
IOP PUBLISHING PHYSICAL BIOLOGY

Phys. Biol. 5 (2008) 036010 (10pp) doi:10.1088/1478-3975/5/3/036010

Simulating tumor growth in confined
heterogeneous environments

Jana L Gevertz1, George T Gillies2,3,4 and Salvatore Torquato1,5,6,7,8

1 Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
2 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
3 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
4 Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA 23298, USA
5 Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
6 Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton,
NJ 08544, USA
7 Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA

E-mail: torquato@princeton.edu

Received 6 May 2008
Accepted for publication 12 August 2008
Published 29 September 2008
Online at stacks.iop.org/PhysBio/5/036010

Abstract

The holy grail of computational tumor modeling is to develop a simulation tool that can be
utilized in the clinic to predict neoplastic progression and propose individualized optimal
treatment strategies. In order to develop such a predictive model, one must account for many
of the complex processes involved in tumor growth. One interaction that has not been
incorporated into computational models of neoplastic progression is the impact that
organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason,
we have taken a cellular automaton algorithm that was originally designed to simulate
spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of
tissue shape and structure. We show that models that do not account for organ/tissue geometry
and topology lead to false conclusions about tumor spread, shape and size. The impact that
confinement has on tumor growth is more pronounced when a neoplasm is growing close to,
versus far from, the confining boundary. Thus, any clinical simulation tool of cancer
progression must not only consider the shape and structure of the organ in which a tumor is
growing, but must also consider the location of the tumor within the organ if it is to accurately
predict neoplastic growth dynamics.
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Abbreviations list

CA cellular automaton
ISF interstitial fluid
RSA random sequential addition

1. Introduction

Computational modeling of tumor growth has been an active
area of research for the last several decades. An extremely

8 Author to whom any correspondence should be addressed.

diverse number of mechanisms have been explored via
such models, and a multitude of computational/mathematical
techniques have been employed. While there is a large
amount of diversity in existing computational models, all
models have the common aim of predicting certain features
of tumor growth in the hope of finding new ways to either
control, stop or reverse neoplastic progression. Given a model
which yields reproducible and accurate predictions, the effects
of different genetic, epigenetic and environmental changes,
as well as the impact of therapeutically targeting different
aspects of the tumor, can be probed via computer simulations.
This allows modeling to guide and augment experimentation,
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as new biological/basic research questions can be explored
in silico before performing costly experiments.

While computer models of tumor growth have, in
some instances, proven successful at driving experimentation,
another important role for tumor modeling can be found in
the clinic. Perhaps the most important goal of computational
tumor modeling is to reliably predict cancer progression with
only a limited amount of data on a patient’s tumor type
and location (e.g., genetic data from biopsy samples and
tumor morphologies from magnetic resonance or computed
tomography imaging studies). Such a model would not only
allow an oncologist to predict tumor progression, but can also
help them to develop a more individualized treatment strategy
for each cancer patient.

Given the enormous number of factors that drive tumor
growth and determine treatment response, one would expect
that such a model must incorporate the many complexities of
tumor growth. Much progress has been made in incorporating
a number of genetic, cellular and tissue properties, as well as
some same-scale and multi-scale interaction loops, into tumor
growth models. Although a comprehensive exploration of all
such models is beyond the scope of this text, one point that
should be noted is that, to our knowledge, no models of tumor
growth account for the structure and composition of the organ
in which the tumor grows, or the location of the tumor within
the organ. Hence, in this paper we propose an algorithm
that considers the impact that physical confinement and organ
heterogeneity have on tumor shape, size and spread.

Before discussing our model, it is useful to briefly explore
the types of features that computational tumor models have
been able to incorporate. Several models have explored the
impact that different sequences of genetic mutations have on
tumor emergence and survival [1, 2]. Models that incorporate
the impact of genetic mutations tend to be focused inward
on changes that occur within the cell. Other classes of
models have also looked outward, for example considering
the competition for space and resources that occurs between
normal and cancerous cells [3, 4]. Another type of competition
that has been modeled is that between the immune system and
the neoplastic mass [5, 6]. The immune system is especially
important to consider when simulating the response of tumors
to different treatment strategies, which will be an essential
aspect of any model with clinical applications. Although
thus far we have only discussed competitive feedback, the
tumor can also alter the host in ways that are beneficial for its
development, for example by altering the blood supply to fit
the needs of the tumor [7, 8].

From a strictly mechanical perspective, the presence of
a solid mass growing in healthy tissue produces solid stress.
Models (see [9–11] for a noncomprehensive list) have also
been developed to look at this form of mechanical feedback
in which the tumor deforms the surrounding tissue due to the
stress it imposes on the environment, and the environment in
turn alters tumor growth dynamics. In this set of models, tumor
growth inhibition depends on the stiffness of the surrounding
environment. In an in vitro setting, this corresponds to the
stiffness of the agarose gel, and in vivo this corresponds to
the stiffness of the extracellular matrix environment [12].

Interestingly, we note that agarose gels also serve another
function as in vitro models of tissues: test beds for evaluating
the convection-enhanced flow of antitumoral agents delivered
interstitially within the brain via positive pressure infusion
[13]. While these mechanical models are useful in studying
the response of a tumor to solid stress, they do not address
the complications that arise when tumors grow in physically
confined and heterogeneous spaces such as the brain or near
an organ boundary.

Biomechanical analysis methods have also been utilized
in yet another class of tumor growth models in order to
address the somewhat counterintuitive point that the surgical
debulking of brain tumors (i.e., creating space within the
brain), which is an absolute clinical necessity, can actually
lead to induced regrowth within the peritumoral region, as
proposed in [14]. Finally, we note that there has also been
a movement toward modeling the cellular-scale phenomena
that take place in the peritumoral region, and that these
efforts represent touch points between mechanistic statistical
approaches to understanding tumor growth and those that are
centered largely on pathological observations. For the case of
primary malignant brain tumors, these include studies of the
nanodynamics of invadopodial extension from glioma cells
as measured by atomic force microscopy [15], chemotactic
signaling as a possible means for initiating tumor growth
by producing targeted movement of one glioma cell toward
another [16], and glioma cell invasion as driven by the flow of
the interstitial fluid [17]. In this paper, we seek to extend the
analytical/computational understanding of tumor growth by
incorporating geometric confinement and heterogeneity issues
in ways that will ultimately impact the clinical utility of such
biophysical models across the spectrum of approaches.

The effects of physical confinement on tumor growth have
been studied experimentally. In pioneering work done by
Helmlinger et al [12], LS174T human colon adenocarcinoma
cells were grown in cylindrical glass tubes with a radius that is
much smaller than the length of the tube. They found that cell
aggregates in 0.7% gel placed in a capillary tube grew to take
on an ellipsoidal shape, driven by the geometry of the capillary
tube. However, the same cells grown outside a capillary tube
developed into a spheroid-shaped tumor. This experiment
clearly highlights that geometric confinement alters the shape
and growth dynamics of a developing tumor [12]. However, to
our knowledge, no existing model of tumor growth accounts
for geometric confinement effects on the size and shape of a
growing tumor.

In keeping with the goal of developing a clinically relevant
cancer simulation tool that accurately predicts in vivo tumor
growth dynamics, shape and spread throughout an organ,
computational models must consider the location of a tumor
within the organ, and the physical constraints placed on
growth by that organ. In this paper, we modify an existing
computational model of tumor growth [18] to incorporate the
effects of environmental confinement and heterogeneity on
neoplastic progression. We show that failure to account for
organ geometry and topology leads to inaccurate predictions
about the size, shape and spread of the tumor after sufficiently
large times.
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2. Methods

In order to simulate tumor growth in confined heterogeneous
environments, we have adapted a cellular automaton (CA)
model developed by Kansal et al [18]. Using this model, it was
shown that three-dimensional tumor growth and composition
can be realistically predicted by four microscopic parameters
that account for the nutritional needs of the tumor, cell-
doubling time and an imposed spherical symmetry term
[18]. This model has been used as the basis for a second
study, in which a distinct subpopulation was introduced into
a homogeneous tumor. It was shown that the emergence
and survival of one subpopulation can drastically alter tumor
growth dynamics, suggesting that prognosis based on the
assumption of a monoclonal tumor can be markedly inaccurate
[19]. The original CA model has also been applied to study
the effectiveness of chemotherapy applied after surgery. It was
shown that patient prognosis is severely compromised when
chemotherapy-resistant cells are not localized in the neoplasm
[20]. In these versions of the model, oxygen and nutrient levels
were implicitly determined by the distance of a cell from the
tumor’s edge and center, as well as by the four microscopic
parameters in the algorithm. This simplification was made in
an attempt to develop a minimalistic model of tumor growth.
In order to incorporate a higher level of biological realism,
we have also modified the CA model to study the feedback
that occurs between the growing tumor and the evolving host
blood supply [8]. This way, the state of each cancer cell is
determined by the blood supply and oxygen levels.

In all four of these studies, the effects of mechanical
confinement were limited to one parameter Rmax, which
imposes a maximum radius on a spherically symmetric tumor.
In order to generalize the CA model so that it can be
applied to tumors growing in organs of any shape with
nonhomogeneous tissue structure in an arbitrary Euclidean
space dimension d, it is necessary to remove all radially
symmetric assumptions from the evolution rules. We have
intentionally chosen to generalize the original CA model
instead of jumping to incorporate the effects of physical
confinement and environmental heterogeneity into a more
advanced model, such as the vascular growth model. This
is because we want to verify that these rules are viable in a
simplified model of tumor growth before utilizing the rules
in a more complex model. If the modified rules were not
successful to grow simplified tumors, they would certainly
fail if we tried to implement the rules in a model with a
higher level of complexity. Further, taking this approach is
similar to how we developed the vascular algorithm—we first
developed a set of simple rules that qualitatively mimicked
tumor growth, and at a later time we added the biological detail
of the vasculature. Our goal is not to build up complexity until
we can be assured that the individual pieces yield qualitatively
realistic and relevant results. Finally, we have shown in [8]
that vasculature incorporation does not qualitatively change
the shape and size of a growing tumor, meaning we are not
sacrificing much at an early stage by using the original CA
model instead of the vascular growth algorithm.

In this section, we will discuss the changes that must be
made to the original CA algorithm in order to account for

the effects that physical confinement and organ heterogeneity
have on tumor growth. As we describe the new algorithm,
we also explicitly state how the new algorithm is similar to,
and differs from, the original CA model, thus presenting the
steps involved in both algorithms simultaneously. In a future
paper, we will tackle the problem of merging the confined and
heterogeneous growth algorithm with the vascular algorithm.

The first step required to generalize the original CA
algorithm is to define the ‘growth-permitting region’; that is,
the environment in which the tumor can grow. The tissue
region is initialized by generating the automaton cells. In both
algorithms, the fixed underlying lattice for our algorithm is the
Delaunay triangulation, which is the dual lattice of the Voronoi
tessellation [18, 21]. In order to develop the automaton cells
(which can be thought of as representing a cluster of biological
cells), a prescribed number of random points are generated
using the process of random sequential addition (RSA) of
hard circular discs [18, 21]. Points that fall too close to
any other point are rejected, and all others are added to the
system. Each cell in the final Voronoi lattice will contain
exactly one of these accepted sites. The Voronoi cell is then
defined by the region of space nearer to a particular site than
any other site. In two dimensions, the RSA points are fed to a
program based on the sweepline Voronoi algorithm developed
by Fortune [22], and the result is a collection of polygons that
fill the plane. In three dimensions, the points are fed to an
algorithm developed by Donev et al [23], and the result is a
collection of polyhedra that fill space. Once the automaton
cells have been created, the new algorithm requires that cells
must be divided into one of the two regimes: automaton
cells within the growth-permitting environment and automaton
cells within the growth-prohibiting environment. The
boundary between the two cell types can be arbitrarily chosen
by the user, or can be chosen to match the structure of a
particular organ. In order to illustrate the versatility of the
algorithm, we will consider tumor growth in four distinct
regions: an ellipse, a random two-dimensional asymmetric
environment, a two-dimensional representation of the cranium
and a three-dimensional ellipsoid.

We can now consider the algorithm that is used to study
tumor progression in confined heterogeneous regions. After
performing the first step of determining the automaton cells
and denoting each cell as either growth-permitting or growth-
prohibiting, a tumor is introduced into the tissue by designating
any one or more of the growth-permitting automaton cells as
a proliferative cancer cell. Time is then discretized into units
that represent one real day. At each time step

• Each cell is checked for type: nonmalignant, proliferative,
quiescent or necrotic. Proliferative cells are actively
dividing cancer cells, quiescent cancer cells are those that
are alive, but do not have enough oxygen and nutrients to
support cellular division and necrotic cells are dead cancer
cells. This step occurs in both the original and modified
algorithms.

• In both versions of the algorithm, nonmalignant cells and
tumorous necrotic cells are inert. While nonmalignant cell
division occurs in some organs, a hallmark of neoplastic
growth is that tumor cells replicate significantly faster than
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the corresponding normal cells. Hence, we work under
the simplifying assumption that nonmalignant division
rates are so small compared to neoplastic division rates
that they become relatively unimportant in the time scales
we are considering. In those cases where this does not
hold, nonmalignant cellular division would have to be
incorporated into the model.

• Quiescent cells more than a certain distance δn from the
tumor’s edge are turned necrotic. The tumor’s edge, which
is assumed to be the source of oxygen and nutrients,
consists of all healthy cells that border the neoplasm.
In the original algorithm, δn depended on a nutritional
parameter a and the current radius of the tumor. Since the
algorithm is now being adapted to consider asymmetric
tumor growth, we instead define the following critical
distance for quiescent cells to turn necrotic:

δn = aL
(d−1)/d
t ,

where d is the dimension of the tissue and tumor in
the model and Lt is the distance between the geometric
center of the tumor, given by

(
xc

1, . . . , x
c
d

)
, and the

tumor edge cell that is closest to the quiescent cell under
consideration. The center coordinates xc

i for all i � d are
given by

xc
i = x1

i + · · · + xk
i

k
,

where k is the number of automaton cells contained within
the tumor.

• Each proliferative cell will attempt to divide with
probability pdiv into the space of a growth-permitting
nonmalignant cell. If division does occur, the daughter
cell ‘takes the place of’ the closest nonmalignant cell
via an intercellular mechanical stress algorithm [18]
that essentially forces the nonmalignant cell being
replaced into the surrounding region of indistinguishable
nonmalignant cells. In the original algorithm, the
probability of division depended on the distance of the
dividing cell from the tumor center r and the maximum
tumor radius Rmax. Since we generally no longer expect
tumor growth to be radially symmetric, we replace Rmax

with a new parameter Lmax, which is defined to be the
distance between the closest nonmalignant boundary cell
in the direction of tumor growth and the tumor’s geometric
center. We define the probability a proliferative cell
divides to be

pdiv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if any nonmalignant cell
within the pre-defined

p0(1 − r/Lmax) growth distance is in the
growth-permitting
environment

if no nonmalignant cell within
the pre-defined growth

0 distance is in the growth-
permitting environment,

where p0 is the base probability of division and the
predefined growth distance δp is described in the
following bullet point. It is worth noting that in this

piecewise definition of pdiv, the type of all healthy cells
(that is, growth-permitting or prohibiting) within a fixed
distance of the proliferative cell under consideration
determines whether or not the cell has a nonzero
probability of division. Importantly, we do not have to
worry about a negative probability of division because
both cells that determine the values of r and Lmax are
at the same angle from the tumor center. Since the cell
determining r is within the boundaries of the growth-
permitting region, and since the cell determining Lmax

defines the boundary, we are guaranteed that r � Lmax

and that the probability of division is always non-negative.
• A proliferative cell turns quiescent if there is no space

available for the placement of a daughter cell within a
distance δp from the proliferative cell. In the original
algorithm, this critical distance depended on both a
nutritional parameter b and the tumor radius. To remove
the dependence on the tumor radius from the algorithm,
we define the following critical distance for a proliferative
cell to turn quiescent:

δp = bL
(d−1)/d
t ,

where again d is the spatial dimension and, in this case,
Lt is the distance between the geometric tumor center and
the tumor edge cell that is closest to the proliferative cell
under consideration.

• In both versions of the model, the geometric center of
the tumor must be recalculated after each iteration of the
algorithm.

We note that despite all the changes made to the original
automaton rules, the modified algorithm behaves just as the
original algorithm in the special case of a radially symmetric
environment.

In the current investigation, both the original set of
automaton evolution rules and the modified rules are applied to
tumors growing in the aforementioned confined regions. This
allows us to evaluate the impact that the radially symmetric
assumption has on predicting tumor shape, size and spread
throughout an organ.

3. Results and discussion

Tumor growth has been simulated in a variety of confined
environments. The environment considered can either have
a vascular boundary, meaning a growing tumor can receive
oxygen from the growth-permitting region, or an avascular
boundary, in which the growth-prohibiting region cannot
supply the growing tumor with oxygen. In the visualizations
of the tumor that follow, we use the following convention:
nonmalignant cells in the growth-permitting environment are
white, necrotic tumor cells are black, quiescent tumor cells are
yellow and proliferative tumor cells are blue. Nonmalignant
cells in the growth-prohibiting region that are separated from
the growth-permitting region by a vascular boundary are
shown in green, whereas those separated by an avascular

4



Phys. Biol. 5 (2008) 036010 J L Gevertz et al

boundary are shown in grey. In the simulations described
below, the following parameter values are utilized:

p0 = 0.192, a = 0.15 units1/2 (in 2D),

a = 0.12 units1/3(in 3D), b = 0.08 units1/d ,

where the value of p0 chosen corresponds to a cell-doubling
time of approximately four days. We have pre-selected these
parameter sets because, when using the original CA model,
they reproduce a test case from the medical literature (see [18]
for the test case). Further, when we run the old algorithm for
comparisons sake, we take the maximum tumor radius to be
Rmax = 0.4 units. We have intentionally used an arbitrary
unit of length in our model instead of defining a precise one.
Both the size of the cells in the organ being considered and the
resolution of the algorithm (that is, how many biological cells
are found within one automaton cell) need to be considered
to convert the arbitrary units used in the model to physical
units. For example, if we want to consider glioma growth
in the brain, the average glial cell has a diameter of 40 μm
[24]. If we assume that there is a one-to-one correspondence
between a glial cell and an automaton cell, then the average
diameter of an automaton cell (which is 0.002 57 units in our
2D simulations) is equivalent to 40 μm, and 1 unit ≈ 15.5 mm.
We can increase the size of the region by incorporating more
than one biological cell inside an automaton cell.

We begin by considering tumor growth in confined two-
dimensional regions with vascular boundaries. The first
growth-permitting environment we consider is that of an
ellipse with a major to minor axes ratio of 1.5. If tumor
growth initiates at the center of the ellipse, we find that at early
times, the neoplasm is radially symmetric, just as would be
predicted using the original automaton rules (figures 1(ai) and
(aiii)). However, as time progresses and the tumor begins to
encroach upon the boundary of the growth-permitting region,
the neoplasm transforms to take on the shape of the elliptical
environment (figure 1(aii)). A comparison of the tumor’s
growth rate predicted by the original and modified algorithms
reveals that only after a sufficiently long time does the elliptic
shape of the growth-permitting region exert any effect on the
area of the tumor. Nonetheless, after one year the shape of
the growing tumor is dramatically affected, as the original
algorithm predicts that the tumor would be a circle, whereas
the modified algorithm predicts that the tumor is an ellipse
with a major to minor axes ratio of 1.35.

We see that when the tumor initiates in the center of
the growth-permitting region, the differences between the
predictions of the original and the modified algorithms are
not revealed until after over eight months of growth, as it
takes this long for the tumor to ‘sense’ the boundary. It
is then interesting to ask how the original and modified
algorithms compare if the tumor initiates close to this boundary
(figure 1(b)). In this case, we find that after only two months
of tumor growth, the shape and growth dynamics predicted by
the two algorithms begin to noticeably differ. Thus, the closer
the growing tumor is to the boundary which is constraining its
growth, the more important it is to account for the effects of
this confinement.

It is important to note that these results are not dependent
on the axisymmetric nature of the growth-permitting region.

To prove this point, we have also simulated tumor growth
in a random asymmetric environment (figure 1(c)). As was
observed with the elliptical environment, at small times the
tumor is circular, just as predicted by the original algorithm.
However, after about one year of growth using the new
algorithm, the shape of the tumor is drastically altered from
that of a circle due to the constraints imposed by the confining
boundary. We conclude that in two dimensions, the algorithm
can predict tumor growth in constrained environments in a
manner far superior to what would be predicted from an
algorithm that assumes radial symmetry.

The automaton rules easily generalize to three dimensions.
In figure 2, a tumor developing in an ellipsoid-shaped
environment with a major to minor axes ratio of 1.5 can be
seen at both an early and a late stage of growth. Just as was
observed in two dimensions, at early times the tumor does
not ‘sense’ its boundary and grows in a radially symmetric
fashion (figure 2(a)). After a sufficient amount of time
has passed however, the tumor begins to encroach on the
confining boundary, and the neoplasm begins to take the form
of the growth-permitting region (figure 2(b)). This three-
dimensional example can be compared to the experiment in
which a tumor spheroid developing in a capillary tube grows
to take on an ellipsoidal shape [12]. In our simulations, the
modified algorithm accurately predicts that the tumor takes on
an ellipsoidal shape as it grows in a region comparable in shape
to that of a capillary tube. However, the original algorithm
erroneously predicts that a tumor growing in a capillary tube
will take on a spherical shape. In experiments, this shape is
only observed when the tumor grows in a non-confined gel
[12]. This highlights the importance of considering physical
confinement effects in simulations of tumor growth.

Up to this point, we have only considered tumor growth
in homogeneous regions confined by a vascular boundary.
However, several organs contain vascular and avascular
obstacles to growth and hence have a heterogeneous tissue
structure. An example of this is the brain; tumors growing
in the brain are confined by the cranium, but within the
cranium, brain ventricles provide avascular obstacles to tumor
growth (figure 3(a)). Keeping the shape of the cranium and
the nature of the brain ventricles in mind, we have tested
the proposed algorithm on an elliptic region with a vascular
boundary (representing the cranium), and we have added two
growth-prohibiting circular obstacles (representing the brain
ventricles). We find that incorporating ventricles inside the
growth-permitting region causes the predictions made from
the original and modified algorithms to drastically differ. As
can be seen in figure 3, the tumor must substantially change its
geometry and topology at a relatively early point in time due
to the presence of the ventricles inside the growth-permitting
region. This highlights the importance of accounting
for tissue heterogeneity in computational models of tumor
growth.

The final phase of tumor development is the growth-
limiting plateau in which the size of the tumor essentially
remains unchanged with time. This phase usually corresponds
to the tumor filling the available space or the tumor outgrowing
its nutrient supply. A trend occurring in all of the simulations is
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(a i)

(b i)

(c i) (c ii)

(c iii)

(b ii)

(b iii)

(a ii)

(a iii)

Figure 1. Tumor growth in different confined 2D homogeneous regions with vascular boundaries. (a) In an elliptic environment with the
tumor initiating in the region center and shown after (i) 50 days and (ii) 350 days. (b) In an elliptic environment with the tumor initiating
close to the region boundary and shown after (i) 50 days and (ii) 350 days. (c) In a random asymmetric environment with the tumor
initiating in the region center and shown after (i) 50 days and (ii) 250 days. In each case (iii) contains growth curves that compare the tumor
size as a function of time as predicted by the new algorithm (dashed red line) and the original algorithm (solid blue line).

that either the size of the tumor at the growth-limiting plateau,
or the onset of this plateau, differs between the original and
newly proposed algorithms. From a clinical perspective, this
finding is very important. Our simulations have shown that
if the tumor is identified early enough, the shape and size
of the tumor may not bear the marks of the environment in
which it grows. Yet, if we want to successfully predict the
future time course of the tumor, the prognosis between the

two algorithms differ significantly. If we look at the confined
homogeneous environments in figures 1(a) and (c), the growth-
limiting plateau is achieved around the same time using the
original and modified simulations, yet the ultimate size the
tumor reaches at the plateau is larger when the algorithm
accounts for environmental confinement. If we consider
the elliptic environment with the tumor starting close to the
boundary (figure 1(b)), not only can the tumor grow to a larger
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(a) (b)

Figure 2. Three-dimensional tumor growth in a homogeneous
ellipsoidal environment with a vascular boundary. Tumor growth
initiates in the region center and is shown after (a) 50 days and
(b) 225 days.

size when the newly proposed algorithm is used, the onset of
the growth-limiting plateau occurs at a substantially later time
than when the original automaton rules are applied. Thus,

(a)

(d ) (e)

(f )

(b) (c)

Figure 3. Tumor growth in a 2D representation of the brain. (a) T1-contrast–enhanced brain MRI-scan with a right frontal GBM tumor [18]
suggests how to represent the brain macroenvironment. (Reprinted from [18], with permission from Elsevier, copyright (2000).) In our
representation of this environment, the tumor is shown after (b) 50 days, (c) 75 days, (d) 100 days and (e) 125 days. The growth curves
shown in ( f ) compare the tumor size as a function of time as predicted by the new algorithm (dashed red line) and the original algorithm
(solid blue line).

M An AVI movie of this figure is available from stacks.iop.org/PhysBio/5/036010

depending on the region in which the tumor grows and the
location of the tumor within the region, both the size of the
tumor at the growth-limiting plateau phase and the time it
takes to reach this phase differ between the original and new
model. This further highlights the importance of including
environmental confinement and heterogeneity in establishing
the prognosis of a cancer patient. In previous work [19], it
was similarly shown that the assumption of a homogeneous
tumor can lead to errors in predicting both patient history and
prognosis. This suggests that incorporating both tumor and
environmental heterogeneity into one algorithm can further
enhance the predictability of the model.

4. Conclusion and outlook

A computer simulation tool that can be utilized to predict
neoplastic progression in the clinic must necessarily account
for as many of the complex processes involved in tumor
growth as possible. Treatment plans based on the use of
such modeling and simulation processes will require rigorous
validation studies, regulatory approvals and, then, eventual
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integration into the armamentarium of oncological practice.
Some examples of image-based treatment planning tools being
developed within this spirit are intra-cranial infusion-therapy
delivery systems. Early work in this area includes the original
studies by Morrison et al [25] at the NIH and later, the in vitro
and in vivo investigations by Chen et al [26] and Haar et al
[27], among many such efforts by others (see [28, 29] for
reviews). Sophisticated clinical trials were then carried out by
Sampson et al [30], with approval and commissioning of the
resulting software for use in the neurosurgical arena; see [31].
While most presently available treatment planning systems
are able to optimize the potential efficacy of a therapy given
the observed, existing anatomical and physiological state of
the tumor, they are not generally designed to be comprehensive
modeling tools that predict tumor growth patterns as well.
Therefore, as the work in this area progresses toward such a
broader goal, one interaction between the host and the growing
tumor that will need to be included in computational models of
tumor progression is the impact that the geometry and topology
of a tissue region have on the shape and size of a developing
neoplasm. For this reason, we have taken a cellular automaton
algorithm that was originally designed to simulate spherically
symmetric tumor growth and generalized the evolution rules
to allow the tumor to grow in an arbitrary environment with
either a homogeneous or heterogeneous tissue structure. We
have tested both the original and modified algorithms in a
variety of environments, and we have found that algorithms
that ignore the impact of tissue structure inaccurately predict
the volumetric growth, shape and composition of a growing
tumor. Importantly, while we do present some of our results
in two dimensions, the algorithm is readily applied to tumors
growing in three-dimensional space, as illustrated in figure 2.

Our simulations have shown that in an arbitrarily shaped
growth-permitting region, the original algorithm insists on
imposing spherically symmetric tumor growth independent of
the shape of the environment. On the other hand, the modified
algorithm presented here allows the tumor to adapt its shape
based on the constraints imposed by the confining region
in which it grows and the obstacles to growth found within
this region. This is comparable to what has been observed
experimentally, where a tumor growing in a capillary tube
develops as an ellipsoid. However, the same tumor grown in a
gel that is not confined to a capillary tube develops as a sphere,
highlighting the effects of physical confinement on the shape of
a developing tumor [12]. Just as the shape of a tumor is altered
by the confined environment in which it grows, the same can
be said for the volumetric growth of the tumor. We have shown
that there is a disagreement between the size of a tumor as a
function of time when the original and modified algorithms are
implemented. The discrepancies observed between a tumor
growth algorithm that assumes spherically symmetric growth
and one that makes no assumptions on the geometric form of
a neoplasm highlights the importance of incorporating tumor–
boundary interactions and environmental heterogeneity in any
clinically relevant model of tumor growth.

The computational results presented above are illustrative
in nature and describe some general scenarios in which
the growing tumor encounters boundaries or obstacles of

somewhat idealized geometries. However, the latent power of
the technique lies in the ability of the model to extend to ever
more complex or multiply connected geometrical structures,
such as cases where a large region of the cerebrovascular tree
must be considered. One can also foresee an extension of
the model to cases where the dynamics are more complex,
for example a lung tumor near the individual moving ribs
of the chest, or a spinal cord tumor subject to arbitrary
if not continuous torsional movements of the neck and
spine. Further extensions of the work might include cases
where either pooling or circulation of an interstitial fluid
(ISF) establishes either a physical (obstacle-like) or flow-
field boundary condition (the equivalent of a fluid dynamical
stationary state). An example of the former might be an
edematous mass that grows jointly with the tumor, each
influencing the size and shape of the other. For the other case,
consider that the net flux of ISF in the brain parenchyma of
small mammals is thought to be between 100 and 300 nl min−1

per gram of tissue [32], which would imply that for an adult
human brain of 1.4 kg, the net flux of ISF through the brain
would be about 300 nl min−1, i.e., 0.43 liters per day. This
is a relatively fast flow compared with the time scale of brain
tumor growth rates, thus implying the presence of a kind of
moving background that might also modify predicted rates of
tumor growth. To account for these more complex scenarios,
the model must be generalized to not only examine how the
host deforms the tumor, but also to analyze the reciprocal
deformities induced in the host by the growing neoplasm.
The addition of this feedback into the model is critical to
quantitatively predicting tumor size, shape and spread.

The notion of incorporating computational models of
tumor growth into the clinic complements the goal of
individualizing tumor treatment strategies. The demand
imposed on these algorithms would be very high. Limited
information on the patient will be available, including tumor
type (e.g., based on the pathology of biopsy samples), a genetic
profile of the tumor (supplying, among other things, p53 status)
and the location of the tumor within the body part or organ.
Some examples of types information that may not necessarily
be available as input to the computational model would
include, e.g., for the case of gliomas, the intracranial pressure
gradient within the tumor, the flow field of the interstitial fluid
and the degree of blood–brain barrier disruption. However,
in spite of incomplete physiological data on the tumor, a
computer simulation should nevertheless be able to predict
the size, shape and spread of the tumor at a fixed point in
time, within the limits of accuracy that will be dictated by
clinical standards of care. One important step in properly
predicting these features is accounting for the location of the
tumor within an organ, and how organ shape, heterogeneity
and the placement of the tumor within the organ influence
neoplastic progression.

In this paper, we have developed a set of automaton rules
that are intended to move the field in that direction. However,
any algorithm that can be used in the clinic must go far beyond
predicting tumor size and shape. These algorithms must also
predict the changes induced in the host by the growing tumor
and the impact that multiple treatment strategies would have
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on halting the progression of the tumor. With this goal in
mind, the set of automaton rules proposed herein must be
combined with more biologically detailed models of tumor
growth. A first step in that direction would be implementing
the new automaton rules in the previously developed hybrid
cellular automaton model that examines the feedback that
occurs between a neoplasm and the host microvasculature
[8]. By adding further levels of complexity into the simple
algorithm proposed here (such as a microscopic description
of tissue structure and transport [33, 34]), the model can be
built up step-by-step into a useful tool that can ultimately
be of practical value to clinicians in predicting tumor growth
patterns and guiding treatment strategies.
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Glossary

Neoplasm. A neoplasm is a synonym for a tumor.

Glioma. A collection of tumors arising from the glial cells
or their precursors in the central nervous system.

Cellular automaton. A spatially and temporally discrete
model that consists of a grid of cells, with each cell being in
one of a number of predefined states. The state of a cell at a
given point in time depends on the state of itself and its
neighbors at the previous discrete time point. Transitions
between states are determined by a set of local rules.

Growth-permitting environment. In our algorithm, this is
the region of space in which the tumor can grow.

Voronoi cell. Given a set of points, the Voronoi cell is the
cell that is formed about an arbitrary point in the set by
finding the region of space closer to that point than any other
point in the system [21].

Delaunay triangulation. Given a Voronoi graph (a set of
Voronoi cells), the Delaunay graph is its dual that results
from joining all pairs of sites that share a Voronoi face. If this
graph consists of only simplices, the graph is called a
Delaunay triangulation [21].

Quiescent. A cell is considered quiescent if it is in the G0
phase of the cell cycle and is not actively dividing.

Necrotic. A cell is considered necrotic if it has died due to
injury or disease, such as abnormally low oxygen levels.

Edematous mass. A region of tissue that is swollen due to
an excessive accumulation of fluid.
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