JOURNAL OF APPLIED PHYSICS 103, 084901 (2008)

Effective dielectric tensor for electromagnetic wave propagation in random

media

M. C. Rechtsman' and S. Torquato®?

1Deparlment of Physics, Princeton University, Princeton, New Jersey 08544, USA

2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; Program in Applied
and Computational Mathematics, Princeton, New Jersey 08544, USA; Princeton Institute for the

Science and Technology of Materials, Princeton, New Jersey 08544, USA; Princeton Center for Theoretical
Physics, Princeton, New Jersey 08544, USA; and School of Natural Sciences, Institute for Advanced

Study, Princeton, New Jersey 08540, USA

(Received 4 December 2007; accepted 9 February 2008; published online 17 April 2008)

We derive exact strong-contrast expansions for the effective dielectric tensor €, of electromagnetic
waves propagating in a two-phase composite random medium with isotropic components explicitly
in terms of certain integrals over the n-point correlation functions of the medium. Our focus is the
long-wavelength regime, i.e., when the wavelength is much larger than the scale of inhomogeneities
in the medium. Lower-order truncations of these expansions lead to approximations for the effective
dielectric constant that depend upon whether the medium is below or above the percolation
threshold. In particular, we apply two- and three-point approximations for €, to a variety of different
three-dimensional model microstructures, including dispersions of hard spheres, hard oriented
spheroids, and fully penetrable spheres as well as Debye random media, the random checkerboard,
and power-law-correlated materials. We demonstrate the importance of employing n-point
correlation functions of order higher than two for high dielectric-phase-contrast ratio. We show that
disorder in the microstructure results in an imaginary component of the effective dielectric tensor
that is directly related to the coarseness of the composite, i.e., local-volume-fraction fluctuations for
infinitely large windows. The source of this imaginary component is the attenuation of the coherent
homogenized wave due to scattering. We also remark on whether there is such attenuation in the
case of a two-phase medium with a quasiperiodic structure. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2906135]

I. INTRODUCTION

The problem of determining the effective dielectric ten-
sor and other mathematically equivalent properties of ran-
dom media dates back to the classic work of Maxwell.' Cal-
culation of the effective dielectric tensor of disordered
composite materials is essential for a wide range of applica-
tions, including remote sensing (e.g., of terrain, vegetation,
etc.),” the study of wave propagation through turbulent
atmospheres,3 active manipulation of composites,4 and as a
probe of artificial materials.” The effective dielectric tensor
at long wavelengths plays a particularly important role in the
study of electrostatic resonances.

This paper is concerned with the calculation of the ef-
fective dielectric tensor €, of a two-phase dielectric random
medium associated with electromagnetic wave propagation
in the long-wavelength regime, i.e., when the wavelength is
much larger than the scale of inhomogeneities in the me-
dium. The complementary regime, in which the wavelength
is much smaller than the inhomogeneities, may be studied
numerically using a ray-tracing technique based on geometri-
cal optics.8 The purely static (as opposed to the full dynamic)
problem, on which Maxwell’s work was centered, can be
considered to be a special case of the present work in the
limit of infinite wavelength (or zero frequency). Although
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there has been extensive previous work on the dynamic prob-
lem (see Refs. 9 and 10 and references therein), the vast
majority of studies that attempt to relate €, to the microstruc-
ture employ only two-point correlation information™'""'?
(with a few exceptions, see, e.g., Ref. 13). On the other hand,
there has been a great deal of work on the static problem
incorporating three-point and higher-order correlation func-
tions; see, for example, Refs. 14—19, and references therein.

Here we present, for the first time, explicit closed-form
series expansions for the effective dielectric tensor of two-
phase random media in three dimensions in terms of certain
integrals of n-point correlation functions for the dynamic
problem in the long-wavelength regime. The approach used
follows directly from one given originally for the purely
static problem in any dimension in Ref. 17, and expanded
upon in Ref. 19. An advantageous feature of this formalism
is that it gives rise to expansion parameters involving the
dielectric constants that yield very good convergence prop-
erties even for high phase-contrast ratio. The technique is
called the strong-contrast expansion for this reason. Tsang
and Kong11 have employed a similar method, but only up to
the two-point level and they provided no justification for or
limitations on the class of microstructures and phase-contrast
ratios for which their two-point approximation is applicable.
We restrict ourselves to considering component materials
that are themselves isotropic but that generally possess
complex-valued dielectric constants. As we will demonstrate,
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lower-order truncated forms of these expansions can serve as
useful approximations of the effective dielectric tensor. The
dielectric-contrast values that may be used in the strong-
contrast expansion, while large, are limited by the fact that
the operations of taking the dielectric contrast to infinity and
taking the wavenumber to zero do not commute. Although
the formalism is applied here to electromagnetism in three
dimensions, it is straightforwardly generalizable to a class of
other vector fields in arbitrary dimension."

We obtain new approximations for €, by truncating the
exact strong-contrast expansions at the two-point and three-
point levels that depend upon whether the medium is below
or above its percolation threshold. Using these two-point ap-
proximations, we estimate €, of dispersions of hard spheres,
hard oriented spheroids, and fully penetrable spheres as well
as Debye random media, random checkerboard, and power-
law-correlated materials. We use a three-point approximation
to evaluate the effective dielectric constant in the case of the
fully-penetrable-sphere model in order to establish the im-
portance of three-point information at high phase-contrast
ratio and volume fraction, and assess the accuracy of the
two-point approximations. For many of the model micro-
structure considered here, the explicit forms of the corre-
sponding n-point correlation functions follow from the gen-
eral representation formalism of Torquato and Stell.?

A significant qualitative difference between the purely
static problem and the dynamic problem is that in the latter,
the effective dielectric tensor may be complex even if the
component materials have purely real dielectric constants.
This results from incoherent scattering of the incident wave.
The imaginary component of the effective dielectric tensor
has special significance to remote sensing applications, as it
plays a key role in, for example, the calculation of back-
scattering coefficients.' Tt is important to note that the pos-
sibility of a nontrivial effective magnetic permeability
(w,/ mo# 1) in entirely nonmagnetic systems has been
discussed.?’ This effect would arise at fourth order in the
wavenumber, where magnetic dipole and electric quadrupole
effects are entangled. Although the expansions we derive
here are applicable in general to materials with complex di-
electric constants, we will apply them to cases in which the
material phases have real dielectric constants. We do this
because in this regime disordered media will in general yield
non-negative imaginary contributions to the effective dielec-
tric tensor purely due to scattering, not absorption. The
physical manifestation of this can be understood in the con-
text of optical or ultrasonic transmission experiments,22’23 in
which a wave pulse propagates through a finite-sized slab
composed of a disordered material, and the transmitted sig-
nal is measured. The transmitted field is observed to be a
superposition of a coherent pulse representing the incident
signal and uncorrelated noise due to random scattering. The
attenuation of the incident pulse is a consequence of this
scattering. Since periodic media propagate waves without
any loss (and thus with purely real effective dielectric ten-
sors), they do not exhibit imaginary parts in their effective
dielectric tensors. In the case of statistically homogeneous
and isotropic media in particular, we show here that the
leading-order contribution to the imaginary component of the
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effective dielectric constant is directly related to the coarse-
ness C., of the composite for an infinitely large window. The
coarseness is defined as the standard deviation of the volume
fraction of a given phase, in some observation “window”
within the composite divided by the total volume fraction of
that phase.lg’24 It has recently been suggested that local den-
sity fluctuations provide a crude measure of disorder of a
system.zsf27 In the language of Ref. 25, a hyperuniform sys-
tem is one in which C,.=0, which has been shown to always
be the case for periodic systems, and therefore is consistent
with the fact that Im[ £,]=0 for such media. Note that a non-
zero imaginary component of the effective dielectric constant
can be directly associated with a mean free path of waves
propagating through the given medium. "’

In Sec. II, we introduce our formalism, derive the strong-
contrast expansion for the effective dielectric tensor, and dis-
cuss the approach towards applying these techniques at the
three-point level. In Sec. III, we discuss a variety of model
microstructures not previously studied in the present context
and their associated two-point correlation functions. In Sec.
IV, we present results for the model microstructures dis-
cussed in Sec. III, showing volume fraction and dielectric-
contrast ratio dependence at the two-point level, and demon-
strating the importance of three-point calculations at
sufficiently high phase contrasts and volume fractions. In
Sec. V, we discuss conclusions based on our results. Appen-
dix A presents a generalization of our formalism, up to the
two-point level, wherein the expansion is carried out with an
arbitrary “reference” or “comparison” material (as described
in Sec. IT A). Appendix B gives a short proof of why periodic
media, at low frequencies, must give rise to effective dielec-
tric tensors with no imaginary component. Finally, in Appen-
dix C, we simplify the key two-point integral for statistically
homogeneous but anisotropic media with azimuthal symme-
try, an example of which is a dispersion of hard oriented
spheroids.

Il. THEORY

Here we extend the formalism for determining strong-
contrast expansions of the purely static effective dielectric
tensor in arbitrary d-dimensional Euclidean space R¢ (see
Refs. 19 and 17) to the dynamic case in R* when the wave-
length is much larger than the inhomogeneity length scale.
This method is based on finding solutions of certain integral
equations using the method of Green’s functions.

A. Strong-contrast expansions

Following Ref. 19 (which gives greater detail than Ref.
17), we begin by considering a macroscopically large ellip-
soidal sample composite material in R® composed of two
phases, labeled 1 and 2, which is itself embedded in a homo-
geneous reference (or comparison) material of dielectric con-
stant g,. We choose a specific macroscopic shape to call
attention to the fact that the average fields in the problem are
shape dependent. An advantage of this formalism is that it
eliminates the shape dependence of the effective dielectric
tensor. The length scale of inhomogeneities within the com-
posite is assumed to be much smaller than the shape itself.
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The two phases have dielectric constants &; and &,, and we
define indicator functions in the following way:

1 if r lies in phase p

(r) ={ (1)

0 otherwise

for p=1,2. Thus, the volume fractions of the phases are
(IW(r))= ¢, and ¢,=1-¢, (p #q). We may therefore write
e(r)=&,7"(r)+&,7®(r) in the composite. Note that the di-
electric constants &, and &, may be complex.

When solved for the electric field, time-harmonic Max-
well’s equations reduce to

w)\2
VXV XE(r)- s(r)(;) E(r) =0, (2)

with E the electric field, e(r) the reduced dielectric constant,
o the frequency of the time-harmonic solution, and ¢ the
speed of light. We assume here that w/ug=1, and that the
component dielectric materials are themselves isotropic. We
can rewrite this homogeneous, linear equation in a form that
is suggestive of perturbation theory as follows:

w 2 w 2
VXV XE(r)- sq(;> E(r)=[e(r) - sq]<?> E(r),

(3)

where we have taken the comparison material to be one of
the phase materials, i.e., £0=¢, where ¢ is either 1 or 2. We
employ this choice for simplicity here, but this is not essen-
tial; in fact, depending on the details of the structure in ques-
tion, it may improve convergence to choose a different com-
parison material.'”***° We discuss this point in further detail
in Appendix A.

As a shorthand, we will define k<21§ o,=(w/ c)2sq, for
any phase, g=1 or 2. In order to solve this equation for an
arbitrary structure via perturbation theory, we require a
Green’s function for the operator on the left side of Eq. (3),
which must therefore be a tensor. This is the dyadic Green’s
function. In d-dimensional spherical coordinates, it is given
by

I
G(r,r')=- E&(r -1r')+G|(r—r")I+ Gy(r —r')t,
q

(4)

where T is a unit vector directed from r’ towards r and I is
the unit tensor in d dimensions. For dimension d=3,

ik,r
N - 22y €7
Gir-r)=(-1+ lqu+quz)47Tk5V3’
) ‘ 5 eiqu
G,(r-r')=(3- 3ikyr—oyr )m,

q

with r=[r—r’|. In the limit k,—0, we recover the static
result' in three dimensions. Note the delta function in this
expression; this is the dipole “source” of the radiation; its
coefficient is dependent on the shape of the “exclusion vol-
ume” around this source. For the coefficient shown, the ex-
clusion volume must be spherical in shape.
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The Green’s function satisfies the following partial dif-
ferential equation:

VXVXG(rr')-oG(rr)=18r-r"). (5)

This implies that we can write the electric field as
E(r)=Ey(r) + f dr'G(r,r")[o(r) - o JE(r"). (6)

We can express this integral equation more compactly in
linear operator form

E=E;+GP, (7)
where we define the polarization vector field as

P=[o(r)-o,]E. (8)

The next step is to extract the delta function contribution
from the Green’s function solution. In doing so, we obtain a

new field, F, the cavity intensity field, which is directly pro-
portional to E. The resulting integral equation is

F=E,+HP, )

where H is the principle value of the Green’s function in Eq.
(4), namely,

H(r-r")=G|(r —r')I + G,(r — r')ft. (10)

Here, we have defined

Hﬂ=b+£@;£4-Mﬂ, (11)
do,

where I is the unit dyadic tensor. Now, P and F are directly
related as follows:

a(r) - o,

P(r) = F(r), (12)

I+ —[o(r)-0o,]

do,

or, implicitly defining L,
P(r)=L(r) - F(r). (13)

Note that L is an isotropic tensor. Instead of using the stan-
dard definition of the effective dielectric tensor, (D)
=¢g,-(E), we may equally well use the above equation. Thus,
implicitly defining L,, we have

(P(r)) =L, - (F(r)), (14)

where (-) denotes the ensemble (volume) average (assuming
ergodicity). We may write L, explicitly at this point. It is
given by

Le=L91=ﬂq—, (15)

I+ d—o_q[a'e -0,

where o,=(w/c)’e,, with &, the effective dielectric tensor of
the composite.

Following Ref. 19, Eq. (9) can be solved iteratively, but
one must be careful to eliminate the applied field E in favor
of the of the average field (E) in order to avoid conditional
convergence problems. Since the procedure is the same for
the present dynamic problem, we will omit these details. As
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a result of this procedure, we obtain the following exact
strong-contrast expansions for the effective dielectric tensor
for statistically homogeneous media:

Brybp(o.— o D)o, + 20,1) = ¢,B,,1

-2 AV, (p#aq), (16)
n=2
where p # q,
Boy 0p~ 09y Ep~ &g (17)

=0",,+(d—1)o'q=8,,+(d—l)sq’

and the n-point tensor coefficients A,(f ) are certain integrals
over the m-point correlation functions Sfl”) associated with
phase p. In particular, for n=2,

d
AY = 9 f drtP(r)[SY(r) - ¢ 1. (18)
where
t?)(r) = Ok H(r), (19)

) is the solid angle of a sphere in dimension d, and H(r) is
given in Eq. (10).
For any n>2, we have

oo (217 () ) )
An = ? 6 er e drnt r (1'1,1'2) -t
12

X(rp.13) - P, r ) AV (ry, L), (20)
where Ai” )(rl ,...,I,) the determinant is given by
S(zp)(rl’rz) S(lp)(rz) e 0
AP = Sg”)(rl,rz,m) sgp)(rz’lb) 0

SP(r,_y,r,)

(21)

Sy, ...r) SV (rs, ... 1)

and
Sy ry, ... 1) = AP (e )IP)(x,) - - 1P)(x,)) (22)

is the n-point correlation function of phase p. For statistically
homogeneous media (the case for which this formulation ap-
plies), the latter quantity is translationally invariant and
therefore depends only on relative displacements, i.e., SSL")
X(ry,ry,... ,l‘n)=5£,p)(l'12,l'13, ...,Iy,), where we have cho-
sen point 1 to be the origin, and, in particular, SE”)(rl):d)[,.

1. Remarks

(1) We see that the integral-equation approach given here is
entirely general. It is equally well suited to any problem
in which the local and averaged constitutive relations
have the same form, and thus the appropriate dyadic
Green’s function would replace Eq. (4). Indeed, the de-
terminant (21) for the dynamic problem considered here
is exactly the same as that in the static problem, as given
originally in Ref. 17.

J. Appl. Phys. 103, 084901 (2008)

(2) Note that Eq. (16) represents two different series expan-
sions: One for g=1 and p=2 and the other for g=2 and
p=1.

(3) The quantity fB,, given in Eq. (17), is the strong-
contrast expansion parameter, the form of which is a
direct consequence of the choice of exclusion volume
associated with the source term of the Green’s function.
Any shape besides the sphere would have necessarily
led to a different expansion parameter and therefore to
significantly different convergence properties.lg Clearly,
B,y may lie within the range —(d—1)"'<p,,<1. The
radius of convergence of the series given in Eq. (16) is
thus greatly widened beyond that of a weak-contrast ex-
pansion (i.e., the simple difference of the phase dielec-
tric constants). The improved convergence behavior of
the strong-contrast expansion is due to the fact that a
rational function of the effective dielectric tensor is ex-
panded in powers of rational functions (of Padé-
approximant-like form) of the dielectric constants of the
phases, namely, ﬁpq.lg

(4) In the purely static case, the series represented by Eq.
(16) may be regarded as expansions that perturb around
the optimal structures that realize the generalized
Hashin-Shtrikman bounds® derived by Willis,>' as dis-
cussed by Torquato.19 In particular, these optimal struc-
tures are certain dispersions in which there is a discon-
nected, dispersed phase in a connected matrix phase.
The lower bound corresponds to the case when the high-
dielectric-constant phase is the dispersed, disconnected
phase and the upper bound corresponds to the instance
in which the high-dielectric-constant phase is the con-
nected matrix. Thus, we expect that for the dynamic
problem under consideration, the first few terms of the
expansion (16) with g=1 and p=2 will yield a reason-
able approximation of &, for two-phase media, depend-
ing on whether the high dielectric phase is below or
above its percolation threshold, as discussed further in
Sec. II C.

B. Macroscopically isotropic media

Consider, as we will to a large extent in this paper, two-
phase media that are statistically homogeneous and isotropic,
and thus macroscopically isotropic. In this case, the effective
dielectric tensor is proportional to the identity tensor, and can
thus be treated as a simple scalar, namely, the effective di-
electric constant of the medium. This of course simplifies the
calculation enormously. We thus take the trace of both sides
of Eq. (16) and divide by d. Thus, the full expression in the
isotropic case is given by

Boy®Bes = bpBpg - %Aff)ﬁ;q, (23)

where A”=Ti{A”"]/d and B,, is the effective polarizability,
given by
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g,— &
"¢ "9
Beq " (24)

a g,+(d- I)Sq.

The scalar two-point coefficient, as specified by taking the
trace of Eq. (18), is given by

(2]
I e e U

= 2k[21fw dr exp(iqu)r[S(zp)(r) - ¢;], (25)
0

with this integral being straightforwardly carried out either
numerically or analytically, depending on the form of the
correlation function. Provided that the correlation function
S%’)(r) decay sufficiently rapidly to its long-range value of
¢, the integral in Eq. (25) will be convergent.

Note that by Eq. (25), A(p) must be zero in the purely
static problem (w=0) if the medlum is statistically homoge-
neous and isotropic. Thus, in the static problem, assuming
statistical homogeneity and isotropy, two-point information
is actually incorporated even though A" is zero. This subtle
point is elaborated in Ref. 19. This suggests that our formal-
ism is extremely well suited to the nonstatic problem in the
low frequency limit being considered here. Expanding the
two-point coefficient A(zp ) given in Eq. (25) through third
order in k, about k,=0 yields

AY =2k2 f drr[SY(r) - ] + 20k, f drr?[SP(r)
0

- ¢ 1+ O(ky). (26)

It should be expected that the imaginary component of the
effective dielectric constant of statistically homogeneous and
isotropic systems should be positive; otherwise, the homog-
enized coherent wave would be amplified rather than attenu-
ated. A simple analysis of Eq. (26) bears this out. The second
term on the right hand side, i.e., the leading-order imaginary
component, is nothing more than the zero-wave-vector struc-
ture factor of the composite material. Since S(Zp )(r) is ob-
tained from a realizable configuration, this is necessarily
positive.32 This is true because the structure factor is nothing
but the squared norm of the Fourier transform of the function
IW(r) - ¢,. The leading-order term of the imaginary compo-
nent in the expansion given in Eq. (26) is directly propor-
tional to the volume integral of the function S(” (r)- d) This
is exactly (¢,C..)*v,, where C., is the coarseness of the com-
posite structure in the limit of an infinitely large window, and
vg is the window volume.'*?* Thus, the value of the non-
negative imaginary part of the effective dielectric constant to
leading order is determined by local-volume-fraction fluctua-
tion over very large windows, which may be taken to be a
crude measure of disorder in the system.25 Note also that C,,
is proportional to the single-scattering intensity of scattered
radiation from the random medium in the infinite-wavelength
limit.'>

Another important fact that emerges from this formalism
is that at the two-point level the correction to the static ef-
fective dielectric constant only enters at second order in k,
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(i.e., second order in the frequency). It is hence a relatively
small contribution. The imaginary term enters only at third
order in the wavenumber.

Now, let us consider the simplification of the three-point
coefficient Agp ). From the general expression (20), we find

fd3r12fd3r13t<")(rlz)-t(f’)(rlz){Sé”)

S(zp)(rlz)Sg)(l‘m)]
b, .

The first few terms of the Taylor expansion of Eq. (27) about
k,=0 are given by

d’r fd3r {
¥ = f b 1 1+—‘1r +173) | Po(w)
o
3 (477)2 ”12 s 12 13 2

X|:S(3p)(r123r13) _ sy (rlzc):z (1‘13)] +(’)(k3)

“dr (“ds (! K
=9f —rj —Sf d,u,{1+—q(r2+s2)}P2(,u)[Sgp)
o "Jo SJ 6

SP(r)SP(s)
b

where u=cos 6, 0 is the angle between r, and ry3, and P, is
the second-order Legendre polynomial. The simplified sec-
ond line is obtained by exploiting the homogeneity and isot-
ropy of the medium, reducing the original six-dimensional
integral to a three-dimensional one."® Here r=|ry,| and s
=|ry5| are the side lengths of a triangle and 6 is the angle
between these sides. Note that the third-order term in k, is
exactly zero, the next-lowest-order contribution to the real
component must be of the order of k; (or higher), and the
next-lowest-order contribution to the imaginary component
must be of the order of k; (or higher).

In Sec. IV, estimates for the effective dielectric constant
that include three-point information will be presented for the
fully-penetrable-sphere model.

AP =
3 (477)2

X(ryp,13) = (27)

} +O(K}), (28)

X(r,s, ) —

C. Two- and three-point approximations

Practically speaking, it is difficult to ascertain four-point
and higher-order correlation functions, which therefore pro-
hibits an exact evaluation of the expansion for the effective
dlelectrlc tensor in Eq. (16). However, as shown in the static
problem ? lower-order truncations of the exact expansion
(16) at the two-point and three-point levels have proved to be
accurate approximations for the effective dielectric tensor.
For the macroscopically isotropic case, the two-point and
three-point approximations used to calculate the effective di-
electric constant, obtained by truncating the series in Eq.
(23), are given by

-1
&g,— £, 5 g, — g, B -
— ¢ —A
{8p+(d—l)sq}¢p[ee+(d—l)8j =43

xL—f(qu)—] (p#q (29)

and
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-1
817_8(] 2 Sg_eq _ (P)
=¢,—A
L;p+(d—l)sq]¢1’[sg+(d—l)sq] = A2

2
X{ e,— ¢, }_A@{ e, ¢, } "
g,+(d-1)g, 3 g,+(d- 1,
#q), (30)

respectively, where A(Z") is given by Eq. (26) and Ag’” is given
by Eq. (28). The two-point approximation (29) is exact to
second order in g,—¢, for any ¢, and is exact to first order in
¢, for any phase-contrast ratio €,/¢e,. The three-point ap-
proximation (30) is exact to third order in g,-g, for any ¢,
and is exact to second order in ¢, for any phase-contrast
ratio g,/e,. However, because the approximations involve
truncating a series for a rational function of the effective
dielectric tensor expanded in powers of rational functions
(i.e., Padé-like expressions), i.e., B,, they estimate well
terms of very high order in g,-¢, and the volume fraction
¢>p.l9 The most difficult cases to treat theoretically are when
both the volume fraction and phase-contrast ratio are signifi-
cantly different from zero and unity, respectively. The
strong-contrast approximations (29) and (30) are expected to
provide reasonable estimates of g, for a certain class of dis-
persions in this more difficult regime because they are per-
turbations of the strong-contrast expansions in the infinite-
wavelength limit (pure static case), which have been shown
to be in excellent agreement with both precise computer
simulation and experimental data for a variety of
dispersions.”’19 Specifically, if €,>¢,, (29) and (30) with
g=1 and p=2 will yield good estimates of &, provided that
phase 2 is below its percolation threshold and that the typical
cluster size of phase 2 is sufficiently small."" On the other
hand, if phase 2 is above its percolation threshold, Egs. (29)
and (30) with g=2 and p=1 should provide good estimates
of g,.

lll. MODEL MICROSTRUCTURES

We study a number of model microstructures and their
corresponding two-point correlation functions. In particular,
we examine dispersions of hard spheres, hard oriented sphe-
roids, and fully penetrable spheres as well as Debye random
media, the random checkerboard, and power-law-correlated
materials. Except for the hard-ellipsoid model, all of the
other models are statistically homogeneous and isotropic. We
take a to be a characteristic length scale for each model.
These microstructures, depicted in Fig. 1, are explicitly de-
scribed in this section, and we take g=1 and p=2. The two-
point correlation functions for each of these models are de-
picted in Fig. 2, at volume fraction ¢,=0.5, with correlation
lengths roughly equal to one another. The “correlation
length” [, is the range [0,/.] in r over which the magnitude
of S(22)_ ¢% is appreciably fluctuating around zero."”

A. Equilibrium hard spheres

Here we consider the well-known equilibrium distribu-
tion of hard spheres of radius a (phase 2) in a matrix (phase
1).% For this model, depicted in Fig. 1(a), all nonoverlapping
configurations are equally probable. This equilibrium model

J. Appl. Phys. 103, 084901 (2008)

Sinls WA oo

FIG. 1. Two-dimensional slices of the three-dimensional microstructures
described in this section at volume fraction ¢,=0.5. They are hard spheres
(A), hard oriented spheroids (B), fully penetrable spheres (C), Debye ran-
dom media (Ref. 34) (D), random checkerboard (E) (in any plane perpen-
dicular to a principal axis), and power-law-correlated materials (Ref. 34)
(F). Both the fully-penetrable-sphere model and random checkerboard at
$,=0.5 are above their respective percolation thresholds for the black phase
2, even though planar cuts through these samples do not reveal that the
black phase is indeed percolating in three dimensions. We expect that the
Debye random medium and power-law-correlated materials shown here also
percolate at ¢,=0.5.

is athermal, i.e., the behavior of the system is temperature
independent. The pair correlation function g,(r) for particle
centers may be expressed in closed form in Fourier space
using the Percus—Yevick approximation, as described in Ref.
19. The two-point function S(Zz)(r) can be obtained from the
pair correlation function via the following equation:36

SY(r) = pu§"(r;a) + pgy @ m @ m, (31)
where p is the number density of spheres, v(zi"t)(r;a) is the
intersection volume between two spheres of radius a that are
a distance r apart, which is given by

0.5 : [ .
_\\ — hard-sphere b
=W - fully-penetrable-sphere _|

045 \ — - Debye random medium
F ‘vn_ T \ — random checkerboard 1
0.4 \ -\ power-law-correlated
A4F 0\ N\ -
I W |
s LA
S — g _
8035 SN
»n r N % \N o
\ s s N

0.3 NN -
L o PR N 4

0.25+ TIAT T R —

0.2 \ .

0 2 4
r/a

FIG. 2. (Color online) Plots of the two-point correlation function S(z”)(r) for
the five isotropic models detailed in this section: Hard spheres, fully pen-
etrable spheres, Debye random medium, random checkerboard, and a
power-law-correlated material. The volume fraction for each model is ¢,
=0.5. Note that the correlation lengths for each model are roughly equal to
one another.
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3r 1(r\ .
l——+—=| - if r<2a
da 16\a

0 otherwise,

vSi"(r;a) = (32)

the symbol ® denotes the convolution of two functions, and
the step function m is defined by

{1 if || < a
m(r) = (33)

0 otherwise.

Note that the volume fraction of spheres is given by ¢,
=pdma’/3. The two-point correlation function S(zz)(r) is plot-
ted in Fig. 2. The most convenient method of obtaining S(zz)
X(r) via Eq. (31) is via Fourier transform techniques. The
reason for this is that in Fourier space, the convolution op-
erators become simple products, and the Percus—Yevick pair
correlation function may be expressed analytically. In order
to obtain S(22>(r) in real space, numerical inversion from Fou-
rier representation must be performed.

Of all the isotropic disordered models considered here,
the hard-sphere system may be thought to possess the great-
est degree of order because its coarseness C,, is minimized
among the structures considered. For example, consider vol-
ume fraction ¢,=0.5, at which spheres are slightly above
their freezing volume fraction. The correlation function S(zz)
X (r)- d)% exhibits oscillation above and below zero, suggest-
ing strong short-range correlations and anticorrelation among
the spheres in the system. Calculations show that as a result
of this property, the imaginary component of the dielectric
constant is very small compared with that of other model
microstructures considered here.

B. Equilibrium hard spheroids

We also consider an equilibrium dispersion of hard sphe-
roids (phase 2), or ellipsoids of revolution, in a matrix (phase
1), which are constrained to have the same orientation [see
Fig. 1(b)] along the z axis. Because there is an axis of sym-
metry, spheroids possess azimuthal symmetry. This statisti-
cally homogeneous but anisotropic dispersion is considered
here in order to demonstrate the application of our formalism
to macroscopically anisotropic media, i.e., materials with an
effective dielectric tensor with nonequal diagonal terms in
the principal axis frame. The spheroid shape is defined by

(2 +y)a*+2b* =1, (34)

where a and b are the semiaxes of the spheroid with b being
along the axis of symmetry (i.e., z axis). We define the aspect
ratio as b/a so that b/a>1 and b/a<1 correspond to pro-
late and oblate spheroids, respectively. In a previous work,
Torquato and Lado®’ showed that the correlation function for
any dispersion of oriented spheroids (in equilibrium or not)
at number density p could be transformed directly from the
hard-sphere correlation function at the same number density
by an affine (linear) transformation of the coordinate system.
Taking phase 2 to be the spheroid phase, this transform is
defined by

ng,l){S(Eb/a) =S(2?I)—IS{O'0[712/0'(9)];1}’ (35)

where
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2a

0-(0) = [1 _ (1 _az/bz)COSZ(g)]l/z’

(36)

op=2a, 0 1is the polar angle between the z axis and the radial
vector r, and S(f;s(r; 1) is the hard-sphere correlation func-
tion at the same number density. Here we employ the equi-
librium hard-sphere model to get the corresponding expres-
sion for the equilibrium hard-oriented-spheroid system.

C. Fully penetrable spheres

A fully-penetrable-sphere model is composed of spheres
of radius a (phase 2) whose centers are completely uncorre-
lated in space19 [see Fig. 1(c)]. For this dispersion, the par-
ticle phase percolates at ¢,=0.2895 = 0.0005 (Ref. 38) (i.e.,
the medium contains infinite clusters of phase 2), and the
matrix phase (phase 1) percolates until a volume fraction of
spheres of 97%. The n-point correlation function for this
system, for phase 1, is given in Ref. 19 as

Sy(x") = expl[- pv,,(r";a)], (37)

where the number density p is defined here by ¢,
=exp(—17), with =p4ma®/3, and the function v, (r";a) gives
the union volume of n spheres of radius a with centers de-
fined by the position coordinates r*=r;,r,,...,r,. Thus, we
may write, for the particle phase,

Uz(r;a)]

v(a) (38)

S(zz)(r) =1-2¢, + exp[— 7

where we have

v,(r;a)

01(0)

3r 1 (r\?
=2®(r—2a)+|:1+22—g<;) :|®(2a—r),

(39)

and O(x) is the unit step function. The correlation function
S;z)(r) is plotted in Fig. 2. Here, we have used the fact that
we can relate the union and intersection volume of two
spheres by the equation

vy(r;a) = 2v,(a) - vi"(r;q). (40)

The function ng) may be obtained in a similar way. It in-
volves an expression for the intersection volume of three
spheres, given originally by Powell in Ref. 39, and discussed
in detail in Ref. 19. In the next section, we present estimates
of the effective dielectric constant as obtained from two- and
three-point approximations for this model. Compared with
the hard-sphere model, the fully-penetrable-sphere disper-
sion is significantly more disordered. This is reflected in the
appreciably large difference between the imaginary compo-
nents of their effective dielectric constants, as will be de-
scribed.

D. Debye random medium

The two-point correlation function for a Debye random
medium is given by
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SP(r) = 3= (1 = y)exp(=rl7y), (41)

with y>0. This correlation function is plotted in Fig. 2. In
the following analysis, we take yy=a/2. This correlation
function, first proposed by Debye et al..>® was imagined to
correspond to porous media with cavities of random shapes
and sizes [a realization of this medium is depicted in Fig.
1(d)]. However, it was not known until recently that such a
correlation function was indeed realizable by a two-phase
medium. Using a “construction” procedure, Yeong and
Torquato3 * demonstrated that the correlation function defined
in Eq. (41) is realizable and dubbed systems such as Debye
random media (see also Refs. 19 and 32 for further discus-
sion of the realizability of Debye random media). Note that if
the two component dielectrics and their respective volume
fractions are interchanged, the correlation function given in
Eq. (41) remains invariant. This property is called phase-
inversion symmetry. A composite is phase-inversion symmet-
ric if the morphology of phase 1 at volume fraction ¢, is
statistically identical to that of phase 2 at the same volume
fraction, ¢1.19’34 None of the sphere and spheroid dispersions
possess this property. It is also important to note that the
percolation behavior of Debye random media has not been
investigated to date. However, based on our knowledge of
the percolation threshold of the fully-penetrable-sphere
model and visual inspection of the planar cut through a
three-dimensional Debye random medium shown in Fig. 1,
we expect that the percolation threshold of the latter is sub-
stantially below ¢,=0.5.

E. Random checkerboard

The random checkerboard model is produced by parti-
tioning space into cubes such that each cube is assigned
phase | or phase 2 randomly according to the volume frac-
tion [see Fig. 1(e)]. The cubes have side length D=2a. The
calculation of the radially averaged two-point correlation
function for this model is not presented here. A detailed deri-
vation of this result may be found in Ref. 19. The radially
averaged two-point function, S;z)(r), is plotted in Fig. 2. This
model may be thought of as being more “ordered’ than, for
example, the Debye random medium because the phases are
confined to lie on a grid. In our calculations, presented in the
next section, we find that the random checkerboard has a
greater imaginary component, however, than that of hard
spheres at volume fraction ¢,=0.5. This makes intuitive
sense: In this regime, the hard-sphere system is near crystal-
lization; there is no such order-disorder transition for the
random checkerboard model. As in the Debye random me-
dium, this model possesses phase-inversion symmetry. For
site percolation on a simple cubic lattice with nearest-
neighbor connectivity criteria, phase 2 would percolate at a
volume fraction of ¢,=0.312. However, for the related di-
electric and conductivity problems, it is known that edges
and corner points will contribute to the effective properties
and therefore nearest, next-nearest, and next-next-nearest
connectivity criteria must be used. This will result in a sub-
stantially lower percolation threshold than ¢,=0.312, as one
can ascertain from the analogous two-dimensional percola-
tion problem on a square lattice. In summary, the percolation
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threshold for the three-dimensional random checkerboard
should be considerably lower than that for fully penetrable
spheres (¢,=0.2895).

F. Power-law-correlated materials

The two-point correlation function for these composites

is given by
(2) 2_ (1 = ¢y)a”

S0 - 3= S 42)
where the exponent n must obey the inequality n=3 for the
Fourier transform of the left side of Eq. (42) to exist. The
two-point correlation function 5(22) is plotted in Fig. 2 with
n=4, which is the value of the exponent that will be consid-
ered throughout the rest of the paper. A single realization of
a power-law-correlated material with this correlation func-
tion is depicted in Fig. 1(f). The degree of correlation in this
model is of course highly dependent upon the exponent n.
Note that as in the cases of the Debye random medium and
the random checkerboard, the power-law-correlated material
is phase-inversion symmetric. This correlation function is be-
ing put forward in this study for the first time. However, it is
not necessarily true that any proposed functional form of S,
is physically realizable. Any correlation function that corre-
sponds to a realizable material must satisfy a number of nec-
essary conditions.*? Namely, (1) OsS;z)(r) < ¢,, (2) the ra-
dial derivative of 5(22) must be strictly negative at the origin,
(3) it must obey the triangle inequality ng)(r) 25(22)(5)+S(22)
X (t)—¢p,, where r=t—s, and (4) the Fourier transform of
ng)(r)— (/)% must be everywhere non-negative. We have
tested each of these conditions for the power-law correlation
function, and they are all satisfied. For all other models con-
sidered in this work, they have either been known to be
realizable or have been recently shown to be.'”** We choose
to study power-law-correlated materials because they are
reminiscent of structures that are scale-free. While the corre-
lation function given in Eq. (42) is, strictly speaking, not
scale-free (i.e., a function directly proportional to 1/r7), it
does asymptotically approach this behavior for r>a. A
purely scale-free function does not satisfy the known realiz-
ability constraints. Model microstructures that have scale-
free correlation functions exhibit interesting clustering and
percolation properties.19 This model’s percolation behavior
will be studied in greater detail in a forthcoming study.40 As
in the case of the Debye random medium, percolation behav-
ior of power-law-correlated materials has not been investi-
gated to date. However, for the same reasons given in Sec.
IIT D, we expect that the percolation threshold of the latter is
substantially below ¢,=0.5.

IV. RESULTS

In this section, we present results for the effective dielec-
tric constant as predicted by the two-point approximation
(29) for each of the model microstructures discussed in the
previous section, i.e., hard spheres, hard oriented spheroids,
fully penetrable spheres, Debye random media, random
checkerboard, and power-law-correlated materials (with ex-
ponent n=4). Henceforth, we take &, =g, and assume both
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TABLE I. Coefficients of the (kqa)2 and (kqa)3 terms in the expansion of A(zp) [given in Eq. (26)], for each of
the isotropic models considered here. These are the hard-sphere (HS) model, fully-penetrable-sphere (FPS)
system, Debye random medium (DRM), random checkerboard (RC), and a power-law-correlated system (PLC).
For hard spheres and fully penetrable spheres, the spheres comprise phase 2. The parameter q(jz) is the jth order
coefficient. As demonstrated in Eq. (25), there are no zeroth- or first-order terms in this expansion.

HS FPS DRM RC PLC
a(zz) a(32) agz) a(32) a(32) ‘1’(22) a(32) a(zz) agz)
¢,=0.1 0.0512 0.0304; 0.0700 0.0579i 0.0450 0.0450; 0.108 0.116; 0.0300  0.0600i
$=02 0.0658 0.0279; 0.120  0.0990; 0.0800 0.0800; 0.193 0.206i 0.0533 0.1067i
$=03 0.0625 0.0188 0.152  0.124i  0.1050 0.1050; 0.253 0.270i 0.0700  0.1400i
=04 00512 0.0107i 0.165 0.134;  0.1200 0.1200; 0.289 0.308; 0.0800  0.1600i
$,=0.5 0.0383 0.0052i 0.163 0.130;  0.1250 0.1250; 0.301 0.321; 0.0833  0.1667i
$,=0.6 0.146  0.115;  0.1200 0.1200i 0.289 0.308; 0.0800  0.1600:
$,=0.7 0.116 0.0894i 0.1050 0.1050; 0.253 0.270i 0.0700  0.1400i
$,=0.8 0.0770  0.0575i 0.0800 0.0800; 0.193 0.206i 0.0533 0.1067i
$,=0.9 0.0339  0.0239i 0.0450 0.0450i 0.108 0.116; 0.0300 0.0600i

e; and &, are real. We take the wavenumber for a wave
propagating through phase 1 to be 27/(60a). If phase 1 has
dielectric constant 1, then this corresponds to a propagation
frequency of 5 GHz. For reasons given in Sec. II C, we take
g=1 and p=2 if phase 2 is below its percolation threshold,
and we take p=1 and ¢g=2 if it is above its percolation
threshold. In the case of the fully-penetrable-sphere model,
we also evaluate the three-point approximation (30).

A. Two-point estimates
1. Isotropic media

For the hard-sphere model, we employ the two-point ap-
proximation given in Eq. (29) with g=1 and p=2 where the
spheres comprise phase 2, for ¢,<0.5 (see discussion in
Sec. IT C). This choice of two-point approximation is ex-
pected to be accurate because the equilibrium hard-sphere
model percolates at “jammed” states, which are substantially
higher than d)2=0.5.l9 In the case of the fully-penetrable-
sphere model, we plot our results for a fixed phase-contrast
ratio but over the entire volume fraction range because in
this case we know its nontrivial percolation threshold (see
Sec. III C). For this model, we expect Eq. (29) with p=2 and
g=1 to be valid for volume fractions well below its percola-
tion threshold of ¢,=0.2895, and then with p=1 and ¢=2 to
be valid well above it. In the intermediate region, which is
taken to be 0.2 < ¢, <0.4, we interpolate between these two
regimes using a spline fit in order to approximately account
for the fact that this medium is crossing its percolation
threshold. For Debye random media, random checkerboard,
and power-law-correlated materials (in which we take the
exponent n=4), the percolation thresholds are not known.
Therefore, we limit ourselves to analyzing the effective di-
electric constant of these models for volume fractions that
are assumed to be below these thresholds (e.g., ¢,=0.1), and
well above them (e.g., ¢,=0.5). In the former case, we use
the two-point approximation (29) with p=2 and g=1, and in
the latter case with p=1 and g=2. For all of the five isotropic
models, we employ the two-point estimate Eq. (29) with the
expansion given in Eq. (26) through third order in k,, and
choose the correlation lengths to be roughly equal to one

another. Different two-point approximations are employed
for the various statistically homogeneous and isotropic
model microstructures below and above their percolation
thresholds for reasons given at the end of Sec. II C.

For the disordered models described in Sec. III, we
present in Table I the two lowest-order coefficients of k,a in
the expansion of AP ), as given in Eq. (26). Note that the
zeroth-order term is zero, because A(Zp ) is zero in the isotropic
static problem. As can be seen from Eq. (25), there can be no
first-order term either. The second-order term is necessarily
real, and the third-order term necessarily imaginary. We call
the jth order coefficient in this expansion aﬁz), such that
Agp):E;czza;z)(kqa)j.

In Figs. 3 and 4, we show the real and imaginary com-
ponents of the effective dielectric constant, respectively, of
five isotropic models described in the previous section, plot-
ted against dielectric-contrast ratio at a volume fraction ¢,
=0.1. Since each model is below or assumed to be below its

1 3 T T T T T T
= hard-sphere
L - fully-penetrable-sphere il
=+ Debye random medium //
= random checkerboard
power-law-correlated
1.2 .
&
= e
T 0,=01 ~ .
—_
o) o
~ /
1L1F 4 4
/
/
/
/
L / 4
/
/
/
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FIG. 3. (Color online) Real part of the effective dielectric constant of the
various isotropic models studied here as a function of dielectric-contrast
ratio &,/ &, at volume fraction ¢,=0.1 and wave number k,=2/(60a). For
all models, the two-point approximation (29) with p=2 and g=1 is used
since they are each below or assumed to be below their percolation thresh-
olds. In order to calculate A(ZI’) for each microstructure, Eq. (26) is used.
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FIG. 4. (Color online) Corresponding imaginary part of the effective dielec-
tric constant for the isotropic models depicted in Fig. 3.

percolation threshold at this volume fraction, the two-point
approximation (29) is used in conjunction with Eq. (26) in
order to calculate A(Zp ). The real and imaginary parts of the
effective dielectric constant at volume fraction ¢,=0.5 are
plotted in Figs. 5 and 6, respectively. At this volume fraction,
all structures except for the hard-sphere model are above
their percolation thresholds. As shown in Fig. 4, the imagi-
nary component of the effective dielectric constant of the
hard-sphere model is significantly smaller than that of the
fully-penetrable-sphere model. This makes intuitive sense
because the constraint that hard spheres may not overlap re-
sults in larger spatial correlations (smaller coarseness), lead-
ing to a smaller imaginary component. Upon increasing vol-
ume fraction, the hard-sphere model becomes less and less
coarse. Close to its freezing point, at ¢,=0.5, the resulting
imaginary component of g, is extremely small, as shown in
Fig. 6. At volume fraction ¢,=0.5, the real part of &, for the

5 ————————
| | = hard-sphere ///)A
« fully-penetrable-sphere Vad
— « Debye random medium 4
4* = random checkerboard ,"& =
power-law-correlated /
L 4 J
s/
P

¢,=0.5 yd .

Re[e, ]/s1
W
[

0 2 4 6 8 10

FIG. 5. (Color online) Real part of the effective dielectric constant of the
various isotropic models studied here as a function of dielectric-contrast
ratio &,/ &, at volume fraction ¢,=0.5 and wave number k;=2/(60a). For
all of the models besides hard spheres, the two-point approximation (29)
with p=1 and ¢=2 is used, since they are each above their percolation
thresholds. For the hard-sphere model, which is below its percolation thresh-
ol(d), we use Eq. (29) with p=2 and ¢g=1. Equation (26) is used to calculate
AY
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FIG. 6. (Color online) Corresponding imaginary part of the effective dielec-
tric constant of the isotropic models depicted in Fig. 5. On the scale of this
figures, the hard-sphere curve is almost indistinguishable from the horizon-
tal axis.

hard sphere model is significantly smaller than that of the
other models, since it is the only one that is not percolating.
As Fig. 6 shows, the imaginary component of the effective
dielectric constant is substantially more sensitive to micro-
structure than the corresponding real component of &,.

In Figs. 7 and 8, we plot the real and imaginary compo-
nents of g, for the fully-penetrable-sphere model as a func-
tion of volume fraction. The two-point approximation (29) is
used, with p=2 and g=1 for 0 < ¢», <0.2 (which is below the
percolation threshold of ¢,=0.2895), and p=1 and g=2 for
0.4=<¢,=<1. A spline fit is used to interpolate between these
two curves to yield an approximation for 0.2<¢,<<0.4.
Equation (26) is used to calculate A(Zp ),

Among the isotropic model microstructures that are dis-
cussed here, it is possible to carry out the full Ag‘” ) integral as
given in Eq. (25), rather than the expansion given in Eg.

5 v | I ! '
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< | : _
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o |
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FIG. 7. (Color online) Real part of the effective dielectric constant of the
fully-penetrable-sphere model as a function of volume fraction ¢, of phase
2 at a dielectric-contrast ratio &,/&,=5 and at wavenumber k;=27/(60a).
The two-point approximation (29) is used with p=2 and g=1 below the
percolation threshold of ¢,=0.2895, and p=1 and g=2 above it. A spline fit
is used to interpolate between these two formulas and Eq. (26) is used to
calculate A(z” ),
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FIG. 8. (Color online) Corresponding imaginary part of the effective dielec-
tric constant for the fully-penetrable-sphere model depicted in Fig. 7. A
spline fit is used to interpolate between the two formulas.

(26). That said, since for both the real and the imaginary
parts of A(Z” ), the next term in the expansion is smaller by a
factor of (k,a)%, Eq. (26) gives an extremely good approxi-
mation to the effective dielectric constant at long wave-
length.

2. Anisotropic media

Drawing upon results discussed in Appendix C, in which
we apply our formalism at the two-point level to calculate
the effective dielectric tensor of statistically anisotropic with
azimuthal symmetry, we present results for the axial and pla-
nar dielectric constants for an equilibrium dispersion of hard
oriented spheroids in a matrix for a number of spheroid as-
pect ratios, as predicted by the two-point approximation,
given in Egs. (C1) and (C6). Figures 9 and 10 show real and
imaginary component results, respectively, for the aniso-
tropic hard spheroid model, giving axial and in-plane dielec-
tric constants of the composite in each plot, as predicted by
the two-point approximation, given in Egs. (C1) and (C6). In
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|| = = = = axial component, b/a=2 -
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= = = = in-plane component, b/a =2
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FIG. 9. (Color online) Real part of the axial and transverse effective dielec-
tric constants of an equilibrium dispersion of hard oriented prolate sphe-
roids, plotted as a function of dielectric-contrast ratio &,/ &, for a number of
different aspect ratios b/a, as predicted by the two-point approximation,
given in Egs. (C1) and (C6). The contrast is &,/ &, =5, the volume fraction is
¢$,=0.5, and k;=27/(60a), where a is the semiminor axis of the spheroid.
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FIG. 10. (Color online) The corresponding imaginary part of the axial and
transverse effective dielectric constants for the same model and cases de-
picted in Fig. 9.

the former plot, Fig. 9 shows that upon increasing the aspect
ratio b/a, the axial component of the dielectric tensor in-
creases. This makes intuitive sense because in the purely
static case, as the microstructure approaches the long-needle
limit, the tensor component in the axial direction should ap-
proach the arithmetic mean (o ¢+ 0> ¢,), which is a rigor-
ous upper bound on the effective dielectric constant in the
purely static case. We see that the in-plane component de-
creases with increasing aspect ratio. We may again under-
stand this in the context of the static regime: In that scenario,
the two-point tensor A(z”) must remain traceless. The decreas-
ing in-plane component is a direct result of this property and
the fact that the axial component increases with aspect ratio.
By contrast, we see from Fig. 10 that both the axial and
in-plane imaginary parts of the dielectric tensor increase with
increasing aspect ratio.

Although we do not show results for the oblate case, we
have verified that as the aspect ratio of the spheroids is in-
creased from the oblate regime (b/a<1) through the prolate
regime (b/a> 1), the real part of the axial dielectric constant
increases and the real part of the in-plane dielectric constant
decreases, which agrees with the behavior given in Ref. 37.
The imaginary components of both the axial and in-plane
dielectric constants both increase with increasing aspect ra-
tio.

B. Three-point estimates

Here we apply the isotropic three-point approximation,
given explicitly in Eq. (30) (with p=1 and ¢=2) to the fully-
penetrable-sphere model in order to ascertain the importance
of three-point information. For this model, Table II gives the
coefficients of (k,a) for the first two terms of Afp ) as given in
Eq. (28), for a number of volume fractions. We call the jth
order coefficient in this expansion aj(.3), such that Ag” )
:E;czoq§.3)(kqa)j .

The importance of three-point information at high con-
trast and volume fraction is demonstrated in Figs. 11 and 12,
which give the (k;a)? and (k,a)® coefficients of the effective
dielectric constant of the fully-penetrable-sphere model at
¢$,=0.5, which is well above its percolation threshold. The
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TABLE II. Coefficients of the (k,a)® and (k,a)? terms in the expansion of
A;” ) [given in Eq. (28)], for the fully-penetrable-sphere model, where the
spheres comprise phase 2. The parameter aﬁ.g is the jth order coefficient. As
demonstrated in Eq. (28), there are no first- or third-order terms in this
expansion.

p=2, q=1 p=1,q=2

04)3) a(23) aé}) a(23)
#,=0.1 0.010 0.012 0.079 0.013
$,=0.2 0.035 0.040 0.17 0.043
#,=0.3 0.070 0.075 0.24 0.085
$,=04 0.11 0.11 0.31 0.13
#,=0.5 0.14 0.13 0.35 0.17
#,=0.6 0.17 0.15 0.37 0.20
#,=0.7 0.17 0.14 0.35 0.21
$,=0.8 0.15 0.11 0.28 0.18
$,=0.9 0.10 0.053 0.17 0.12

effective dielectric constant is calculated via the two-point
and three-point approximations, given in Egs. (29) and (30),
respectively. These equations employ the expansions given
in Egs. (26) and (28). For this model, we have taken g=2 and
p=1. Clearly, for both the (k;a)* coefficient (which is real),
and the (k;a)® (which is imaginary), three body information
plays a significant role at high volume fraction and contrast.
We also plot the imaginary component of the effective di-
electric constant for this model, both with and without the
third-order contribution in Fig. 13. We see that up to a
dielectric-contrast ratio of roughly 5, the two-point and
three-point approximations are in relatively good agreement,
but afterwards they increasingly diverge. This serves as a test
of the convergence of the series. We thus see that up to
relatively high contrast ratio (i.e., &,/&,=5), the two-point
approximation provides a good estimate, implying that the
remaining terms in the full series expansion (16) are negli-
gibly small.

6 ' | ' I ' | : '

- = three-point approximation
= two-point approximation

(9]
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FIG. 11. (Color online) The coefficient of (k;a)> of the effective dielectric
constant as a function of dielectric-contrast ratio in the fully-penetrable-
sphere model at volume fraction ¢,=0.5, as predicted by the two-point and
three-point approximations, given in Egs. (29) and (30), respectively. We
take p=1 and ¢=2 since the system is above its percolation threshold at this
volume fraction. These equations employ the expansions given in Egs. (26)
and (28). This term is necessarily real. The solid and dashed curves show
this quantity with and without the three-point term included in the expansion
given in Eq. (16).
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FIG. 12. (Color online) As in Fig. 11, except for the coefficient of (k;a)>.

V. CONCLUSIONS

We have derived exact strong-contrast expansions (16)
for the effective dielectric tensor &, of electromagnetic
waves propagating in a two-phase composite random me-
dium with complex-valued isotropic components in the long-
wavelength regime. These expansions are not formal but
rather are explicitly given in terms of certain integrals over
the n-point correlation functions that statistically characterize
the medium. To our knowledge, such an exact representation
has not been given explicitly before. The nature of the
strong-contrast expansion parameter results in a radius of
convergence of the series (16) that is significantly widened
beyond that of a weak-contrast expansion (i.e., the simple
difference of the dielectric constants of the two phases). Be-
cause the expansions can be considered to be perturbations
about the solutions of the dielectric tensor of certain optimal
structures, we argued that the first few terms of the expan-
sion (16) should yield a reasonable approximation of &,, de-

0.03 . | . | . [ . :

- — three-point approximation
= two-point approximation

0.025F

0.02+-

0.015F

Im[e ;/e)]

0.01-

0.005

0 2 4 6 8 10

FIG. 13. (Color online) The imaginary part of the effective dielectric con-
stant of the fully-penetrable-sphere model at volume fraction ¢,=0.5 and
wavenumber k;=2/(60a), as predicted by the two-point and three-point
approximations, given in Egs. (29) and (30), respectively. We take p=1 and
g=2 since the system is above its percolation threshold at this volume frac-
tion. These equations employ the expansions given in Egs. (26) and (28).
The solid and dashed curves show this quantity with and without the three-
point term included in the expansion given in Eq. (16).
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pending on whether the high dielectric phase is below or
above its percolation threshold. In particular, truncations of
the exact expansion led to two- and three-point approxima-
tions for €,, which we applied to a variety of different three-
dimensional model microstructures, including dispersions of
hard spheres, hard oriented spheroids, and fully penetrable
spheres as well as Debye random media, random checker-
board, and power-law-correlated materials.

We payed special attention in our analysis to the case in
which the components have real dielectric constants but
where the effective dielectric tensor possesses imaginary
components due to disorder, a phenomenon which is essen-
tial to applications such as remote sensing (e.g., in the cal-
culation of the backscattering coefficient).!’ In examining
two-point approximations of the effective dielectric constant
for statistically homogeneous and isotropic media with com-
ponent phases having purely real dielectric constants, we
found that the imaginary part of g, is related to the coarse-
ness for very large windows, which may be regarded to be a
crude measure of disorder. Among other results, we found
that the equilibrium hard-sphere model for volume fractions
up to its freezing point exhibits a much smaller imaginary
component of the effective dielectric constant than the other
four statistically homogeneous and isotropic model micro-
structures studied here.

For dispersions of fully penetrable spheres, we analyzed
the behavior of the effective dielectric constant using the
two- and three-point approximations, Egs. (29) and (30), re-
spectively. Our results suggest that truncation of the exact
expansion (16) at the two-point level yields good conver-
gence up to relatively high phase-contrast ratios (=5). How-
ever, the two approximations increasingly diverge from one
another for higher values, showing the importance of using
three-point information at sufficiently high contrast ratios.

In order to demonstrate the application of our formalism
to a statistically anisotropic and hence macroscopically an-
isotropic media, we examined dispersions of equilibrium
hard spheroids. It was shown that as the aspect ratio b/a was
increased, the real parts of the axial dielectric constant and
the in-plane dielectric constants increased and decreased, re-
spectively. The imaginary components of the axial and in-
plane dielectric constants were both found to increase upon
increasing the aspect ratio b/a from 1 (i.e., sphere point).

The dichotomy between periodic media, which have
zero imaginary component in their effective dielectric con-
stants, and disordered media, Which do have such a compo-
nent, begs an important question: Which is true of quasiperi-
odic structures? These structures possess long-range order
but have no translational symmetry, and are therefore in a
sense intermediate between the latter two regimes. In Appen-
dix B, we show that at the two-point level, an imaginary
component is obtained only if the Fourier transform of the
correlation function is nonzero at k,. For two-phase media
with periodic structure (i.e., crystals), this implies that at this
level there is no imaginary component, but this argument
does not hold for media with quasiperiodic structure (i.e.,
quasicrystals).41 Since the diffraction pattern for quasicrys-
tals possesses only discrete Bragg peaks, the coarseness is
necessarily zero. However, this does not imply that the
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imaginary component of &, is identically zero, since higher-
order k, coefficients may contribute. The calculation of the
effective properties of quasicrystal two-phase media and a
fundamental understanding of their wave propagation prop-
erties remain a challenging open question.

In future work, we plan on applying the strong-contrast
formalism of this paper to a number of new model micro-
structures and explore other comparison materials in the
spirit of Ref. 29 to yield even better approximations for &,.
The procedure presented here is applicable in any dimension
and is thus well suited to the study of scalar Helmholtz equa-
tion for arbitrary space dimension. One application of this
case lies in the calculation of effective properties of
phononic systems. Another possible extension involves gen-
eralizing analogous elastostatic results'>* to the dynamic
case.
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APPENDIX A: TWO-POINT EXPANSION FOR
ARBITRARY COMPARISON MATERIAL

The strong-contrast expansion (16) for the effective di-
electric tensor was derived for the choice of the comparison
material such that gy=¢, (g=1 or 2). This choice signifi-
cantly simplifies the analysis and has the desirable feature
that it can be regarded to be a solution that perturbs around
the effective dielectric tensor for certain optimal microstruc-
tures. However, for other microstructures, different compari-
son materials may offer advantages in terms of better series
convergencelg’28 and more accurate approximations.29 Here
we present an equivalent relation to Eq. (29) for macroscopi-
cally isotropic media but for an arbitrary comparison mate-
rial with dielectric constant g, as follows:

1 1 (BpO - Bq())2 A(p)

B_EO B ﬂqO + (Bp() - ﬂqO) d)p - [Bq() + (:8[70 - ﬁq()) ¢p]2 2
(A1)

where B,=(g,~&0)/(e,+2&), Byo=(g,~&0)/(g,+28), and
Byo=(g,~£0)/(e,+2g). In Ref. 11, g is taken to be the
Bruggeman effective dielectric constant, but this is not the
best choice for general microstructures.'® For example, for
the large class of dispersions discussed in Sec. II C, the
choice gy=¢, is better.

APPENDIX B: PROOF THAT A, IS PURELY REAL AT
THE TWO-POINT LEVEL

All of the random media studied here have had dielectric
tensors with nonzero imaginary component. Thus, electro-
magnetic waves propagating through these materials will at-
tenuate, albeit with small decay constants. Roughly speak-
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ing, the physical cause for this attenuation is the fact that the
waves are scattered off of the heterogeneities, and the scat-
tered waves are no longer coherent with the propagating
wave, and thus, this energy is “lost,” when homogenization
is applied. However, this is not so for periodic heterogeneous
media. In the language of solid-state physics, scattering does
not take place because waves are allowed to propagate co-
herently as Bloch waves (as opposed to in the form of pure
plane waves). In this appendix, we show this explicitly at the
two-point level. Although a single periodic configuration is
statistically inhomogeneous, our formulation (valid for sta-
tistically homogeneous media) can still be applied by first
performing a translational average, i.e., averaging over uni-
formly random displacements of the origin. This produces
averaged quantities, such as the correlation function defined
by Eq. (22), translationally invariant. Thus, invoking an er-
godic hypothesis,19 the ensemble average is equal to an
infinite-volume average over the variable r; of a single (pe-
riodic) realization. We limit ourselves here to periodic media
that yield macroscopically isotropic dielectric tensors.

The two-point coefficient (25) in the macroscopically
isotropic case can be written as follows:

o _ 2k e o) 2
AP = = | e —[$P(r) - 2], (B1)
(4) r P
We define a “difference indicator function” as follows:
V(r)=1%)(r) - ¢, (B2)

such that [S(zp (1) - ¢§]=(V(R) V(R +r)), where the average is
taken over the dummy variable R.

Representing this real-space correlation function in its
spectral form, we have

q - = ,
sV(Q) V(- q)exp(iq-r), (B3)
(2m)
where ‘7(q) is the Fourier transform of the difference indica-
tor function at wave vector q. Inserting this expression into
Eq. (B1), we have

(VIR)V(R +1)) = f

kZ lqu d
A= (4) drer f (2 );V(q)V( q)expliq -r)

2k2 zk r

" (4m)

(2 )3 V(g)V(-q) f dr exp(iq - r)

(B4)
We see that the inner integral is just the Fourier transform of

the Green’s function of the Helmholtz equation. This inner
integral is thus simply 47/ (qz—kfj). Thus, taken together, we

have
2k% d
V=t | et e (B5)

We can see that there are two poles in the last integral
located at ¢g==* kq. Clearly, for a periodic medium,
V(q)V(-q) is identically zero at every point, saving the re-
ciprocal lattice vectors, where there are delta functions. If we
assume long wavelength, then k,<G, where G is the mag-
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nitude of the smallest nonzero reciprocal lattice vector. Thus,
the pole will not enter in to the calculation! This proves that
there can be no imaginary component to this integral, and
this must be the case for all periodic structures. For the case
of a random medium, since there are indeed correlations at
long wavelength (of which there are of course none in the
periodic case), there is a nonzero residue at the pole, and the
integral can be complex.

APPENDIX: C A{” FOR AZIMUTHAL SYMMETRY

We now discuss how to explicitly express the tensor
two-point coefficient A;” ) [cf. Eq. (18)] for statistically an-
isotropic media with an axis of symmetry (say, the z axis),
i.e., azimuthal symmetry. An example of such a microstruc-
ture is a dispersion of hard oriented spheroids, which we
discussed in Sec. III C. Here we follow the methodology of
Torquato and Lado,”” who evaluated similar integrals for the
purely static case. If we align the Cartesian coordinate sys-
tem with the principal axis frame. the two-point coefficient
A(Z”) is diagonal, i.e.,

U oo
AP =10 U o], (C1)
00V

where U is the in-plane (i.e., x-y plane) component and V is
the axial (z axis) component. We may explicitly write the
two-point tensor as

3
(2 —— :
Ay = i J dr exp(ik,r)

. 2 N\aa . 2.2
y (3 = 3ik,r = k,r )tF + (= 1 + ik r + k,r )1

r3

[s¢”

(C2)

X(r) - 21,

where we have inserted the dyadic Green’s function explic-
itly. Retaining terms through order k; gives the following
explicit expressions for U and V in spherical coordinates:

5[ dolisro-a
2
+ %%T f d—:[l + % sinz(e)}[s(zp)(r) - ¢127]
+%dijm¢] (€3)
and
3 d
V= i r_:[_ 1+ 3 cos’( 0)][S(zp)(l') - ¢;]
2
+ %‘41 f dTr[l +cos’(O)][SY(r) - ¢7]
+ %41 J dr[SY(r) - 4. ©4)

where we have used the fact that the two in-plane matrix
components must be equal in order to simplify the integrals.
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In Ref. 37, the first integral in the expression for V was
evaluated analytically for the case of hard oriented spheroids.
In what follows, we specialize to this model. We evaluate the
first two integrals in each of the relations (C3) and (C4)
numerically. Note that the third integrals in each expression,
which we denote by U; and Vj, respectively, are identical,
and may be obtained analytically as follows:
23
Uy=vy= 2ha f dr[SY)(r:bla) - 4]
3 47 ’ !

.13 1
_Amik, 3

d cos(6) f drr*(S¥hsloo[r/o(6)]:1}
3 4w)_ 0 '

1 o
-4y = isz dCOS(G)J drr(S¥hs
—1 0
1
Xlenlriot0]:1} ) =ik, deosto
-1
« {M}
o

b o]
= 2ik2; f drr[Shs(r:1) - ¢7], (C5)
0

f drr2[S(2’fI){s(r; 1) - ¢§]

0

where we have used the mapping between the two-point
function S(z'? I){S(r;b/ a) for the hard-spheroid model and
S(zp I){S(r;l) for the corresponding hard-sphere system de-
scribed in Sec. III C. Note that the radial integral in the last
line of Eq. (C5) is proportional to the zero wave vector of the
structure factor of the hard-sphere system. For an equilib-
rium distribution, this may be obtained analytically directly
from the Percus—Yevick approximation, for example. The
two-point approximation to the dielectric tensor is obtained
by truncating the series expansion given in Eq. (16) after the
second term to yield

B/zzq(ﬁlz;(se - 8q1)_1(83 + 28qI) = ¢1}qul - Agp)B;q (C6)
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