimension. Conse-

quently, it is unreasonable to suppose (barring special circum-

stances) that generally all C(k) values could be independently

controlled. However, it is possible, as illustrated below, to specify

simultaneously a number of collective variables equal to

a significant fraction of dN. We denote by c the ratio of the

constrained degrees of freedom to the total number of degrees of

freedom. As c increases to cover larger and larger numbers of the

wave vectors, and consequently having an impact on a larger and

larger fraction of the total degrees of freedom, the result for the

classical ground state is far from obvious. It is clear that if c is

a fraction of order unity, the ground state is periodic, which has

been established.17,27,34,86,92

However, the more interesting cases involve disordered ground

states (i.e., configurations that possess no long-range order),

which arise for a range of c ˛ [0, cmax], provided that cmax is

sufficiently small.17,27,34 Our primary interest here is in the

disordered, degenerate ground states that can be produced by the

collective-density approach. Such systems have the remarkable

property of being able to self-assemble into one of the numerous
This journal is ª The Royal Society of Chemistry 2009



Fig. 2 Unusual two-dimensional ground-state configurations generated

from circularly symmetric pair potentials, as adapted from ref. 19. (a)

Chain-like particle configurations. (b) Lattice of ‘‘simplex’’ clusters.

Fig. 3 Results of an MD simulation for 216 particles interacting via the

optimized isotropic ‘‘diamond’’ potential showing self-assembly into

a perfect diamond configuration, as in ref. 22. One configuration is shown

from three different viewpoints, which clearly show that the result is the

diamond crystal.
degenerate disordered configurations when slowly cooled to

absolute zero.

For any given choice of N and K, the numerical procedure

utilizes a random number generator to create an initial configu-

ration of the particles inside the hypercubic box. This starting

point typically produces a large positive value of the system

potential energy FN. The next step involves use of an optimiza-

tion procedure, such as the conjugate gradient method or a more

sophisticated technique,34 to seek a particle configuration that

yields the absolute minimum value of FN.

This numerical optimization technique has been employed to

generate two-dimensional classical ground-state particle config-

urations with the simple transform choice f(k) ¼ 1 in (5.20), i.e.,

the pure unit step function, which is zero for k > K.17 The resulting

investigation distinguished three structural regimes as the number

of constrained wave vectors is increased (i.e., as c is increased)—

disordered, wavy crystalline, and crystalline regimes.
This journal is ª The Royal Society of Chemistry 2009
The aforementioned collective-coordinate procedure has been

generalized to those cases in which C(k) is constrained to be some

target value C0(k) $ 0 for k ˛Q, where Q represents the finite set

of k values for which a number of collective-density variables can

simultaneously be specified. Of course, each C0(k) must lie in the
Soft Matter, 2009, 5, 1157–1173 | 1163



range specified by inequalities of (5.16). Then consider the

following non-negative objective function:

FN

�
rN
�
¼
X
k˛Q

~4ðkÞ½CðkÞ � C0ðkÞ�2 (5.22)

If FN is interpreted as a potential energy of interaction for the

N point particles, then it can be shown that it represents intrinsic

two-body, three-body and four-body interaction potentials

operating in the system. If classical ground-state configurations

for the N particles subject to that potential exist for which FN ¼
0, then those configurations necessarily attain the desired target

values of the collective variables.

This generalization of the collective-coordinate approach was

applied in three dimensions.21 In particular, multi-particle

configurations were generated for which S(k) f |k|a, |k| # K, and

a ¼ 1, 2, 4, 6, 8, and 10. The case a ¼ 1 is relevant for the

Harrison-Zeldovich-Peebles model of primordial density fluctu-

ations of the early Universe,77,78 superfluid helium,79 maximally

random jammed sphere packings,93 and spin-polarized

fermions.81,82 This analysis also provides specific examples of

interaction potentials whose classical ground states for finite-

sized systems are configurationally degenerate and disordered.

Employing this collective-coordinate numerical optimization

procedure, ground-state configurations of interacting particle

systems in the first three space dimensions have been constructed

so that the scattering of radiation exactly matches a prescribed

pattern for a set of wave vectors.27 It is demonstrated that the

constructed ground states are, counterintuitively, disordered

(i.e., possess no long-range order) in the infinite-volume limit.

Three classes of configurations with unique radiation scattering

characteristics were studied: (i) ‘‘stealth’’ materials, which are

transparent to incident radiation at certain wavelengths; (ii)

‘‘super-ideal’’ gases, which scatter radiation identically to that of

an ensemble of ideal gas configurations for a selected set of wave

vectors; and (iii) ‘‘equi-luminous’’ materials, which scatter radi-

ation equally intensely for a selected set of wave vectors.

Although stealth materials and super-ideal gases are subsets of

equi-luminous materials, we use this term to refer to materials

that scatter radiation more intensely relative to an ideal gas.

These materials that scatter radiation much more intensely than

an ideal gas for a set of wave vectors have enhanced density

fluctuations and show local clustering similar to polymers and

aggregating colloids.94,95 With the collective-coordinate inverse

procedure, the degree of clustering can be imposed by tuning the

scattering characteristics for certain wavelengths.

For purposes of illustration, disordered ‘‘stealth’’ configura-

tions are depicted in two dimensions in Fig. 4 for 168 particles for

two selected values of c. At the lowest c considered, the

configuration is seen not to have strong spatial correlations. At

the highest c value reported, the particles develop an exclusion

shell about their centers but the system still does not possess any

long-range order. A system size study was carried out that

revealed no long-range order when extrapolated to the infinite-

volume limit.
Fig. 4 Stealth particle patterns of 168 particles in two dimensions, as

adapted from ref. 27: (a) c ¼ 0.04167, (b) c ¼ 0.20238. Both systems are

disordered but at higher c, particles tend to repel one another to a greater

degree. The potential energy was minimized to within 1 � 10�17 of its

global minimum.
VI. Duality relations for classical ground states

The determination of the classical ground states of interacting

many-particle systems (global minimum energy configurations)
1164 | Soft Matter, 2009, 5, 1157–1173
is an outstanding problem in condensed-matter physics and

materials science.83,84 While classical ground states are readily

produced by slowly freezing liquids in experiments and computer

simulations, our theoretical understanding of them is far from

complete.

Much of the progress in rigorously identifying ground states

for given interactions has been done for lattice models, primarily

in one-dimension.84 The solutions in d-dimensional Euclidean

space Rd for d $ 2 are considerably more challenging. For
This journal is ª The Royal Society of Chemistry 2009



example, the ground state(s) for the well-known Lennard-Jones

potential in R2 or R3 are not known rigorously (although many

computer simulations support the conclusion that the hexagonal

close-packed crystal is its ground state).

Soft (bounded) interactions are easier to treat theoretically as

evidenced by recent progress in our understanding of ground

states of this class of potentials in R2 and R3.17,27,34,86,87 Moreover,

as we noted earlier, such interactions possess great importance in

a variety of soft matter systems.10,11,15,38,43

Nonetheless, new theoretical tools are required to make

further progress. Duality relations that link the energy of

configurations associated with a class of soft pair potentials to

the corresponding energy of the dual (Fourier-transformed)

potential have recently been derived.88 These duality relations

enable one to use information about ground states of short-

ranged potentials to draw new conclusions about the nature of

the ground states of long-ranged potentials and vice versa.

Among other results, they also have led to the identification of

unusual one-dimensional systems with ground-state ‘‘phase

transitions’’ and can be employed to make computational

searches for ground states more efficient.

Before discussing these duality relations, which take the form

of two theorems, we introduce some notation. Let U(rN) be twice

the total potential energy per particle in an N-particle system

with pairwise interactions, i.e.,

U
�
rN
�
¼ 1

N

X
i; j

4
�
rij

�
(6.23)

where 4(r) is a radial pair potential function and rij ¼ |rj � ri|. A

classical ground-state configuration is one that minimizes U(rN).

We consider those stable radial pair potentials 4(r) that are

bounded and absolutely integrable and call such functions

admissible. Thus, the corresponding Fourier transform ~4(k) in

d dimensions at wave number k exists. We recall that in a Bravais

lattice L, the space Rd can be geometrically divided into identical

regions called fundamental cells, each of which contains one

particle center.96 We denote the reciprocal Bravais lattice by L~. If

the Bravais lattice L has density r, then its reciprocal lattice L~has

density ~r ¼ r�1(2p)�d.
Theorem 1

If an admissible pair potential 4(r) has a Bravais lattice L

ground-state structure at number density r, then we have the

following duality relation for twice the minimized energy per

particle Umin:

(6.24)

where the prime on the sum denotes the zero vector should be

omitted, L~ denotes the reciprocal Bravais lattice, and ~4(k) is the

dual pair potential, which automatically satisfies the stability

condition, and therefore is admissible. Moreover, twice the

minimized energy per particle Ũmin for any ground-state struc-

ture of the dual potential ~4(k), is bounded from above by the

corresponding real-space minimized quantity Umin or, equiva-

lently, the right side of (6.24), i.e.,
This journal is ª The Royal Society of Chemistry 2009
(6.25)

Whenever the reciprocal lattice L~ at reciprocal lattice density ~r

¼ r�1(2p)�d is a ground state of ~4(k), the inequality in (6.25)

becomes an equality. On the other hand, if an admissible dual

potential ~4(k) has a Bravais lattice L~ at number density ~r, then

(6.26)

where equality is achieved when the real-space ground state is the

lattice L reciprocal to L~.

Whenever equality in relation (6.25) is achieved, then

a ground-state structure of the dual potential ~4(k ¼ r) evaluated

at the real-space variable r is the Bravais lattice L~ at density ~r ¼
r�1(2p)�d. Theorem 1 leads to another theorem (both of which

are proved in ref. 88) concerning phase coexistence.
Theorem 2

Suppose that for admissible potentials there exists a range of

densities over which the ground states are the side-by-side

coexistence of two distinct crystal structures whose parentage is

two different Bravais lattices, then the strict inequalities in (6.25)

and (6.26) apply at any density in this density-coexistence

interval.

Note that the ground states referred to in Theorem 2 are not

only non-Bravais lattices, they are not even periodic. The ground

states are the side-by-side coexistence of two crystal domains

whose shapes and relative orientations are complicated functions

of r.

On account of the ‘‘uncertainty principle’’ for Fourier pairs,

a non-localized (long-ranged) potential 4(r) has a corresponding

localized (compact) dual potential ~4(k). Similarly, a localized

(compact) potential 4(r) has a corresponding non-localized

(long-ranged) dual potential ~4(k). This property of Fourier pairs

and the duality relations of Theorem 1 enable one to use infor-

mation about ground states of short-ranged potentials to draw

new conclusions about the nature of the ground states of long-

ranged potentials and vice versa. In particular, three different

classes of admissible potential functions have been considered:

(1) compactly supported functions (such as the ones employed in

the collective-coordinate approach discussed in Section V); (2)

non-negative functions; and (3) completely monotonic functions.

For purposes of illustration, we discuss here in some detail, the

application of Theorem 1 to the class potential functions that

have been used in the collective-coordinate approach reviewed in

Section V. Recently, the ground states corresponding to a certain

class of oscillating real-space potentials 4(r) as defined by the

family of Fourier transforms with compact support such that

~4(k) is positive for 0 # k < K and zero otherwise have been

studied (see Fig. 5).17,86 Clearly, ~4(k) is an admissible pair

potential. In ref. 86, it was shown that in three dimensions the

corresponding real-space potential 4(r), which oscillates about

zero, has the body-centered cubic (bcc) lattice as its unique

ground state at the real-space density r ¼ 1=ð8
ffiffiffi
2

p
p3Þ (where we
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Fig. 5 (a) The localized square-mound potential [4(r) ¼ 3¼ 1 for 0 # r <

1 and zero otherwise] and overlap potential [4(r) ¼ 1 � 3r/2 + r3/2 for 0 #

r < 1 and zero otherwise] in R3. (b) The delocalized dual square-mound

potential ~4(k) ¼ p3/2J3/2(k)/(2k)3/2 multiplied by p3/6 and dual overlap

potential ~4(k) ¼ 6p2J2
3/2(k/2)/k3.
have taken K ¼ 1). Moreover, it was demonstrated86 that for

densities greater than 1=ð8
ffiffiffi
2

p
p3Þ, the ground states are degen-

erate such that the face-centered cubic (fcc), simple hexagonal

(sh), and simple cubic (sc) lattices are ground states at and above

the respective densities 1=ð6
ffiffiffi
3

p
p3Þ,

ffiffiffi
3

p
=ð16

ffiffiffi
2

p
p3Þ, and

1=ð8
ffiffiffi
2

p
p3Þ.

Because all of the aforementioned ground-states are Bravais

lattices, the duality relation (6.24) can be applied to infer the

ground states of real-space potentials with compact support.

Specifically, application of the duality theorem in R3 and the

results of ref. 86 enable us to conclude that for the real-space

potential 4(r) that is positive for 0 # r < D and zero otherwise,

the fcc lattice (dual of the bcc lattice) is the unique ground state at

the density
ffiffiffi
2

p
and the ground states are degenerate such that the

bcc, sh and sc lattices are ground states at and below the

respective densities ð3
ffiffiffi
3

p
Þ=4, 2=

ffiffiffi
3

p
, and 1 (taking D ¼ 1). Specific

examples of such real-space potentials, for which the ground

states are not rigorously known, include the ‘‘square-mound’’

potential [4(r) ¼ 3 > 0 for 0 # r < 1 and zero otherwise] and the

‘‘overlap’’ potential a(r;D/2),72 equal to the intersection volume
1166 | Soft Matter, 2009, 5, 1157–1173
of two d-dimensional spheres of diameter D whose centers are

separated by a distance r divided by the volume of a sphere

(discussed in Section II), and thus has support in the interval

[0, D). Moreover, any structure, periodic or not, in which the

nearest-neighbor distance is greater than unity is a ground state.

Importantly, at densities corresponding to nearest-neighbor

distances that are less than unity, the possible ground-state

structures are considerably more difficult to ascertain. For

example, it has been argued in ref. 43 (with good reason) that

real-space potentials whose Fourier transforms oscillate about

zero will exhibit polymorphic crystal phases in which the parti-

cles that comprise a cluster sit on top of each other. The square-

mound potential is a special case of this class of potentials and

the fact that it is a simple piecewise constant function allows for

a rigorous analysis of the clustered ground states for densities in

which the nearest-neighbor distances are less than the distance at

which the discontinuity in 4(r) occurs.

The duality relations have also led to the identification of

a one-dimensional system that exhibits an infinite number of

‘‘phase transitions’’ at T ¼ 0 from Bravais to non-Bravais lattices

over the entire density range as well as a conjecture regarding the

ground states of purely repulsive monotonic potentials.88

Moreover, inequalities (6.25) and (6.26) provide a computational

tool to estimate ground-state energies or eliminate candidate

ground-state structures as obtained from annealing simulations.

The Gaussian potential is a special case of a purely repulsive

monotonic potential, and is a useful interaction to model poly-

mer systems.11,43 The phase diagram of such systems in various

spatial dimensions has recently been investigated97 in order to

understand the effect of dimensionality, apply the aforemen-

tioned duality relations, and to test a conjecture of ref. 88 con-

cerning completely monotonic potentials. The Gaussian

potential is an example of the class of potentials in which both

the real-space and dual potentials are non-negative functions.

The authors of ref. 43 have argued that such systems display re-

entrant melting with an upper freezing temperature.

Elsewhere, corresponding duality relations for potential

functions that also include three-body and higher-order inter-

actions will be derived.98

VII. Construction of configurations with target pair
correlations

The subject of atomic and molecular distribution functions has

enjoyed a long and rich history. However, not surprisingly for

a scientific area so characterized by intrinsic complexity, some

deep problems of incomplete understanding still persist.

One such open question concerns the realizability of a given

candidate pair correlation function g2(r), namely, whether it

actually represents the pair correlation of some many-particle

configuration at number density r > 0. This is called the realiz-

ability problem.30,72 Several necessary conditions that must be

satisfied by the candidate are known, including nonnegativity of

g2(r) and its associated structure factor S(k), as well as

constraints on implied local density fluctuations.99 It has recently

come to light that a positive g2 at a positive r must satisfy an

uncountable number of necessary and sufficient conditions for it

to correspond to a realizable point process.100,101 However, these

conditions are very difficult (or, more likely, impossible) to check
This journal is ª The Royal Society of Chemistry 2009



for arbitrary dimensions. In other words, given r and g2, it is

difficult to ascertain if there are some higher-order functions g3,

g4, . for which these one- and two-particle correlation functions

hold.

To shed light on the realizability problem, a simple one-

dimensional lattice model, with single-site occupancy, and

nearest-neighbor exclusion has been investigated.32 The

following results were obtained: (a) pair correlation realizability

over a nonzero density range, (b) violation of the Kirkwood

superposition approximation for g3, and (c) the inappropriate-

ness of the so-called ‘‘reverse Monte Carlo’’ method that uses

a candidate pair correlation function as a means to suggest

typical many-body configurations. Note that Chayes and

Chayes102 proved that for any pair correlation function (meeting

mild conditions) that is derivable from an N-body Hamiltonian,

there always exists a unique ‘‘effective’’ two-body potential that

produces the same pair correlation function (but generally not

the higher-body correlation function g3, g4, g5, etc.). This

theorem has been successfully applied to polymer solutions to

obtain effective pair interactions from g2.103,104

Elsewhere, so-called iso-g2 processes were studied in the

equilibrium regime. These consist of a sequence of equilibrium

many-body systems that have different number densities but

share, at a given temperature, the same ‘‘target’’ pair correlation

function. In other words, in these processes, density-dependent

interactions identically cancel the usual density variation of

many-body pair correlation functions.28,29,33 Target pair corre-

lation functions studied include the unit step function as well as

the zero-density limit of the square-well potential (for which g2(r)

¼ exp [�b4(r)]). Formal density expansions for effective pair

potentials were derived with this iso-g2 property, showing how

successive terms in that expansion can be determined iteratively.

Explicit results through second density order have been obtained

for two types of ‘‘target’’ pair correlation functions, and the

conditions under which realizability can be attained were

explored.33

In order to explore and gain insight into the basic statistical

geometric features of random sphere packings, the notion of a g2-

invariant process was introduced.30 A g2-invariant process is one

in which a given non-negative pair correlation g2(r) function

remains invariant as density varies for all r over the range of

densities

0 # r # r* (7.27)

The terminal density r* is the maximum achievable density for

the g2-invariant process subject to satisfaction of the known

necessary conditions on the pair correlation function. The

determination of the terminal density for various forms of g2 that

putatively correspond to sphere packing has been solved using

numerical and analytical optimization techniques.30,35–37

To test whether such g2 values at terminal density r* are indeed

realizable by sphere packings, stochastic optimization tech-

niques, originally developed to construct material microstruc-

tures with targeted lower-order correlation functions,105–107 were

employed.31,34 In a construction algorithm, an initial configura-

tion of particles evolves such that the final configuration

possesses a set of targeted correlation functions up to some ‘‘cut-

off’’ distance. This is done by choosing the objective function to
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be a ‘‘squared error’’ involving a set of targeted correlation

functions. The evolving configurations are induced by mini-

mizing this objective function via a stochastic optimization

procedure.

For example, for the case of d-dimensional packing of

congruent spheres of diameter D in which the pair correlation

function is taken to be

g2ðrÞ ¼
Z

rs1ðrÞ
dðr � DÞ þQðr � DÞ (7.28)

where Z represents the average contact value per sphere and s1(r)

¼ dpd/2rd�1/G(1 + d/2) is the surface area of a d-dimensional

sphere,30 it was found that the terminal packing fraction f*

(fraction of space covered by the spheres, equal to r*v1(D/2)) and

the associated average contact number Z* are given by

f* ¼
d þ 2

2dþ1
; Z* ¼

d

2
(7.29)

Numerical evidence suggests that such a pair correlation is

achieved by a single sphere packing configuration for any d $ 2.34

Such a pair correlation function Fig. 6 shows a realization of

such a packing in two dimensions. Of course, in any simulation,

pair distances must binned and sampled up to some cut-off

distance. Note that for a sufficiently large system, the targeted

correlation for a single configuration approaches that of one

obtained from an ensemble of configurations by ergodicity.

Because the realizability problem is far from being solved, it

remains an active area of research. For example, it has been

conjectured that any radial, non-negative pair correlation func-

tion characterized by a hard-core, which decays sufficiently

rapidly to unity, is realizable by a translationally invariant

disordered sphere packing in d-dimensional Euclidean space for

asymptotically large d if and only if S(k) $ 0.108 Although there is

mounting evidence to support this conjecture,35,37,108 a proof of it

is a great challenge.
VIII. Designing isotropic pair potentials for targeted
bulk properties

Inverse methods have recently been devised to optimize inter-

actions of many-particle systems to achieve targeted novel bulk

properties. To illustrate the interesting possibilities, we discuss

three specific target examples in some detail: the thermal

expansion coefficients and Poisson’s ratio.
A. Thermal expansion coefficients

Control of thermal expansion properties of materials is of tech-

nological importance due to the need for structures to withstand

ambient temperature variations. In the technological realm,

materials with zero thermal expansion (those that do not expand

or contract upon heating) can aid in the longevity of space

structures, bridges and piping systems.50,109 Materials with very

large thermal expansion coefficients could function as actuators,

and those with negative thermal expansion coefficients may be of

use as thermal fasteners.48

Negative thermal expansion (NTE) behavior, a well-known

but unusual phenomenon in many-particle systems, has been

observed only in multicomponent materials with open unit cell
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Fig. 7 (a) Schematic depiction of an isotropic pair potential (scaled by

the well depth 3) with a softened interior in its basin of attraction

following ref. 23. Thermal fluctuations cause the average nearest-

neighbor distance to decrease, resulting in an overall contraction of the

system upon heating. (b) The optimized ‘‘softened interior core’’ (SIC)

potential, as adapted from ref. 23, has NTE behavior over a wide range of

temperatures.
Fig. 6 (a) Graph of the target pair correlation function g2(r): Dirac

d function plus a step function. (b) A two-dimensional configuration of

500 particles that realizes this targeted form for g2(r) up to a dimension-

less distance of r/D ¼ 2.5, as adapted from ref. 34. The configuration

consists of only dimers at the terminal packing fraction f* ¼ 0.5 with an

average contact value Z ¼ 1.0.
structures in which the bonding of component particles is highly

directional. Perhaps the most common example of a solid

exhibiting NTE is that of ice, which contracts upon melting into

liquid water.110 Another example of a material that undergoes

NTE is zirconium tungstate, ZrW2O8, which exhibits this

behavior for an extremely large temperature range, namely 0.3 K

through 1050 K.111

An isotropic interaction potential has been optimized that

gives rise to negative thermal expansion (NTE) behavior in

equilibrium many-particle systems in the solid state in both two

and three dimensions over a wide temperature and pressure

range (including zero pressure).23 Although such anomalous

behavior is well-known in materials with directional interactions

(e.g., zirconium tungstate), this is the first time that NTE

behavior has been established to occur in the solid state of single-
1168 | Soft Matter, 2009, 5, 1157–1173
component many-particle systems for isotropic interactions.

(Note that NTE has been shown to occur in a two-dimensional

fluid with isotropic interactions.112,113) Moreover, it was estab-

lished that a sufficient condition for the potential to give rise to

a system with NTE behavior is that it exhibits a softened interior

core within a basin of attraction (as depicted schematically in

part (a) of Fig. 7). Using an optimization procedure to find

a potential that yields a strong NTE effect and constant-pressure

Monte Carlo simulations, it was shown that as the temperature

was increased, the ‘‘softened interior core’’ potential [part (b) of

Fig. 7], the system exhibited negative, zero, and then positive

thermal expansion before melting (in both two and three

dimensions).
B. Poisson’s ratio

Another interesting target bulk property is Poisson’s ratio n. In

particular, it is desired to optimize interactions to achieve

a negative Poisson’s ratio (NPR), so-called ‘‘auxetic’’ mate-

rials.114,115 When such materials are stretched in a particular
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direction, they expand in an orthogonal direction. Auxetic

behavior is a counterintuitive material property that has been

observed only in a handful of elastically isotropic materials that

often have intricate structures and characteristic lengths much

larger than an atomic bond length, such as foams51 and other

cellular materials.52–54,56 Auxetic materials have a great deal of

technological potential; for example, they can be used as strain

amplifiers.115 If auxetic materials are used as a matrix in the

manufacture of miniature sensors based on piezoceramic

composites, the range of operating frequencies of a piezoelectric

transducer is widened and the sensitivity of the device is

increased.116 They can also be used as mechanical components of

microelectromechanical systems, and as transducing structures,

shock absorbers and fasteners.56

It has been recently found that under tension (i.e., negative

pressure), many-body two- and three-dimensional systems with

isotropic two-body interaction potentials can have a negative

Poisson’s ratio in the crystal phase as long as certain linear

equalities and inequalities involving the interaction potential 4(r)

are satisfied.26 This is an unexpected result, since it describes an

inherently anisotropic behavior that arises from isotropic inter-

actions; indeed, most previously discovered auxetic materials

exhibit complex, carefully designed anisotropic interactions. This

can be shown to be the case at zero-temperature for the elastically

isotropic triangular lattice in two dimensions, and for the fcc

lattice in three dimensions, which, surprisingly, can also be made

to be elastically isotropic. One can show that in the former case,

the simple Lennard-Jones potential can give rise to auxetic

behavior (see Fig. 8). In the three-dimensional case, auxetic

behavior is exhibited even when the elastic constants are con-

strained such that the material is elastically isotropic. Finding

auxetic behavior over a wide range in temperature and pressure is

a challenging optimization problem that has yet to be addressed.

This analysis suggests that auxetic behavior only occurs in

crystals under the nonequilibrium condition of negative pres-

sures when the system contains only pair interactions and is

elastically isotropic. Such auxetic materials may potentially be

experimentally produced using synthetic techniques that rely on

kinetic effects; examples include tempered glass,117 and even
Fig. 8 Region of lattice constants (indicated by the rectangular box) for

which Poisson’s ratio is negative in a triangular lattice, using the Len-

nard-Jones interaction potential, 4LJ, as adapted from ref. 26. Pressure is

positive to the left of the dotted line and negative to the right; thus,

auxetic behavior only occurs at negative pressure. To the right of the

rectangular box, the lattice becomes unstable.
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colloidal crystals.118 However, a three-body potential has been

devised that yields NPR behavior in close-packed two- and three-

dimensional lattices by construction at zero-temperature and

positive pressure.26 In order to produce this behavior, the

potential has a built-in energy cost associated with deforming the

equilateral triangles in the two-dimensional triangular lattice and

the three-dimensional close-packed lattices. The interested reader

is referred to ref. 25 for the explicit form of this three-body

potential.

IX. Future work and conclusions

In this section, we discuss future directions and close with

concluding remarks.

A. Interaction potentials for targeted configurations at positive

temperatures

Most of the inverse techniques reviewed here were directed

toward obtaining ground-state (T ¼ 0) structures. However, the

same methods can be extended to treat many-particle configu-

rations at positive temperatures. For example, an ability to

control the formation of point, line, and planar defects of crystals

under various growth conditions at positive temperatures is

highly desirable. The required interactions to achieve represen-

tative amorphous target structures, including equilibrium liquids

at positive temperature and low-temperature glasses, is another

interesting application.

B. Interaction potentials for targeted multicomponent systems

It is straightforward to extend the zero-temperature and near-

melting optimization schemes18,19 to multicomponent systems.

The parameter space, which now includes species composition

and effective particle size ratios, becomes much larger than the

single-component instance, and therefore one must be careful in

selecting the family of potential functions that must be optimized

as well as the target structures. In order to make the search

manageable, one could limit the choice of potential functions to

those that are consistent with interparticle interactions found in

colloidal systems. In addition to hard-sphere-like interactions,

these include long-range repulsive, short-range attractive and

averaged dipolar interactions. It has recently been shown that the

electrostatic interaction between oppositely charged particles,

which are long-range attractive interactions, can result in a rich

class of stable ionic colloidal crystals,14 as illustrated in Fig. 9.

Motivated by this remarkable investigation, one can imagine

optimizing a family of potential functions based on such inter-

actions that target an even broader class of crystal structures.

C. Anisotropic interactions

We have seen that there exist nontrivial families of radial pair

potentials for which interesting targeted structures are the stable

low-temperature forms. Consequently, it was not necessary in

principle to call upon angle-dependent or non-additive interac-

tions to form such nonconventional lattices. However, aniso-

tropic pair interactions offer greater flexibility to achieve targeted

structures and therefore provide a new direction to apply our

inverse methods.
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Fig. 9 Theoretically predicted stable binary crystals of oppositely

charged colloids with different stoichiometries, as obtained from ref. 14

(with the permission of the authors).
Recently, a new generation of colloidal particles with chemi-

cally or physically patterned surfaces has been designed and

synthesized in an attempt to manipulate the valency of the

colloidal particles.4,119,120 This synthesis effort aims to generate

‘‘superatoms’’ (i.e., atoms at the nano and microscopic length

scales) in order to reproduce and extend traditional collective

molecular behavior to larger length scales; thus, opening the new

field of ‘‘supra-particle’’ colloidal physics.

One simple way to model such interactions is via ‘‘patchy’’

particles, i.e., particles with discrete, attractive interaction sites at

prescribed locations on the particle surface. Molecular simulations

have been carried out to investigate the self-assembly of patchy

particles.12,16,121 Chains, sheets, rings, icosahedra, square pyramids,

tetrahedra, and twisted and staircase structures have been obtained

through suitable design of the surface pattern of patches. Patchy

particles represent a new class of building blocks for the fabrication

of colloids with unique structural characteristics.

Thus, it would be highly desirable to optimize patchy particle

interactions to achieve low-coordinated crystal structures,

amorphous structures, and quasicrystals. Again, this can be

accomplished by appropriate simple extensions of the zero-

temperature and near-melting optimization schemes that were

originally implemented for isotropic interactions.

D. Inverse optimization methods for novel targeted bulk

properties

A full-blown and general optimization scheme that can be used

to find optimized interactions over a large family of potential

functions for a given set of bulk properties over a wide range of

conditions has yet to be devised. For example, optimizing

interactions in a many-particle system so that it exhibits auxetic

behavior over a wide range of temperatures and pressures is

a challenging problem. One path towards the general goal is to

formulate a methodology that incorporates a set of bulk prop-

erties in the objective function in the same spirit as has been done

for topology optimization of composite materials,48,59,61,109 but in

a molecular dynamics simulation. Specifically, the objective

function can either be the bulk property itself (which is
1170 | Soft Matter, 2009, 5, 1157–1173
extremized) or a squared ‘‘error’’ function involving a targeted

bulk property (which is minimized) during a molecular dynamics

simulation. The simulation would start from some initial

configuration and randomly distributed velocities for a initial

parameterized potential. At fixed time intervals, the objective

function would be computed and then the parameters of the

potential updated according to some optimization routine (e.g.,

simulated annealing). This procedure would then be iterated

until the objective function is extremized.

An intriguing set of target materials are those that exhibit

‘‘inverse melting.’’66 Inverse melting is a first-order phase tran-

sition involving the crystal and liquid, but with a reversal from

conventional melting in that addition of heat to the liquid, at

constant pressure, causes that liquid to freeze into a crystalline

solid. As a result of this reversal, the crystal has higher entropy

than the isotropic liquid with which it coexists. This is a rare

phenomenon, but real-world examples exist. For example, the

transition itself forms the basis of the zone-refining method for

purification.122 Inverse melting has been studied as a ‘‘forward’’

problem using the Gaussian core potential model.67 However,

devising optimized interactions to make such unusual macro-

scopic behavior as robust as possible over a wide range of

conditions has heretofore not been considered.
E. Toward experimentally realistic interactions

An important component of future research should be the

development of robust potentials (even if not optimal) for tar-

geted structures and bulk properties that can be synthesized

experimentally with colloids or other soft matter systems. It is

clear that there is wide range of target structures and bulk

properties that can be achieved with pairwise additive potentials,

both isotropic and anisotropic. In future research, it will be

highly desirable to determine, when possible, the pair interac-

tions that can be either be synthesized experimentally with

colloids using current technology (e.g., depletion, screening

length, dipolar interactions, etc.) or can be done so in the near

future. The latter could serve as a challenge to experimentalists.

Real interactions in many-particle materials at nondilute

concentrations are necessarily non-additive, i.e., intrinsic three-

body and higher-order interactions beyond pair interactions

[explicitly given in eqn (1)] are inevitable.89,104 Thus, it is crucial to

determine how the effective pair potentials that result from the

inverse approach correspond to the many-body interactions that

arise in actual colloidal systems. This important problem has

received little attention in the literature. It has been shown that

effective pair interactions that approximate non-additive potentials

are in fact density-dependent and hence one must be careful in

carrying out the resulting statistical-mechanics.89 Guided by

experiments, one can determine the real two-body and three-body

interactions that together mimic the effective pair potential required

to achieve the targeted many-particle configurations using both

theoretical techniques and molecular dynamics simulations. This

will require continual feedback between theory and experiment.
F. Incorporating dynamics

The dominant theme of this Review Article concerned the

determination of potentials that spontaneously create target
This journal is ª The Royal Society of Chemistry 2009



structures under equilibrium or near-equilibrium circumstances.

A conjugate kinetic problem also exists, in which selection

among alternative irreversible scenarios (involving distinct

dynamical evolutions) itself becomes a tool for selection between

alternative structural outcomes. The full potential of self-

assembly to control and manipulate the structure of materials at

the microscopic and nanoscopic level cannot be realized without

a deeper understanding of nonequilibrium processes at those

length scales. For example, a recently developed model demon-

strates this point by showing how the irreversible collisions in

particle suspensions that generally produce diffusive chaotic

dynamics can also cause the system to self-organize to avoid

future collisions.123 This can lead to a self-organized non-fluc-

tuating quiescent state, with a dynamical phase transition sepa-

rating it from fluctuating diffusing states. This investigation and

many other nonequilibrium studies, too numerous to list here,

provide exciting glimpses into the future of self-assembly. Inverse

optimization techniques that exploit the dynamics of many-

particle systems to achieve self-assembly have yet to be developed

and should offer greater flexibility for novel material design.
G. Conclusions

Although in their infancy, the inverse approaches reviewed here

have already shown a capability for controlling self-assembly to

an exquisite degree. Indeed, future applications could revolu-

tionize the manner in which materials are designed and fabri-

cated, especially if there is continual feedback between theory

and experiment. There are recent examples in which output from

material optimization studies have been combined with experi-

ments to produce novel materials or material components.124–127

These inverse methods have led to a deeper fundamental

understanding of the mathematical relationship between the

collective structural behavior of many-body systems and their

interactions. For example, we have seen that low-coordinated

crystal structures, chain-like arrays, and layered structures do

not require directional interactions for self-assembly.18–22

Although soft matter with some of the interactions reviewed in

this article cannot be synthesized with current technology, other

optimized interactions described here that yield either novel

structures or bulk properties which are rather standard or could

easily made in the laboratory.20,23,26 For practical purposes, it will

be important that future research be directed toward producing

optimized interactions with the constraint that they are experi-

mentally achievable. We envisage being able to ‘‘tailor’’ poten-

tials that result in novel materials with varying degrees of

disorder, thus extending the traditional idea of self-assembly to

incorporate not only crystals but amorphous and quasicrystal

structures.
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