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Abstract

We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is
tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous
materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase
models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These
models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while
overestimating the brain’s effective diffusivity, an average measure of the underlying microstructure. In light of the highly
connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase
models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes
to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that
the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the
diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

Citation: Gevertz JL, Torquato S (2008) A Novel Three-Phase Model of Brain Tissue Microstructure. PLoS Comput Biol 4(8): e1000152. doi:10.1371/
journal.pcbi.1000152

Editor: Olaf Sporns, Indiana University, United States of America

Received January 23, 2008; Accepted July 9, 2008; Published August 15, 2008

Copyright: � 2008 Gevertz, Torquato. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: ST has no funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: torquato@princeton.edu

Introduction

Brain tissue is naturally divided into two domains, the

intracellular space (ICS) and the extracellular space (ECS). The

ICS is a tightly packed composite of neurons, glia and their cellular

extensions, and the ECS is the microenvironment that separates

brain cells [1]. The structural maintenance of the ECS is essential

for normal brain functioning, as intercellular communication,

nutrient transport and drug delivery all depend on ECS integrity.

Many pathological brain conditions are associated with changes in

ECS size and geometry, including ischemia, inflammation, and

tumor progression [2].

Given that the brain is naturally divided into these distinct regions,

its microstructure can be well-described as a random heterogeneous

material, a medium that is composed of randomly arranged domains

of different phases [3]. Brain tissue has conventionally been modeled

as a two-phase material, where the two domains are the ICS and the

ECS. Despite the seemingly natural classification of the brain as a

two-phase material, it is important to note that the ECS is actually a

heterogeneous composite of ions, transmitters, metabolites, peptides,

neurohormones and molecules of the extracellular matrix (ECM)

[2]. Using current imaging techniques, the ECS can be visualized in

two dimensions, but not in three dimensions. An electronmicrograph

done by Dr C.B. Jaeger of a small region of rat cortex can be found

in [4].

According to the theory of random heterogeneous materials,

macroscopic properties of a medium provide an average measure

of the underlying microstructure [3]. This is particularly useful in

the case of brain tissue, since detailed three-dimensional (3D)

microstructural images do not exist, but macroscopic properties

can easily be measured. The ECS volume fraction Q1 and effective

diffusion coefficient De are the two macroscopic parameters

commonly employed to give an average description of brain’s

microstructure [2]. In fact, diffusion analysis can be applied to

study the the microstructure of any tissue type [5]. For brain tissue

in particular, the real-time iontophoretic (RTI) method has been

applied to determine macroscopic properties. Using tetramethyl-

ammonium (TMA+) as the tracer, it has been measured that

Q1 = 0.2 and De = 4.861026 cm2 s21 [1]. More commonly, one

represents the effective diffusion coefficient using one of two

dimensionless quantities: the dimensionless effective diffusivity,

defined as D* = De/D1, or tortuosity, defined as l = (D1/De)
1/2,

where D1 is taken to be the diffusion coefficient of TMA+ in

agarose [1,2]. We note here that in the field of random

heterogeneous materials, tortuosity is defined as l = D1/De [3].

The definition used here is consistent with that used by others

studying diffusion in brain tissue. It has been measured that

D1 = 1.261025 cm2 s21, giving a brain tortuosity of l<1.6 and a

dimensionless effective diffusivity of D*<0.40. In this paper, all

results will be presented in terms of D*. Volume fraction and

diffusion measurements that differ significantly from these average

values are hallmarks of pathological brain states, highlighting that

these macroscopic parameters capture significant microstructural

information. Nonetheless, these parameters cannot fully describe

the underlying microstructure, as this can only be done via an

infinite set of n-point correlation functions [3].
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Armed with information about the brain’s macroscopic

properties, theoretical models of the microstructure can be

developed. Previous attempts have been made to model the brain

microstructure as a two-phase isotropic material composed of

uniformly spaced closely packed convex cells [6–10]. In the studies

that simply treat brain cells as homogeneous impenetrable

obstacles, it has been predicted that the effective diffusivity of

brain tissue is well-approximated by the two-phase Hashin–

Shtrikman (HS) upper bound
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where d is the spatial dimension [3,6–9]. At ECS volume fraction

Q1 = 0.2, the 3D HS bound predicts that D*<0.71, a diffusivity

significantly larger than that measured in brain tissue. For this

reason, it is clear that two-phase models composed of uniformly

spaced closely packed convex cells lack some key features of brain

tissue.

Recent work in ischemic brain tissue suggests that dead-end

microdomains are a major determinant of extracellular tortuosity,

although it is currently unknown if such voids and dead-ends exist in

normal brain tissue [11]. Since dead-ends have been implicated in

ischemia, several approaches have been taken to incorporate dead-

ends into two-phase models of healthy brain tissue. In one

approach, dead-ends arise because cubic brain cells are allowed to

overlap. An unrealistically large number of concavities are found

when cubic cells can overlap, giving diffusivities significantly below

that measured in brain tissue [12]. In another approach [6,13],

rectangular dead-end cavities (open at one end to the ECS) are

punched into convex cellular elements. While the technique can

yield a model with the measured diffusivity of brain tissue, brain cell

bodies are generally described as being convex objects with fine

cellular extensions emanating from the body [14], not a geometry

consistent with representing brain cells in this manner. While the

notion of cellular convexity has not been verified for all cells, there is

certainly no biological evidence suggesting that concavities are

found in all brain cells. Thus, given the known features of brain cells,

including the lack of evidence that an abundance of concavities exist

in brain cell bodies, it is reasonable to assume that concavities play a

role in, but are not the sole factor responsible for the diffusivity of

brain tissue being significantly smaller than that predicted by models

of uniformly spaced convex cells.

If we work under the assumption that the majority of brain cell

bodies are convex, alternate mechanisms need to be implemented

to develop a realistic microstructural model that preserves the

topological and geometric features of the ICS and ECS while

simultaneously having the correct diffusion properties. Designing

an appropriate microstructural model for tissue in general is

tantamount to a packing problem; i.e., dense aggregates of cells or

‘‘particles’’ [3,15–19]. Approaching model development from this

perspective lends further support to the notion that most brain

cells are convex, as tightly packing these cells in space is a

densification procedure, and such processes tend to drive the

shape of the object being packed towards convexity. Given the low

porosity and diffusivity of brain tissue, the nonoverlapping mostly

convex cells of the ICS have no choice but to pack tightly. With

the appropriately chosen packing procedure, realistic geometric

features of brain tissue will naturally emerge. However, it is

important to note that when nonoverlapping convex cells are

packed in 3D space, very few dead-ends actually arise. This is

because topological connectedness increases with dimension [3],

and although packings of convex cells in 2D can result in a

significant amount of dead-end space, this is not the case in 3D.

Based on this observation, we conclude that an insufficient amount

of dead-end space naturally arises because of the size, shape and

distribution of brain cells. This does not rule out the possibility that

other factors, such as glial cell processes or ECM macromolecules,

can lead to the formation of dead-end microdomains in the brain,

but it does highlight that current models are not appropriately

accounting for a dominant mechanism that contributes to brain

tissue tortuosity.

In this paper, we propose a novel three-phase model of the

brain microstructure that obeys known properties of the ECS and

ICS, naturally develops a small number of dead-end microdo-

mains due to cell shape and position, and accounts for diffusion

hindrance by ECM macromolecules. In light of the highly

connected nature of 3D space, as well as the previously mentioned

fact that the ECS, unlike water, is a restricted medium for diffusion

[20], we hypothesize that the inclusion of the ECM as the third

phase in our proposed model can give the decrease in the diffusion

coefficient necessary for the model to have the same diffusivity as

brain tissue. To confirm that the model is a realistic representation

of the brain microstructure, diffusion properties of the medium

both with the ECM (three-phase model) and without the ECM

(two-phase model) are studied using an accurate state-of-the-art

technique borrowed from the field of random heterogeneous

materials: a first-passage-time Monte Carlo simulation [21].

We find that by adding the ECM to our two-phase model

(which acts to reduce the free diffusion coefficient of the ECS in

accordance with previous experimental observations [20]) the

model can achieve an order of magnitude decrease in the diffusion

coefficient and, at the appropriate ECM concentration, conforms

to the diffusion properties measured in brain tissue. From this

study, we argue that two-phase media subject to a proposed set of

biological constraints, which includes limiting cells to be mostly

convex bodies, cannot achieve the diffusion parameters of brain

tissue. We have shown that, as suggested from experimental data,

the addition of the ECM gives the decrease in the diffusion

coefficient necessary for the model to conform to the macroscopic

properties of brain tissue. It is plausible that the novel arrangement

of cells proposed herein, along with the implementation of the

Author Summary

The goal of the present work is to develop a biologically
constrained three-dimensional model of the brain micro-
structure. This is an important task because the brain’s
three-dimensional microstructure cannot be directly visu-
alized, yet a knowledge of its structure is essential for
understanding normal brain functioning. We first explore
the shortcomings of the conventional modeling approach
that treats brain tissue as a two-phase material. These
models either do not preserve realistic features of brain
tissue or preserve these properties while overestimating
the brain’s effective diffusivity, an average measure of the
underlying microstructure. We thus developed a biologi-
cally constrained two-phase model that, upon analysis,
achieves a lower diffusion coefficient than other con-
strained models yet proves to not have a low enough
diffusion coefficient to be a valid representation of the
brain microstructure. We then show that if the extracellular
matrix is incorporated as a third phase in this model, then
the reduction in the diffusion coefficient achieved allows
the proposed model to be a valid representation of the
brain microstructure. Using this model, we can test the
impact that microstructural changes have on the transport
of nutrients and signaling molecules in the brain.

Three-Phase Model of Brain Microstructure
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ECM, can further benefit by incorporating more dead-ends.

Nonetheless, the contribution of this work is to highlight the

importance of, and suggest a method to implement ECS

heterogeneity in realistic brain microstructural models.

Results

Properties of Brain Microstructure
To accomplish our goal of developing a realistic microstructural

model, we have compiled a list of brain tissue features:

P1. The cells and cellular processes of the ICS are mostly convex

and densely packed [1,9,14]. While detailed morphological

studies need to be done to rigorously verify the convexity of

brain cell bodies, the existing data does not suggest that a

large number of brain cell bodies contain concavities.

P2. Neuron and glial cell bodies can range anywhere from 10 to

80 mm in diameter [22]. Cellular processes can have cross-

sections as small as a fraction of a micrometer [14].

P3. All cells of the ICS are surrounded by ECS. The size of the

ECS around each cell, as measured using integrative optical

imaging of diffusing dextrans and water-soluble quantum dots,

varies between 38–64 nm [23]. This estimate of ECS width is

several times larger than the prediction of 10–20 nm made

using electron micrographs of fixed adult brain tissue sections.

However, measurements made using electron micrographs are

thought to underestimate ECS width, as the ECS in analyzed

sections are likely to have contracted due to ischemia [23].

P4. The ECS occupies 20% of the total brain volume [1].

Despite the semipermeable nature of cell membranes, in our

model we assume that all cells of the ICS are impenetrable. The

development of a realistic microstructural representation of brain

tissue is independent of the permeable nature of the ICS, and

therefore this simplification is justified.

Another important feature of the brain microstructure is the

cellular processes that emanate from cell bodies. Axons and

dendrites, the processes that arise from neuronal cell bodies, are

generally convex structures with vastly different morphologies.

Axons are typically a single long cylindrical structure, whereas

dendrites are branching cylindrical structures [1]. Glial cell

processes are thin sheet-like structures that exhibit a wide range of

morphological variability. While these processes are certainly

important in the brain, the complexity of their structures makes it

very difficult to incorporate them into a brain microstructural

model. It is certainly plausible that allowing some cellular

concavities and dead-ends to persist in the model may grossly

account for these features, as has previously been tackled [6,13].

Without denying the validity of this approach, our goal here is to

limit the number of concavities and dead-ends (sticking with the

assumption of mostly convex cellular bodies) and yet develop a

realistic microstructural model with the correct diffusion properties.

Two-Phase Model of Brain Microstructure
In order to develop our three-phase model, we begin by

proposing a novel two-phase model that accounts for the four

properties of brain tissue. In lieu of property P1, the intracellular

space must be composed of mostly convex objects. Previous

theoretical work has concluded that convex cells of different shapes

arranged comparably give rise to the same medium tortuosity

[3,9]. In particular, provided that the cells are compact convex

shapes of high symmetry and have the same spatial arrangements,

one can be certain the diffusion properties will be comparable even

if the shapes are different [3]. If one is not careful and chooses

shapes without high symmetry and then also uses a different spatial

arrangement, it is then the case that the shape of the cell can

influence the diffusivity of the medium. Since biological cells are

higly symmetric, in order to achieve the desired porosity in our

model, brain cells are represented by the most basic convex

shapes: squares in 2D and cubes in 3D. We will generally use the

term cube to describe both squares and cubes for succinctness.

Ordered configurations of uniformly spaced cubes on a lattice

have already proven to be an unsatisfactory model of the brain

microstructure, as the medium is not sufficiently tortuous [9]. In

an effort to develop a more tortuous model, we propose a packing

construction that exhibits both brain cell size and shape variation

(P2), as well as nonuniformity of spacing between brain cells (P3).

To develop our novel model of nonoverlapping and nonuni-

formly spaced cubes, begin by dividing space into N6N squares

(2D) or N6N6N cubes (3D). In order to balance computational

restrictions with the desire to simulate a large number of cells, N

was taken to be 30 in 2D (giving 900 cells) and 7 in 3D (giving

343 cells). Furthermore, in 2D each square element was divided

into 30630 pixels, and in 3D each cubic element was divided into

70670670 voxels. These cubes can be nonstaggered, staggered in

one direction, or staggered in two directions in 3D space. Within

each of these regions, a ‘‘target volume’’ is defined. Each region is

then populated with a cubic obstacle that occupies 80% of the

region and has its center coordinate randomly placed in the target

volume. The approach described here can be generalized to allow

more variation in cell shape and size by permitting the placement

of both cubical and cuboidal cellular obstacles. The resulting

geometric representation of the brain microstructure (in the

nonstaggered case) can be seen in Figure 1. In 3D, we are

modeling approximately a 2.1661023 mm3 volume of brain

tissue. The model will be analyzed using periodic boundary

conditions to minimize boundary effects.

Properties P1–P4 of brain tissue are satisfied by the proposed

two-phase model. In particular, the model is composed of densely

packed mostly convex cells and the ECS occupies 20% of space.

While each obstacle placed into the system has a fixed size, the

placement of some obstacles results in the formation of elongated

cells, some of which are oddly shaped and not convex. This feature

is desirable, as not all brain cells are convex and, as property P2

states, brain cells can vary in size. Each cellular object is

surrounded by ECS, and the ECS surrounding each cell is not

uniform in width. Finally, because obstacles placed in each region

can touch neighboring obstacles, a small number of dead-end

regions naturally arise in this geometry.

Limitations of Two-Phase Models
It is essential that we evaluate the limitations of two-phase

models to justify the development of a three-phase model.

Previously developed two-phase models either overestimate the

brain’s effective diffusivity [9], or achieve the diffusivity by

introducing a large number of cellular concavities [6,12,13].

Using the discrete first-passage-time algorithm (see Methods

section), we wanted to determine if the proposed two-phase model

has a diffusion coefficient comparable to that measured in brain

tissue. The model was analyzed in 2D and 3D to determine the

impact dimensionality has on the results.

We found that the 2D model is a successful representation of the

brain microstructure: the geometry proposed is subject to the same

set of biological constraints as brain tissue and has similar diffusion

properties (data not shown). While the 2D results are promising,

the brain is a 3D structure. For this reason, we next applied the

first-passage-time technique to test if the 3D geometry successfully

reconstructs the brain microstructure (Table 1). While all 3D

Three-Phase Model of Brain Microstructure
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media created satisfy the two-phase HS bound, the lowest

diffusivity obtained (D* = 0.63 in both the staggered and

nonstaggered case) is significantly larger than the effective

diffusivity measured in brain tissue (D* = 0.4). Even though the

proposed two-phase model has a lower diffusivity than models of

uniformly spaced convex cells, the 3D model, unlike its 2D analog,

does not have a low enough diffusivity to be a valid representation

of the brain microstructure.

Three-Phase Model of Brain Microstructure
In order to develop a biologically constrained model of the brain

microstructure with the expected diffusion properties, we return to

the experimental observation that the ECS is not a homogeneous

solution, but is instead a heterogeneous composite, and the largest

components in this composite are the macromolecules of the

extracellular matrix [2]. By definition, the extracellular matrix is

an intricate network of macromolecules that assemble into an

organized meshwork in close association with the surface cell that

produces them (Figure 2A) [24]. We propose that the ECM be

treated as an independent third phase of the brain microstructure.

While the limitations of two-phase models discussed in the

previous section lead us to deviate from the conventional two-

phase modeling approach, it is important to reiterate that the

novelty of this work is the direct inclusion of ECS heterogeneity

into a model of the brain microstructure. Although this model is

thus not proposing a new biological mechanism, it is certainly

guided by experimental evidence that suggests that a three-phase

model fits the task at hand. Firstly it has been shown that

molecular changes in ECM content occur during normal and

pathological processes that are characterized by altered brain

diffusion properties [2]. This observation provides evidence that

there is a correlation between changes in ECM content and the

diffusion of small tracers in the brain, although no causative

relation has been proven. Secondly, it has been speculated that the

transport of positively charged molecules (such as the tracers used

in RTI experiments) is hindered by the negative charge associated

with the ECM [11], lending further support to the theory that the

ECM does impact the diffusion of small ions in the brain.

Given the theoretical evidence presented against conventional

two-phase models and the biological evidence which suggests that

the ECM may regulate brain diffusion properties, we turned the

two-phase model that obeys properties P1–P4 of brain tissue into a

three-phase model by introducing the ECM (the third phase) into

the ECS. Introducing the ECM into the model necessitates some a

priori knowledge on the concentration, diffusion properties and

precise structure of the ECM in the brain ECS. The unavailability

of this information [11] necessitated a minimalistic modeling

approach. Given the aforementioned definition of the ECM, we

can envision the ECM as a low volume fraction mesh-like network

that surrounds each cell in the brain. Thus, from a modeling

perspective, a logical minimalistic first assumption is that the ECM

forms a ‘‘shell’’ around each cell (Figure 2B). This shell can act as

either a barrier to diffusion, or more likely, can act to slow down

diffusion near cell boundaries by trapping diffusing particles in the

ECM mesh. Since it is unclear how to approach modeling this

mesh-like structure and its altered diffusion properties with any

Figure 1. Proposed Two-Phase Model. Representative region of proposed microstructural model. (A) 2D two-phase model with ICS in red and
ECS in blue. (B) 3D two-phase model (nonstaggered case) with ICS in red.
doi:10.1371/journal.pcbi.1000152.g001

Table 1. Diffusivity of Two-Phase 3D Models.

D*

HS upper bound 0.71

Nonstaggered model: cubes only 0.65

Nonstaggered model: long cuboids 0.63

Nonstaggered model: short cuboids 0.63

Staggered in one direction: cubes only 0.63

Staggered in two directions: cubes only 0.63

Target 0.4

Effective diffusivities of our proposed two-phase 3D models are compared to
the HS upper bound and to the experimentally observed effective diffusivity of
brain tissue. Cubes have a fixed size (L6L6L), long cuboids are any permutation
of a cuboid of size 2L62L6L, and short cuboids are any permutation of a cuboid
of size 2L6L6L.
doi:10.1371/journal.pcbi.1000152.t001

Three-Phase Model of Brain Microstructure
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accuracy, we will consider a first-order approximation to this

situation. We propose that the ECM can be modeled as having the

net effect of excluding a diffusing ion from some volume about the

cell. We emphasize that volume exclusion is a net effect of the

ECM, because it is more likely that the ECM reduces the diffusion

coefficient in the area surrounding cells rather than excluding

diffusion all together. If there were no other macromolecules in the

ECS, this shell would just be a first-order approximation of the

ECM mesh. However, there are other macromolecules that float

around the ECS that are not formed in close association with a

cell. If we want to also consider the effects of these molecules in our

model, we need a computational technique that can predict the

average influence of all of these molecules; that is, both those that

are in close association with a cell, such as the ECM, and other

freely suspended molecules.

A technique that allows us to treat the ECM as a mesh-like shell

around each cell while also accounting for the effects of those ECS

molecules that are not associated with a cell is to use a finite-sized

diffusing particle in our first-passage-time simulations. To explain

why this implicit representation of the ECM plus other ECS

molecules is reasonable, consider what happens when we only

consider the ECM without any other molecules in the ECS. When

we allow a diffusing tracer to take on a finite size, the tracer is

excluded from a larger volume fraction than dictated by cell size,

and this exclusion volume is nothing more than the ‘‘shell’’ we

defined earlier to represent the ECM. Of course, this analogy only

applies if the shell fully inhibits the diffusion of small ions, which is

unexpected. Thus, if we were ignoring the effects of other ECS

molecules and we just focused on the ECM, this approach gives us

a first-order approximation on the net effect the ECM has on

diffusion. We do not claim that the shell is of the proper

concentration or is modeled with the correct diffusion coefficient,

just that it has the same effect as the mesh-like network with the

correct volume fraction and diffusivity. Since the ECM molecules

are not the only compounds found in the ECS, there is no reason

this first-order approximation has to only account for the effects of

the ECM. The first-order approximation we propose here actually

models the net effect of both the ECM and other molecules that

are found free-floating in the ECS.

In our first-order approximation, one key parameter, the radius

of the diffusing particle used in simulations, will measure the

exclusion-volume effects caused by the ECM plus other ECS

molecules [25]. The larger this parameter, the more hindrance a

particle encounters or the more time a particle is trapped as it

diffuses through the ECS. It is important to note here that the

finite-sized diffusing tracer is used to implicitly represent the

presence of the ECM plus other ECS molecules; it is not related to

the size of the actual tracer used in RTI experiments! In order to

quantify the effects that this hard-shell approximation of the ECM

has on the proposed microstructural model, we have studied how

both the average gap width and the fraction of concave cells

changes as a function of the diffusing particle radius, and these

results are summarized in Figure 3A. We have found that, as

expected, the average gap width in the model decreases as the

particle radius increases. More importantly, we have quantified

how the fraction of concave cells increases in our model as a

function of particle radius. As seen in Figure 3A, we have found

that slightly less than 15% of the cells in the two-phase model

(particle radius equals zero) are concave. If the diffusing particle is

allowed to have a radius of 1 voxel (which corresponds to 0.31 mm

in our model), the percent of concave cells increases to 23%.

Further increasing the radius to 2 voxels increases the percent of

concave cells to 63%. Thus, our first-order approximation of the

ECM has the net effect of decreasing the average gap width in the

model and increasing the percent of concave cells.

Significance of Three-Phase Model
The 3D first-passage-time algorithm was applied to the

proposed three-phase model (all cubes; nonstaggered case), using

a finite-sized diffusing particle to represent ECS heterogeneity (the

presence of the ECM plus other ECS molecules). Simulations were

conducted for various values of the diffusing particle radius to

probe the effects of a wide concentration of ECS molecules

(Figure 3B). When the radius of the diffusing particle is

approximately 0.255 mm (which is equivalent to 83% of the

length of a voxel element in our model), the three-phase medium

achieves an effective diffusivity comparable to that observed in

brain tissue. At this particle radius, the net effect of the ECM plus

other ECS molecules is to decrease the fraction of space available

to the diffusing tracer from 0.2 to 0.140. Importantly, this does not

mean that the ECM is a hard shell that occupies 30% of pore

space. Instead, it does mean that the hindrance to diffusion caused

by both the ECM and other free-floating ECS molecules must

have the same effect on the diffusion of small ions that is had by

Figure 2. ECM Incorporation into Model. (A) Schematic representation of a cell and some of the associated ECM components. Note how the
ECM forms in close proximity to the cell that produces it. Image is adapted from:http://courses.cm.utexas.edu/jrobertus/ch339k/overheads-2/
figure-07-30.jpg. (B) Our representation of the ECM in the proposed three-phase model. The square represents a convex cell body and the ‘‘x-ed’’
network surrounding the cell represents the ECM.
doi:10.1371/journal.pcbi.1000152.g002

Three-Phase Model of Brain Microstructure
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restricting a diffusing particle from 30% of pore space. When the

particle radius is 0.255 mm, the average gap width in the model is

1.47 mm. This width is significantly larger than that reported in

property P3, and this discrepancy will be explored in the

Discussion and Conclusions section. Further, 21.5% of the cells

in the three-phase model are concave. This percent should be

compared to those models that directly incorporate concavities by

punching dead-ends into convex cells [6,13]. In these models,

100% of the cells must contain concavities to achieve the

diffusivity measured in brain tissue.

Further, for one of the proposed models with a lower diffusion

coefficient, the effect that must be exerted by the ECM and other

ECS molecules would be even smaller. For example, if we consider

the model that includes short cuboids and hence has more

variation is cell shape and size, we find that the fraction of space

available to the diffusing tracer decreases from 0.2 to 0.145,

meaning that the hindrance imposed by the ECM and other ECS

molecules must have the same effect on the diffusion of small ions

that is had by restricting diffusion from 27.5% of pore space. Even

the 27.5% proposed here is an upper bound, as will be explored in

the Discussion section. Further, it is important to note that the net

effects predicted by the model do not allow us to tease out the

properties of the ECM, such as concentration and diffusivity, that

are responsible for the decrease in the diffusion coefficient. With

more biological data, the model can be moved from this first-order

approximation to a more realistic representation of the third

phase. Even with this first-order approximation, these results

strongly suggest that ECS heterogeneity is an important

contributor to the low effective diffusivity of brain tissue.

Our simulation results are compared to the following two-point

bounds for 3D, three-phase isotropic media:

X3

i~1

wi 2DminzDið Þ{1

" #{1

{2Dminƒw1De

ƒ

X3

i~1

wi 2DmaxzDið Þ{1

" #{1

{2Dmax,

ð2Þ

where Dmax and Dmin denote the largest and smallest diffusivities

amongst the three phases, respectively [3]. For the example at

hand, the three-phase bounds can be greatly simplified. If we let

phase 2 be the ICS, then we know that Q2 = 0.8 and

Dmin = D2 = 0 cm2 s21. If phase 3 is the ECM, we know that

Q3 = 0.22Q1. Moreover, since we are assuming that the ECM

hinders diffusion relative to free diffusion in the ECS, we have that

Dmax = D1 and that D3 = aD1, where 0#a#1. For this situation, the

bound in (2) becomes

0ƒD�ƒ
6 2zað Þ

w1 2 a{1ð Þw1z6z2:4a½ � : ð3Þ

The upper bound given in Equation 3 is maximized (for any

0#Q1#0.2) at a = 1, that is, when the ECM (plus other ECS

molecules) phase behaves exactly as the ECS and does not act as a

hindrance to diffusion. For the special case of a = 1, the bound

reduces to the two-phase HS upper bound evaluated at Q1 = 0.2:

0#D*#0.71, i.e., the diffusion coefficient of the proposed three-

phase medium obeys the same upper bound as any isotropic two-

phase medium with the same porosity.

Discussion

The diffusion properties of brain tissue depend on brain cell

size, shape and arrangement, as well as dead-end microdomains

and ECS heterogeneity, caused in part by ECM macromolecules.

The relative contribution of each of these factors is unknown,

making it a challenge to develop a realistic 3D model of the brain

microstructure. Previous theoretical work in this field resulted in

the either: (1) the development of two-phase models that do not

achieve the diffusion properties of brain tissue or (2) the

development of two-phase models that achieve the observed

tortuosity at the expense of violating one or more biological

constraint. In this work, we propose a three-phase, biologically

constrained (properties P1–P4) representation of the brain

microstructure that is consistent with experimentally measured

diffusion properties.

Figure 3. Properties of Three-Phase Model. (A) The left y-axis (dashed blue line with circles) gives the average gap width in the model and the
right y-axis (solid green line with squares) gives the fraction of concave cells in the model. Both plots are given as a function of particle radius (in mm).
B) Effective diffusivity of 3D three-phase media at ECS volume fraction Q1 = 0.2 as a function of the particle radius. The results of the simulation are
compared to the maximum two-point three-phase upper bound (Equation 3 with a = 1; solid red line) and the target diffusivity (dotted black line).
doi:10.1371/journal.pcbi.1000152.g003
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In order to justify the development of the first three-phase brain

tissue model, it is essential that we elucidate the limitations of

biologically constrained two-phase models. To this end, a

comprehensive literature search of two-phase models that satisfy

the biological constraints was conducted, and we developed a

novel two-phase representation of the brain microstructure.

Comparing our model to previously proposed models and other

personal attempts, we believe that the packing construction used to

generate our model gives rise to the most tortuous two-phase

model of brain tissue that can be developed, given the constraints

specified in properties P1–P4. In this model, both cellular obstacles

and ECS channels can vary in shape and size. Despite the

variation observed in the model, most of the cells are convex (P1)

and ECS channel width does not vary wildly (P3). In both 2D and

3D, this model proved to be more tortuous than models of

uniformly spaced convex cells. The importance of dimensionality

is highlighted in our two-phase model, as the model was

sufficiently tortuous in 2D, but not in 3D. In light of this

observation, we conclude that a key mechanism is absent in 3D

biologically constrained two-phase models of the brain micro-

structure.

We propose that conventional brain tissue models must

incorporate a third phase, the ECM plus other ECS molecules,

in order to be valid representations of the brain microstructure.

This proposition naturally follows from biological data that shows

that the ECS is a heterogeneous solution with free diffusion

properties different than water [20]. The ECS is known to contain

a number of glycosaminoglycans, glycoproteins and proteoglycans

that constitute the ECM [2]. Although the precise ECM

concentration and the effect the ECM has on the diffusion of

small ions is currently under debate [11], it has been observed that

a charge-interaction effect likely slows down diffusing ions in the

ECM and that changes in ECM content occur in brain states

characterized by altered diffusion properties [2,11]. Together,

these observations suggest that the ECM impacts the movement of

substances in the ECS.

To account for the effects of interstitial composition, others have

proposed that the effective diffusivity be written as a product of an

exclusion-volume term and an interstitial structure term [7,23,26].

Importantly, this is only true if these two effects are independent of

one another. However, since the ECM does, to some extent,

influence both the interstitial composition of the ECS and the ECS

geometry (thus influencing the exclusion-volume term), the assump-

tion of independence does not apply in this case. Furthermore, it has

been shown that the effective diffusivity can only be accurately

expressed as an infinite series involving integrals over the n-point

correlation functions [3], and therefore decomposing the diffusivity

into a product of geometric and interstitial effects has no rigorous

basis. In our model, we avoid this erroneous simplification and treat

the ECM (plus other ECS molecules) as the third phase of brain

tissue. By directly incorporating the third phase, we can bypass the

concern of the theoretically appropriate way to decompose the

effective diffusivity. To elaborate, it is not that we avoid considering

the infinite series, but that we are measuring the effective diffusivity

via a simulation technique that allows us to capture this information

without directly measuring the correlation functions. This is

comparable to the fact that the effective diffusivity can be accurately

ascertained experimentally without considering the precise value of

each correlation function.

Simulations validate that the incorporation of the ECM into

biologically constrained microstructural models can give rise to an

order of magnitude decrease in the diffusion coefficient. Moreover,

the diffusion properties of the brain are achieved at the

appropriately chosen level of ECS heterogeneity (Figure 3B). The

model predicts that that the hindrance imposed by the ECM and

other ECS molecules must have the same effect on the diffusion of

small ions that is had by restricting diffusion from approximately

27.5% of pore space in order for the appropriate diffusion

coefficient to be achieved. Again, this percent is really an upper

bound on the effects of the ECM, as the ECM is one of several

factors that may be responsible for the low effective diffusivity

measured in brain tissue. As previously discussed, structurally

complex glial processes have the potential to form dead-space

microdomains which increase the brain’s tortuosity [11].

Geometrical considerations aside, it is also plausible that current

experimental procedures are underestimating the diffusion coef-

ficient in the brain. For example, the finite size of the diffusing ion

used in RTI experiments may be a factor responsible for the high

tortuosity measured in brain tissue [27]. If the ratio of the radius of

the diffusing ion to the average ECS channel width is sufficiently

large, the diffusing particle will be prohibited from exploring some

of the pore space and the experiment will report a higher

tortuosity than is actually found in brain tissue. This exact strategy

was exploited by Thorne and Nichoslon [23] to measure the

average ECS channel width. A commonly used ion in RTI,

TMA+, has a radius of approximately 0.56 nm [28]. Taking the

average ECS channel width to be 51 nm (the average of the lower

and upper bound given in property P3), we can conclude that the

diffusing ions are small compared to the size of the pore space, and

that finite size effects should not result in a significant

overestimation of ECS tortuosity. This reasoning also justifies

our use of a point-particle in our first-passage-time simulations.

Another experimental factor that must be accounted for is that the

RTI tracer can be transiently immobilized upon binding to a

surface membrane [2,13]. Since this action is not accounted for in

the calculation of the effective diffusivity, this may cause RTI

experiments to report a diffusion coefficient that is lower than

what is actually found in brain tissue.

Another point which deserves discussion is the length scales in

our model. In the proposed three-phase model that achieves the

diffusivity of brain tissue, the average ECS width is 1.47 mm,

which overestimates the actual value by two orders of magnitude

(property P3). However, this apparent weakness is found in all

models of the brain microstructure. Particularly, any model

consisting of convex cells [7–9], along with models that allow

cellular concavities to persist [6,13] suffer from this same

shortcoming. This problem naturally arises because of the large

percent of space occupied by the ECS in conjunction with the very

small ECS width. Moreover, it is plausible that the width

measured in [23] is in some sense an ‘‘effective width’’ in that it

incorporates the impact of the ECM and other molecules in the

ECS. By no means has this statement been validated, but it is a

possible mechanism that may explain some of the discrepancy

between the width of the ECS in our model and that measured

experimentally, although it certainly would not account for a two

orders of magnitude effect.

Conclusions
We have demonstrated that including the extracellular matrix in

a novel brain tissue model composed of nonuniformly spaced

mostly convex cells can give the decrease in the diffusion

coefficient necessary for the proposed model to conform to the

macroscopic properties of brain tissue. This is strong evidence that

realistic microstructural models of the brain must account for the

effects of the ECM. While the role of dead-ends is minimized in

our model, our work does not contradict models that emphasize

the importance of dead-ends. Instead, each model probably offers

part of the picture, and it is probably some combination of both
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models that best represents the actual structure of the brain. The

contribution of the present work is to give a novel way to consider

the effects of the ECM and other ECS components, as well as to

propose a novel packing procedure for cells in the brain.

It has been demonstrated rigorously that diffusion properties of

a heterogeneous medium can be linked to seemingly different

properties of the same medium, including the elastic moduli

[29,30], electrical conductivity [31], and fluid permeability

[32,33]. In a future work, we will examine such cross-property

relations [3] for model brain microstructures.

Methods

We use a modified Brownian motion simulation to determine

the effective diffusivity of random media [21,34]. In a standard

Brownian motion simulation, the detailed zig-zag motion of a

point-sized random walker is modeled for a finite number of steps,

where the step-size of the walker is (in theory, infinitesimally)

small. The dimensionless effective diffusivity D* of the medium can

be obtained by averaging the long-time behavior of the mean-

square displacement of many diffusing Brownian particles.

This random walk approach can be considerably sped up by

using first-passage-time equations [21]. To implement this

technique, at each step of the simulation a bounded region

surrounds the random walker. The walker jumps onto the surface

of this first-passage region in one step (Figure 4), provided that the

probability to first hit the surface at a given location and the

associated average hitting time are known. A single jump onto the

first-passage surface is equivalent to taking many small steps in a

standard random walk algorithm, and hence the first-passage-time

technique executes significantly faster than standard random walk

algorithms [21]. The efficiency of the algorithm is highly

dependent on the volume fraction of the higher diffusivity phase

(i.e., pore space) and the level of discretization of the region.

However, one of the advantages of the algorithm is that at a fixed

volume fraction and discretization level, the efficiency of the

algorithm is not significantly impacted by the geometric

complexity of the material being studied, hence making it

especially useful for studying complex materials.

Both continuous and discrete first-passage-time techniques have

been developed and applied to determine the effective conductiv-

ity of equilibrium distributions of hard disks [35], hard spheres

[36], overlapping spheres [37], and hard ellipsoids [38], as well as

to determine effective properties of digitized images [39]. Since we

have developed digitized representations of brain tissue, only the

discrete first-passage-time algorithm is described herein, and we

choose to only explain the algorithm with a point-sized diffusing

particle. The generalization to a finite-sized particle is straightfor-

ward, with the idea being that the obstacles are made larger to

compensate for the finite size of the diffusing tracer. Details of this

algorithm can be found in [25].

Discrete First-Passage-Time Technique
Consider a Brownian particle diffusing in a two-phase digitized

composite material consisting of pixels (2D) or voxels (3D) which

either have finite diffusivity D1.0 (representing the ECS) or D2 = 0

(representing the ICS). In order to cope with the computational

limitations of modeling a very large region of brain tissue, the

algorithm employs periodic boundary conditions. For digitized

images, the natural first-passage region is determined by the shape

of a pixel and voxel; that is, squares are used in 2D and cubes are

used in 3D [39]. In order to simulate the diffusion of a particle in a

3D digitized composite, the following set of rules [39] is applied:

1. Introduce the Brownian particle into a random phase 1 voxel

(with D1.0).

2. While the walker is sufficiently far from the two-phase

interface, construct the largest possible homogeneous cube

centered at the Brownian particle. Define half the length of the

cube to be L.

3. In one step, the random walker jumps to a point on the surface

of the cube (Figure 4). First, the walker randomly chooses to

move to one face on the cube. The location the walker moves

to on this face, (q,p), is chosen from the following probability

distribution [39]

wH q,pð Þ~

1

2L2

X?
m~1

X?
n~1

sin mp
2

� �
sin mp

2L
qzLð Þ

� �
sin np

2

� �
sin np

2L
pzLð Þ

� �
cosh p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zn2
ph i :

ð4Þ

Torquato et al. (1999) have shown that the time associated with

moving to a point on this homogeneous first-passage cube is

given by

t Tð Þ& 0:2248513196L2

D1
: ð5Þ

4. If the walker is within some prescribed very small distance of

the two-phase interface, construct a first-passage cube that

overlaps the interface (Figure 4). Let each octant of the

heterogeneous first-passage cube have the constant diffusivity

D(i), and let (q,p) represent the boundary coordinate on any face

of the first-passage cube. The location of (q,p) is chosen from

the following probability distribution [39]

w q,pð Þ~ D ið Þ q,pð Þ
D

wH q,pð Þ ð6Þ

where D~ 1
8

P8
i~1 D ið Þ is the average diffusivity of the first-

passage cube. It is important to note that this distribution is

actually a piecewise function, as D(i) can take on different values

Figure 4. First-Passage-Time Algorithm. Example of random walk
in 2D using first-passage squares.
doi:10.1371/journal.pcbi.1000152.g004
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in each quadrant of the first-passage cube’s face. Given this

distribution, the probability of moving to any face n of the

heterogeneous first-passage cube is given by [39]

p vð Þ~
ðL

{L

ðL

{L

w q,pð Þdqdp: ð7Þ

The time taken to move to a point on the heterogeneous first-

passage cube is ts Lð Þ~ 1

D
tH Lð Þ, where tH(L) denotes the

homogeneous solution given in Equation 5 for unit diffusivity

[39].

5. The algorithm is run until we can be (c*100)% confident that

the actual value of D* falls in the range [D*2d, D*+d]. This is

implemented by repeating the simulation for N random walkers

until:

vSffiffiffiffiffi
N
p vd,

where S is the sample standard deviation and v solves:

v~Z{1 1{0:5cð Þ

with Z being the standard normal distribution [40]. We chose

to use c = 0.95 and d = 0.001 in our simulations in order to

ensure convergence.

The details of the analogous 2D algorithm can be found

elsewhere [39].

Calculating the Effective Diffusivity
In any dimension d, the dimensionless effective diffusion tensor

of the medium, D�~D�ij is given by [38]

D�ij~
SXiXjT

2SSkt Lkð ÞzSlt Llð ÞzSmts Lmð ÞT X 2??j , ð8Þ

where the values of Xw (displacement in the wth direction) and t
(time taken to hit the surface of a bounding region) are calculated

using the first-passage-time algorithm described above. The

summation over the subscript k denotes Brownian paths in phase

1, over l denotes paths in phase 2, and over m denotes paths at the

two-phase interface.
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