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A bound on the fluid permeability & for viscous flow through a random array of N identical
spherical particles (distributed with arbitrary degree of impenetrability) due to Weissberg and
Prager [Phys. Fluids 13, 2958 (1970)] is rederived by averaging flow quantities with respect
to the ensemble of particle configurations. The ensemble-averaging technique enables one to
obtain series representations of certain n-point distribution functions that arise in terms of
probability density functions which characterize a particular configuration of n( <.N) spheres.
The Weissberg-Prager bound on k is computed exactly through second order in the sphere
volume fraction for arbitrary A (where A is the impenetrability parameter, 0<A<1) for two
different interpenetrable-sphere models. It is found that, at the same sphere volume fraction,
the permeability of an assembly of partially overlapping spheres is greater than that of one
characterized by a higher degree of impenetrability. The results of this study indicate that the
Weissberg~Prager bound will not only yield the best available bound on k for an assemblage of
totally impenetrable spheres (4 = 1) but will provide a useful estimate of k¥ for this model for a
wide range of sphere volume fractions. It is also demonstrated that bounds which incorporate a

certain level of statistical information on the medium are not always necessarily sharper than

bounds which involve less information.

1. INTRODUCTION

The problem of determining the expected drag force on
an array of nonoverlapping spherical particles (i.e., the in-
verse permeability X ~') in low-Reynolds number flow has
been the subject of numerous theoretical and experimental
investigations (see Refs. 1-15 and references therein). The
permeability k& depends upon the details of the microstruc-
ture of disordered porous media in a nontrivial manner. Rig-
orous approaches to the problem of predicting k have typi-
cally involved idealized cases of either periodic® or
random’? assemblages of spheres at very small volume frac-
tions, in which case one may derive asymptotic expansions
for k as a function of the sphere volume fraction ¢,. It is only
recently that methods have been developed to compute the
permeability for periodic arrays of spheres at large values of
¢2' 10,11

There are presently no rigorous solutions to the problem
that can yield good estimates of k for even simple models of
disordered porous media at large values of ¢,. As aresult, the
most commonly used expressions for cases of practical inter-
est are empirical formulas such as the well-known Kozeny-
Carman relation.

In a series of pioneering papers, Prager'* and Weissberg
and Prager'* proposed that variational bounds on k, which
depend upon certain distribution functions that statistically
characterize the medium, may be used to estimate k for a
wide range of sphere volume fractions. (It should be noted
that Berryman and Milton'* corrected a normalization con-
straint used in the first paper of this series.'?) The most
promising bound,'® which we refer to as the Weissberg-
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Prager bound, has only been computed for a single model,
namely, randomly centered or “fully penetrable” spheres.
Unfortunately, since this model cannot readily be repro-
duced in the laboratory, it has been difficult to access. the
merits of the Weissberg—Prager bound.

This paper has a threefold purpose. First of all, we shall
rederive the Weissberg—Prager bound on £, for a random
array of spheres distributed with arbitrary degree of impen-
etrability, by averaging flow quantities with respect to the
ensemble of particle configurations. The advantage of em-
ploying ensemble-averaging techniques is that it enables one
to obtain series representations of the distribution functions
that arise in terms of known statistical quantities for the en-
semble. Secondly, using these series expressions, we exactly
compute the term in the ¢, expansion of the inverse perme-
ability k£ —! (which gives the first correction to the Stokes-
law limiting value) for partially penetrable spheres, thus en-
abling us to study the the effect of interparticle overlap on
k ~tothis order. Finally, these low-density bounds are com-
pared to an asymptotic expansion and to other bounds
(which include less statistical information ). From this com-
parison, we infer some important conclusions about the
Weissberg-Prager bounds at high sphere volume fractions.

il. DERIVATION OF THE VARIATIONAL BOUND ON THE
PERMEABILITY

The porous medium, in general, is a domain of space D
of volume ¥ which is composed of two regions: a void phase
D,, through which fluid flows, of volume fraction (porosity)
#,, and a solid or particle phase D, of volume fraction ¢,.
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Denote by ¥ and ¥, the volumes of D, and D, respectively.
Let S denote the surface between D, and D,, i.e., the parti-
cle-void interface. We define a random variable that is unity
in the void phase and zero in the particle phase:

1, xeD,

I(x)={0, xeD.. ()

P

The gradient VI(x) is a generalized vector function which is
zero everywhere except for x on S, where it is infinite, with
the direction of the unit outward normal to the particle-void
interface directed into the fluid.

For fiow of an incompressible fluid through the porous
medium in the absence of slip, the rate of energy dissipation
per unit volume produced is given by'*

e= (172u){I(x)o(x):a(x)), (2)

where o (x) is the local viscous stress deviation tensor at the
point x in ¥}, u is the fluid viscosity, and angular brackets
denote an ensemble average. Since o (x) is defined only in
the fluid, we define o(x) to be zero in the solid material.
When the particle phase is composed of particles of arbitrary
shape, the ensemble average of any many-body function
F(r") is defined by

(F(r™)) = f dr™ F(e¥) Py (V). 3)

Here r" is a shorthand notation for the configurational co-
ordinatesr,,...,ry and dr" =dr, - - -dr,. The configurational
coordinate of the ith particle, r;, in general, describes its
three center-of-mass positions and its orientation in terms of
three Euler angles. Here, Py (r") is the probability density
associated with the event of finding particles 1,...,N with
configuration r", respectively. It is convenient at this point
to introduce the reduced n-particle probability density
Pn (r") defined by

i
£, (r") =(—N{v_—'ﬁfdrn+,---drNPN(rN). (4)

Thenp, (r" )dr" is the probability that any particle is in vol-J

2 (VIx) [ —p*xX)U+o*(x)]) - (VI(x) - [ —p*(x)U + 0*(x)]) ‘

ume element dr, about r,, another particle is in volume ele-
ment dr, about r,, etc. The generalizations of Egs. (3) and
(4) to a multicomponent mixture of arbitrary shaped parti-
cles are straightforward but shall not be described here.

For slow viscous flow, the correct stress distribution is
the one that minimizes € subject to the conditions

o(x) =0"(x), xeD, (5)

o(x):U=0, xeD,, (6)

V.o(x) =Vp(x), xeDj (7N

(VIx) [ —p(x)U+a(x)]) =7, (8)
and

{o(x)) =0. (9)

Here p(x) is the local pressure in the fluid and U is the unit
dyadic. Conditions (5) and (6) state that the stress tensor
must be symmetric and traceless, respectively. Equations
(7) and (8) describe the detailed and overall balance of
forces, respectively. In Eq. (8) the quantity in the square
brackets is the Newtonian stress (defined only in the fluid)
and v is the average force, per unit volume of fluid, driving
the flow. [Condition (8) is identical to the normalization
constraint derived by Berryman and Milton.'5] The phys-
ical significance of (9) is that the mean stress deviations
must vanish since the system as a whole is not being sheared.
Now the permeability k& is related to e through the following
relation:

€= (k/u)y3 (10)

where 72 = y+y. If the true stress deviation o(x) were
known, then & could be calculated exactly using Eqs. (1)-
(10). In general, the actual stress depends upon the random
geometry in a very complex fashion and hence cannot be
determined exactly. If one instead employs a trial stress devi-
ation field o*(x) that satisfies Egs. (5)—(9), then the com-
puted rate of energy dissipation per unit volume will be larg-
er than the true rate. This implies that the inverse
permeability is bounded from below by

1

k= ¢ (I(x)o*(x):0*(x))
Here p*(x) is a trial pressure field and is related to o*(x) via
Eq. (7).

The formulation described above is given in terms of
ensemble averages in contrast to the volume-average ap-
proach taken by Weissberg and Prager.'* The advantage in
employing ensemble averages is that it enables us to obtain
explicit representations of the statistical quantities that arise.

Following Weissberg and Prager, we shall specialize to
models of statistically homogeneous and isotropic distribu-
tions of equisized spheres of radius R in a void phase. Such
models are not as restrictive as one might initially surmise.
For example, we can consider the spheres to be distributed
with an arbitrary degree of impenetrability. The degree of
impenetrability can be characterized by some parameter A
whose value varies between zero (in the case where the
sphere centers are randomly centered and thus completely
uncorrelated, i.e., fully penetrable spheres) and unity (in the
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(1)

instance of totally impenetrable spheres). Examples of such
sphere distributions include the permeable-sphere (PS)
model'® and the penetrable-concentric-shell (PCS) mod-
el.'"” The degree of connectivity of the particle phase, an im-
portant topological property of the medium, is obviously de-
pendent upon the degree of impenetrability, e.g., for fully
penetrable spheres (1 = 0) and totally impenetrable spheres
(4 =1) the particle phase percolates (i.e., a sample-span-
ning cluster appears) at a sphere volume fraction of approxi-
mately 0.3 (see Ref. 18) and 0.64 (see Ref. 19), respectively.
Therefore, using such sphere distributions we can model me-
dia characterized by a highly-connected particle phase (e.g.,
consolidated media such as sandstones, sintered materials,
and unglazed ceramics) as well as those characterized by a
low degree of particle connectivity (e.g., unconsolidated me-
dia such as granular beds).

Now in order to evaluate the ensemble averages of Eq.
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(11), we need to express the various many-body functions
which arise in terms of the particle positions r¥ . For N over-
lappmg spheres of radius R centered at r” it has been shown
that®°

N
I(xr™) = II [1-mG)] (12a)
N
E m(y;) +;’mm)m(yj
N
Z odmy)Imy,) + -, (12b)
<T<
where
moR) = {17 V<R (13)
0, y>R,
andy, =x —r; and y;, = |y, |. Therefore, we have
N N
VI(x;r") = z 8,6(y, —R) — Z 8,80, —R)m(y,)
o] i<j
N
—-zﬁjb‘(yj—R)m(y;)+ "‘, (14)
i<]
where & is the Dirac delta function and &, =y, /y, is the unit

outward normal to the ith particle. Equation ( 14) is closely
related to the characteristic function of the two-phase inter-
face given by Torquato and Stell’’ and by Chiew and
Glandt.?> The difference between the latter quantity and
VI(x) is that the former is not only nonzero for x on .S but
has associated with it the direction of the unit outward nor-
mal to the two-phase interface.

We must now choose a trial stress devmtlon and pres-
sure field. A simple choice is to assume the trial fields are
based upon a sum of independent contributions from indi-
vidual isolated spheres, i.e., upon the solution to the single-
sphere boundary-value problem®:

o*(x) = E 7(y:) — pfdrl 7(¥1)

=1

(15)
and

p*(x) = (p(x)) + 'ﬁl PGy —p fdl'lp'(yl), (16)
where in spherical coordi:mm (r,0,¢) for r>R

=3 [ (5] o
5[]~ @)

amn

Too (F) = T4 (1) =

(18)
3 U/R\ .
To(F) =74(r) = —_f'u_i(_r_) sin 6, (19)
Trg (F) =74, (T) = 744 (r) =74 (r) =0, (20)
and
3 U/R\?

(r) == ~— g — [ — . 21
p(r) 2yR(r) cos 6. 1)

Here the radial distance 7 is measured with respect to the
sphere center and U is the velocity of the fluid infinitely far
from the particle in the positive z = r cos 8, direction. For
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r <R, we shall, as indicated earlier, take r(r) =p'(r) =
The trial functions (15) and (16) are the same as the ones
originally employed by Weissberg and Prager* except for
the presence of the integrals subtracted from the single sums.
The term subtracted from the single sum in Eq. (15) is in-
cluded in order to satisfy condition (9). Similarly, from Eq.
(16) we have that the average trial pressure field is equal to
the true pressure field. Trial functions of this form, first em-
ployed by Torquato® in analogous variational bounds on the
effective conductivity of composite media, lead to absolutely
convergent integrals, as we shall see. Note that if the trial
function o* only involved the single sum in Eq. (15), then
condition (9) is not satisfied because the left-hand side of
(9) leads to the volume integral

p f *(y,)dy,

which is divergent since 7(y) goes asy lasy—oo.

Before proceeding with the calculation of bounds for the
trial fields (15) and (16), it is important to comment on the
choice of trial functions. In general, it is always desirable to
choose fields which lead to the best possible bounds for a
given amount of microstructural information on the medi-
um. In contrast to variational bounds on the conductivity
and elastic moduli of composite media, however, the choice
of the best trial function in the permeability problem is not
easily determined. For.example, trial functions based upon
Brinkman-like stress and pressure fields' are expected to be
superior to (15) and (16) since the former will lead to the
proper O(¢}%) correction to the Stokes-law inverse perme-
ability [see Eq. (52)]. Such a computation is more difficult
than that employing (15) and (16).and hence shall be exam-
ined in a future work. Since one of the purposes of this article
is to study the salient effects of particle overlap on k for low-
density systems, the simple fields (15) and (16) will suffice
here.

Substitution of Egs. (12)-(16) into lower bound (11)
and use of Eqgs. (3) and (4) lead to the following ensemble
averages for statistically homogeneous and isotropic media:

(Io*:.0*) = Jdrl G,(y))r(y)r(yy)

+ I dr, dr, Qs (y,¥2)7(y) 7 (y,) ‘ (22)
and
(VI (—p*U + o) |
= T;—fdﬁl[ —p'(Ria,)U + 7(R#A,)] - 4,

s 47R?
— || dr;dit
+447ff 165 s

X [G3(y,RH,) ~ pGo(y, =R)]
X[—=p(yD)U+ 1'(3'1)] « iy,

(23)

wheredii; in (23) denotes an element of solid angle. Here we
hive, upon use of the methods of Ref. 23, that

Q:(¥1,¥2) = G3(y1¥2) —sz(yl) - pG(»2) +P2¢1s (24)
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G, (Xry,..r, _)dr---dr,
= probability of finding void at x, the center of
one (unspecified) particle in volume dr, about

r,, the center of another (unspecified) particle

in volume dr, about r,, etc., (25a)
n—1 © ( _ l)k
= H e(}’,-) Z T pn+k—1(r1’-"9rn+k—1)
i=1 K=0 !
an+k—1
X H m(y;R)dr;, (25b)
j=n
S=4ﬂ'R 2G2(yl =R)1 (26)
e(y;R) =1—m(yR), 27N
and
po=1.

The ensemble-average approach employed here has led
to series representations of the statistical quantities s and G,
in terms of the n-particle probability density function p,,;
quantities which are, in principle, known for the ensemble
under consideration. Expression (25b) for the n-point dis-
tribution function G, was first arrived at by Torquato?** in
connection with analogous variational bounds on the con-
ductivity of two-phase disordered media. The expression for
the specific surface s (expected interface area per unit vol-
ume), Eq. (26), was given in a different but equivalent form
by Torquato and Stell*! and by Chiew and Glandt.?* Given
the p,,, we may now calculate s and G, for spheres of arbi-
trary impenetrability. This is to be contrasted with the vol-
ume average approach used in Ref. 14 which obviously can-
not directly yield series representations of s and G,, .

For statistically homogeneous and isotropic porous me-
dia, G, depends not upon the absolute positions X,
ry,....F, . but upon the relative distances. For example, for
such materials G, 1is simply the porosity ¢,,
G,(x;r)) = G,(y,), and G;(x;r,r,) = G5 (y,,p,,4), where u
is the cosine of the angle between y, and y,. Note that the
quantity G;(y,,Rf,) in Eq. (23) is closely related to the
surface—particle correlation function F, (y,) associated
with finding the two-phase interface at x and the center of a
sphere in dr, about r,.?

Another difference between the present and Weissberg—
Prager formulation is that the statistical quantities that arise
in the second integrals of Eqs. (22) and (23) vanish identi-
cally at the surface of the macroscopic sample and hence are
absolutely convergent. Consider first the second integral of
Eq. (22) in the equivalent form

fdrlzfdx O3 (y ¥y )7 (y ) (yy),

where r;, =r, —r,. To prove the absolute convergence of
this sixfold integral one need only show that the first volume
integral over x decays to zero faster than r; > as #,— oo,
wherer,, = |r;,|. When particle 1is far from particle 2, there
are only three possible configurations which can contribute
to the integral; when the field point x is near particle 1 or 2
and when the field point is far from both particles. When x is
near particle 1, then according to the asymptotic relations
derived in Ref. 23,

(28)
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G3(y1y2) ~pG (1)), (29)

G, (y,) =pd1, (30)
and

Q3(y,,¥,) —0. (31)

Since Q, goes to zero very rapidly as y,— o, the volume
integral over x goes to zero faster than ; °, and hence the
entire sixfold integral is absolutely convergent. The same
result is obtained when x is near particle 2. Note that the
analogous sixfold integral in Ref. 14 is exactly the same as
the second integral of Eq. (23), except with Q, replaced with
G;(y,,¥y,) only. Since this obviously does not go to zero for
the case when x is near particle 1 or 2, with particle 1 far from
particle 2, then the integral over x does not go to zero faster
than 7,3 . To complete the proof of the absolute convergence
of (28), one must consider the case when x is far from both
particles 1 and 2. For this configuration, we have?

Gs(yu¥2) P61 (32)

G, () —pr, =12, (33)
and

Qs (y1y2) —0. (34)

Hence integral (28) is absolutely convergent.

Consider the second integral of Eq. (23). Since
[G5(ypR1Y,) — pG,(y, = R)]—-0as y, — w0, the entire five-
fold integral is absolutely convergent. This is to be contrast-
ed with the analogous Weissberg-Prager integral which just
involves the statistical quantity G,(y,,Rf,). [ Note that in
Ref. 14 the quantity denoted by R V(y,,f,) = (4R ¥/s)
X G5(y,Rii,).] Clearly, the first integrals of Eq. (22) and
(23) are absolutely convergent and are identical to the cor-
responding ones in the Weissberg—Prager formulation.

We should note that if a spherical sample is considered
and if the operational rule of integrating first over angles and
then over distances is adopted in evaluating the Weissberg—
Prager divergent integrals, then these integrals give the same
result as the corresponding absolutely convergent integrals
described here. Whenever possible, however, it is always
more desirable to express bulk properties of random media
in terms of absolutely convergent integrals and, hence,
shape-independent integrals.

In summary, Eqs. (11), (22), and (23) yield the lower
bound

1 52

% 82

( di, [ —p'(Ri)U + 7(Rii;)] * iy,
2
+ fJ dr, dii, F;(y,Ri,) [ —p'(y,)U + 7(y,)] * ﬁz)

X (j drl Gz(yl)T(YI):T(YI)

—~1
+ ff dr,dr, Q3(Y1,Y2)T(Y1)5T(Y2)) s (35)

where

&(yl’Rﬁz) = (4nR 2/5)[G3(Y1:Rﬁz) ~sz(y2 =R)].
(36)
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The quantity squared within the brackets of Eq. (35) isa
shorthand notation for the dot product of the quantity with
itself. Since the trial field used in deriving Eq. (35) is based
on the exact solution to the one-sphere boundary-value
problem, Eq. (35) is exact through first order in ¢,, i.e., it
yields the Stokes-law dilute limit.

We note that (35) is particularly easy to evaluate in the
case of fully penetrable spheres (4 = 0). This result, first
obtained by Weissberg and Prager, is derived in the Appen-
dix using the present formulation.

Iil. EVALUATION OF THE WEISSBERG~PRAGER
PERMEABILITY BOUND FOR A DILUTE BED OF
PENETRABLE SPHERES

A. Caliculation procedure

It is desired to study the effect of interparticle overlap or
connectivity on k through order ¢3. In other words, we wish
to understand the effect of particle overlap on the term in the
volume fraction expansion of k which gives the first correc-
tion to the Stokes-law limiting value. Virtually all pre-
vious”® published results for dilute beds of particles have
dealt with distributions of impenetrable spheres in which the
average coordination number (i.e., average number of
spheres physically touching each sphere) is implicitly taken
to be zero and hence media in which pairs of spheres (mon-
omers) can never combine to form a cluster of size two (i.e.,
adimer). Interparticle connectedness shall be introduced by
allowing the spheres to be penetrable to one another in vary-
ing degrees. An exact solution to the problem described
above requires the solutions to the boundary-value problems
for one sphere and two interpenetrating spheres for arbitrary
separation distances. The latter problem is nontrivial and, to
date, has not been solved. Short of obtaining this two-sphere
solution, rigorous bounds on k expanded through order ¢2

- AR &
331‘:11 .’El=_‘_ Pacund @
: D+ &0
H e - D
) (33215 A

I

B
s <
£

:

TRIT
1

FIG. 1. A computer-generated realization of a distribution of disks of radius
R (shaded region) in a matrix (unshaded region) in the PS model.'s Here
A = 0.5 and the sphere volume fraction ¢, = 0.3,
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are the next best possible means of estimating the effect of
particle overlap on k.

We shall consider evaluating the Weissberg-Prager
bound on k !, Eq. (35), through second order in @,, for
spheres distributed with arbitrary degree of impenetrability
A in the PS'® and PCS'” models. Very similar calculations
have been carried out for analogous bounds on the conduc-
tivity?® and, consequently, we shall only sketch the calcula-
tion procedure here. In the PS model, spherical inclusions of
radius R are assumed to be noninteracting when noninter-
secting (i.e., when r> 2R, where r is the distance between
sphere centers), with probability of intersecting given by a
radial distribution function g(r) = p,(r)/p? thatis, 1 — 4,
0<A<1, independent of 7, when r < 2R. For this model, the
zer(;)-density limit of the radial distribution function is given
by!

1—A4, r<2R,
8o(rA) = {1, r>2R.

In the PCS model, spheres of radius R are statistically dis-
tributed in space subject only to the condition of a mutually
impenetrable core region of radius AR, 0<A< 1. Each sphere
of radius R may be thought of as being composed of an im-
penetrable core of radius AR, encompassed by a perfectly
penetrable concentric shell of thickness (1 — A)R. In the
PCS model, we have!”

37N

r<2RA,
r>2RA.

In Figs. 1 and 2 computer-generated realizations of two-di-
mensional analogs of the PS and PCS models, respectively,
are shown. Note that in the former model, two sphere
centers may lie arbitrarily close to one another subject only
to the probability of overlap being 1 — A, whereas in the
latter model no two sphere centers may lie closer than 2RA.

0,
g(rA) ={l (38)

FIG. 2. A computer-generated realization of a distribution of disks of radius
R = 0/2 (shaded region) in a matrix (unshaded region) in the PCS mod-
el.!” The disks have an impenetrable core of diameter Ao indicated by the
smaller, black circular region. Here A = 0.5 and ¢, = 0.3.
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In order to compute bound (35) through second order e(y) Vint(y:R,2R)
in ¢, we need to first have expressions for the low-density =~ G2(?) = [’7 - (1 - ’1‘—‘_—)772] +007)
expansions of the specific surface s [or G,(y, = R)] and the ' ! (39)
two- and three-point distribution functions G, and G,,
through the second order in the reduced density and
= p4nwR */3. Such calculations have already been report- G _ JV2 1% 1+ O 40
ed.?® In the PS model, the two- and three-point distribution 2W30y2) = [ebeGa)/ Vi) + 007, (40)
functions are, respectively, given by I where

( 47R3
3 s O<y<R2 - Rl
3(R2 —R%)z+ (R; +RY)
R LR,) = - (41)
VIR LR, {fg- 316}) 23 , R,—-R,<y<R,+R,
—Z pREZ4+RH+ Y
RORERRT
L0, Y>R, + R,

is the intersection volume of two spheres, one of radius  ume fraction ¢, using the relations
R, <R, and the other of radius R,, whose centers are separat- =, 4+ [(1 —A)/2]62 + O(& (50)
ed by a distance y, and where ¥, = 4R */3 is the volume of a =+ 17 )/216; (¢2)
sphere of radius R. Using Eq. (26) for the specific surface for the PS model'’ and
together with Eq. (39) yields N=¢,+ [4(1 =A%) —3(1 —1*%)

5= (3/R)m — (3/R) (1 =)y + O() (42) +(1—4%143 + 0(4]) (s1)

for the PS model. In the PCS model, it has been found that*
G, ) =)/ Vi — [1=VPWed) 7'} + O
(43)
and
G (y1y2) = [e()e(n)/Vi]n* + O(n?), (44)

where ¢ = min(R,2RA) and d = max(R,2RA). Therefore,
for this model,

s=(3/R)np— (3/R)[4(1 =17

=~ 3(1 =AH17* +0p). (45)

Substitution of Eqs. (39)-(45) into the integrals of Eq.
(35) and application of the spherical-harmonics methodolo-
gy?® used in Ref. 23 to evaluate such cluster integrals, yields
the following low-density expansion of the Weissberg—
Prager lower bound on k —":

ks/kwe =1+ K¢, + O(83), (46)
where

ks =2R?/9¢, (47)
is the Stokes-law permeability, and where

Ki=3+AG3mn3+18 (48)

in the PS model and
Ki=§—A°+4 A+ 447
—2A+3(1+34)In2A + 1)

— (1 +74)/16(24 + D2+ 1 /1624 + 1)*
(49)

in the PCS model. In arriving at Eqs. (46)—(49) we have
eliminated the reduced density % in favor of the sphere vol-
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for the PCS model.'” Note that 57 = ¢, only for the case of
impenetrable spheres, i.e., A = 1. Clearly, at the same ¢, and
for A <1, 7(4) >75(A = 1) in either model. Interestingly,
Egs. (42) and (45), for s combined with Egs. (50) and (51)
reveal that for almost all A (0<4<0.89) the specific surface
in the PS model is always greater than the specific surface in
the PCS model at the same ¢,.

Table I and Fig. 3 compare the coefficient X, for the PS
and PCS models as a function of A. In either model K, mono-
tonically increases from its minimum value of 1.5at A = Oto
its maximum value of 3 In 3 4 23~ 5.68 at A = 1. This sup-
ports our intuition that, at the same ¢,, an assemblage of
partially overlapping spheres has a greater permeability than
one characterized by a higher degree of impenetrability. This
is expected since the former will always have a smaller spe-
cific surface (and, thus, a smaller average drag force) than
the latter at the same ¢,, assuming that the flow fields in each
case are similar to one another; a reasonable assumption at

TABLE 1. Comparison of the coefficient X, for the Weissberg—Prager
bound, Eq. (46), and the Doi bound, Eq. (54), in both the PS and PCS
models, as a function of the impenetrability parameter A.

PS model PCS model

A KPP KP KW kP
0.0 1.500 1.875 1.500 1.875
0.2 2.336 2.500 1.562 1.881
0.4 3.171 3.125 1.792 1.958
0.6 4.007 3.750 2.439 2.298
0.8 4,843 4.375 3.709 3.194
1.0 5.679 5.0 5.679 5.0
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FIG. 3. Comparison of the coefficient K| for the Weissberg—Prager bound,
Eq. (46), in both the PS (upper curve) and PCS (lower curve) models, asa
function of A.

“dilute conditions. In general, at low-sphere volume frac-
tions, increasing the interparticle connectivity increases the
permeability at the same value of ¢,. Note also that the coef-
ficient K, and, thus k ~! in the PCS model lie below the
corresponding values of K, and k& ! in the PS model forall 4,
except at the extreme values 4 =0 and 4 = 1 where they
coincide. This can again be explained by noting that for al-
most all 4, s in the PCS model is always smaller than s in the
PS model, at the same ¢,. Based upon a study of analogous
bounds on the conductivity,? it is expected that the actual
permeability for the two models will behave similarly to the
corresponding low-density bounds calculated here.

B. Comparison to other results

For a random array of totally impenetrable spheres
(A = 1), the dimensionless inverse permeability kg /k, for
small ¢,, is given by the asymptotic expansion’

ks/k =1+ (3A2)$;”

+ B d,In ¢, + 16.5¢, + O(43*In 4,). (52)

The asymptotic expansion (52) predicts an O(¢}'%) correc-
tion to the Stokes-law permeability, as apposed to an O(¢,)
correction obtained from bound (46). A means of deriving
bounds which have a leading order term of the order of ¢,/
was described in Sec. II. Figure 4 compares ks/k wp [Eq.
(46)] for the case A = 1 to Eq. (52) for ¢,<0.1.

It is of interest to compare the Weissberg-Prager bound
on k to the Doi?’” bound which involves less microstructural
information. The Doi upper bound on % is given by
=t [ (-2t 1)

D =— xx\F,(x) —22F,(x)+—=-F,(x)]).
3. s s

(53)
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Here F,,, F,,, and F,, are the void-void, surface-void, and-
surface-surface correlation functions, respectively. Doi not-
ed that Eq. (53) is the best possible bound on k given just
one- and two-point correlation functions for the medium. In
order to improve upon it one must include higher-order cor-
relation functions (i.e., three-point and higher-order corre-
lations). Recall that the Weissberg—Prager bound involves
one-, two-, and three-point distribution functions.

Using the series representations of a very general set of
n-point distribution functions described in Ref. 25 (which
involve interfacial information ), we may evaluate Eq. (53),
through second order in ¢, in both the PS and PCS models,
in the same manner used to compute the Weissberg—Prager
bound. It is found that the Doi lower bound on kg /k is given
by

where in the PS model
Ki=%+%A (55)

For the PCS model, the integrals were too complex to evalu-
ate analytically and hence were computed numerically using
the techniques of Ref. 28. The Doi coefficient X, for the PS
and PCS models is compared to the analogous Weissberg—
Prager coefficients in Table I. For small A, the Doi bound on
k ', through second order in ¢,, is seen to be slightly sharper
than the corresponding Weissberg-Prager bound in both
models. This is not an unexpected result for beds of spheres
with a high degree of penetrability since the single-body trial
functions employed in the Weissberg-Prager bound, al-
though perfectly allowable, do not accommodate the overlap
geometry, especially at high ¢,. The trial function employed
in the Doi bound is completely general and, through the level
of statistical information included, exactly accounts for the
overlap geometry. Thus even though the Doi bound incorpo-
rates less information than the Weissberg—Prager bound, the
former is the sharper of the two, for small A, because the trial
functions used in the latter are not as accurate for small A as

30
20t
Ks
K //
10
N 10° 107 0"
¢,

FIG. 4. Comparison of ks /k wp [Eq. (46)] (lower curve) for the case of
impenetrable spheres to Eq. (52) (upper curve) for ¢,<0.1.

S. Torquato and J. D. Beasley 630

Downloaded 27 Sep 2010 to 128.112.70.51. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



they are for large A. For most large values of A (e.g., for
A >0.356 in the PS model and for A > 0.520 in the PCS mod-
el), the Weissberg-Prager bound is sharper than the Doi
bound. The reason for this is that the former not only in-
cludes more statistical information than the latter but in-
volves trial fields which become more accurate as the degree
of impenetrability increases. This accentuates an important
point discussed in Ref. 23, namely, that bounds which incor-
porate a certain level of information on the medium are not
always necessarily sharper than bounds which involve less
microstructural information.

An interesting question is whether the coefficient K, can
give us an indication of how the bounds will behave for all
sphere volume fractions. For the case of fully penetrable
spheres (4 = 0) this is easily determined since the Weiss-
berg—Prager bound is known analytically (see the Appen-
dix) and because the Doi bound is readily computed using a
simple trapezoidal rule and the analytical expressions for
F,,, F,,, and F_, for this geometry. For A = 0, we find that
the Doi bound is sharper that the Weissberg—Prager bound
for all ¢,.%° The discrepancy between the two results in-
creases as ¢, increases, as expected. For example, at
¢, =0.06, 0.4, 0.7, and 0.9, the percentage differences
between kg/kp and kg/kwp is 2.3%, 16.6%, 33%, and
50%, respectively. In the instance of fully penetrable
spheres, therefore, the low-density expansion of the bounds
reflect how the bounds will behave at high ¢,. Moreover,
similar conclusions have been drawn for conductivity
bounds in the cases A = 0 and A = 1.232%30 In light of these
conclusions and the results for the low-density bounds stated
above, it is expected that the Weissberg—Prager bound will
yield the most accurate bound on k for arrays of spheres
characterized by a high degree of impenetrability. Of parti-
cular interest, is the evaluation of this bound for the case of
totally impenetrable spheres (4 = 1) since such a model can
readily be tested in a laboratory.

Before closing this section it is useful to comment on a
recent evaluation of the Doi bound for an array of totally
impenetrable spheres.”® In Fig. 5, we compare the Kozeny—
Carman empirical formula

ks/kxc =108,/ (1 — ¢2)3 (56)
and the Doi bound on kg /k , for A = 1 as calculated in Ref.
25. Berryman®' has also computed the Doi integral for
A = 1. However, the numerical technique he used was much
less efficient than the one employed in Ref. 25, and resulted
in a rather gross underestimation of the lower bound ks /k .
The Doi bound is therefore much closer to the Kozeny-
Carman relation than Berryman originally thought. This re-
sult has important implications since it offers hope that
bounds which incorporate the next level of microstructural
information (i.e., three-point information) will lead to use-
ful estimates of k for all ¢,. Examples of such bounds are
extensions of the Doi bound and the Weissberg—Prager
bound described here.

IV. CONCLUSIONS

The derivation of the Weissberg—Prager bound on the
permeability in terms of ensemble averages enables one to
obtain series representations of the statistical quantities s,
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FIG. 5. Comparison of the Kozeny—Carman empirical formula, Eq. (56),
and the Doi lower bound on ks /k, Eq. (53), for impenetrable spheres (cal-
culated in Ref. 24), as a function of 4,.

G,, G,, and G, for spheres distributed with arbitrary degree
of impenetrability A. Using the series representations of the
distribution functions, we exactly calculated the term in the
volume fraction expansion of k ~', which gives the first cor-
rection to the Stokes-law limiting value, for partially over-
lapping spheres in both the PS and PCS models. In general,
increasing the degree of interparticle overlap increases the
permeability for fixed ¢,. The results of this study indicate
that, among currently available bounds, the Weissberg-
Prager bound will yield the best bound on k& for 4 > 0.356 in
the PS model and A > 0.520 in the PCS model, through sec-
ond order in ¢,. Moreover, for models characterized by a
high degree of impenetrability, the Weissberg—Prager bound
is expected to yield results comparable in magnitude to em-
pirical relations such as the Kozeny~Carman formula. We
are currently in the process of carrying out such a calcula-
tion for the case of totally impenetrable spheres (4 = 1) fora
wide range of volume fractions.

ACKNOWLEDGMENTS

This work was in part supported by the Office of Basic
Energy Sciences, U. S. Department of Energy under Grant
No. DE-FG05-86ER 13842, and by the Petroleum Research
Fund administered by the American Chemical Society un-
der Grant No. PRF-16865-G5.

APPENDIX: BOUNDS ON & FOR FULLY PENETRABLE
SPHERES

For the case of a bed of fully penetrable spheres, the
statistical quantities that arise in the Weissberg—Prager
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bound (35) are trivial. In particular,

G, =¢,=exp(—17), (A1)
G,(y,) =e(y,)pdy, (A2)
G3(yuY2) = e(y)e(r2)p’dy, (A3)
2
Qs (yuy2) = [g,m;)th};;:vil:e,and st (A4)
and
s=4nR*pd,. (A5)

Equations (A1)-(AS5) may be obtained using simple proba-
bilistic arguments'® or by summing the series of Eq.
(25b).% Substitution of these relations into the Weissberg—
Prager bound (35) yields

2
%> S—ﬂig Udﬁl[ — p'(RA)U + 7(R#,)] -ﬁ,)
-1
X(P¢1 dy, T(Y1):T(Y1)) . (A6)
y1»>R

Direct integration [employing Egs. (17)-(21)] gives
A A . \? U\?
(fdﬁ,[ —p'(R,)U + 7(R#,) ] * nl) = 36mu’n? (—) ,

R
(AT
U\ ,
P dy, 7(y,):7(y,) = ¢, (—) K (A8B)
>R R
and hence,
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