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We evaluate a rigorous lower bound on the rate constant k associated with diffusion-controlled 
reactions in a porous medium composed of impenetrable spherical sinks, for a wide range of 
sink volume fractions. The results are compared to an effective-medium approximation for k. 
It is found that the lower bound gives a useful estimate of the rate constant for virtually all sink 
concentrations. 

Diffusion-controlled reactions playa critical role in he­
terogeneous catalysis, combustion, growth of colloidal parti­
cles, and of polymer chains, precipitation, fluorescence 
quenching, and cell metabolism. We consider a system com­
posed of N static and reactive spherical sinks statistically 
distributed throughout a solvent containing reactive parti­
cles. For such a porous material, we denote by ¢I and ¢2 the 
volume fraction of the void (solvent) region and of the re­
gion of space occupied by the sinks, respectively. The reac­
tant diffuses in the solvent but is instantly absorbed on con­
tact with any sink. At steady state, the rate of production u of 
the diffusing species is exactly compensated by its removal 
by the sinks. For a particular volume fraction ¢2' u is propor­
tional to the mean concentration (C) of the diffusing species, 
i.e.,u = k (C), where k is the effective rate constant. 

At sufficiently low sink concentrations such that inter­
actions between sinks of radius R can be neglected, it is well 
known that the rate constant is given by ks = 3D¢21R 2, 

where D is the diffusion coefficient of the particles in the 
solvent. I At higher sink densities, the reaction rate will be 
affected by the competition between neighboring sinks. For 
small ¢2' asymptotic expansions of k for random arrays of 
nonoverlapping sinks (which correct the Smoluchowski re­
sult) have been derived2

•
3 and are found to predict that the 

rate of reaction increases with increasing sink density. The 
low-density expansion of k recently derived by Mattern and 
Felderhof 3 is given by 

kMF ...2 ...2 41..3 -= 1 +€-f; E I (6€) + 1.9107f;- --f;- + "', 
ks 60 

The Doi lower bound k is given by 

D 

(1) 

where € = .J3(h and EI is the exponential integral. Muthu­
kumar4 has developed an effective-medium approximation 
(EMA), for nonoverlapping sinks, that enables one to study 
the behavior of k over the entire concentration range. He 
found that 

kM x 2 

-= , 
ks 3¢2(1 -A¢2) 

(2) 

where 

x[ 1 - exp( - 2x)] = 6¢2 

and 

A=2x{ 1 
[1 + (l!x)][(1 +e- 2x

) - (l!x)(1-e- 2x
)] 

- (l _ ~ - 2x)} . 

Note that Eq. (2) was derived by evaluating the exact EMA 
expression obtained in Ref. 4 in the hydrodynamic (i.e., 
small wave number) approximation. 

In this paper we compute the lower bound on k due to 
Dois for a random distribution of impenetrable spherical 
sinks. Rigorous upper and lower bounds on the effective 
property of disordered media are useful because: (i) they 
enable one to test the merits of a theory, (ii) one of the 
bounds (the lower bound in the case of the rate constant) 
can typically provide a relatively useful estimate of the prop­
erty6, and (iii) as successively more microstructural infor­
mation is included, the bounds become progressively 
tighter. 7 

(3) kD> 2 2 
¢ISQ"dx x [Fvv (x) - 2(tP l /s)Fsv (x) + (¢I Is )Fss (x)] 

Heres is the specific surface (expected interface area per unit 
volume) andF vv, F sv, andF ss, are the void-void, surface­
void, and surface-surface correlation functions, respective-

ly. For example, Fsv (x) gives the correlation associated 
with finding a point on the two-phase interface and another 
point in the void region separated by a distancex. Doi noted 
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TABLE I. The reduced rate constant k /ks vs sink volume fraction tP2' In­
cluded in the table are results for the EMA (Ref. 4) and the Doi lower 
bound (Ref. 5) for the case of impenetrable sinks (as computed here) and 
fuUy penetrable sinks (as computed in Ref. 5). 

Impenetrable Impenetrable FuUy penetrable 
spherical sinks spherical sinks spherical sinks 

kM kD kD 

tP2 ks ks ks 

0.10 2.30 1.82 1.36 
0.20 3.74 3.39 1.89 
0.30 5.49 6.53 2.76 
0.40 7.39 13.37 4.25 
0.50 9.28 30.4 7.06 
0.60 11.12 86.2 13.05 
0.64 11.84 17.42 
0.70 28.57 
0.80 84.30 
0.90 515.4 

that to improve upon bound (3), higher-order correlation 
functions (i.e., three-point and higher-order correlations) 
must be incorporated. For the case of impenetrable sinks, we 
compute (3), forO'tP2,0.6, using a trapezoidal rule and the 
results for s( = 41TR 2p, wherep is the sink number density), 
Fyy ,8 and the surface correlation functions, FSY and Fss.9 
(Note that the maximum sink volume fraction reported here 
tP2 = 0.6 corresponds to about 94% of the random close­
packing value.lO) In Table I and Fig. 1 we compare the Doi 
lower bound on k I k s for impenetrable sinks to the EMA, 
Eq. (2)Y Included in Table I and Fig. 1 is the Doi lower 
bound on k Iks for the case offully penetrable (i.e., random­
ly centered) spherical sinks calculated in Ref. 5. 

A major conclusion drawn from these results is that the 
Doi lower bound for impenetrable sinks can provide a rela­
tively useful estimate of k for virtually the entire volume 
fraction range. This conclusion is based on three observa­
tions. Firstly, for tP2>0.24 the EMA, Eq. (2), violates the 
Doi lower bound for an array of impenetrable sinks. For 
example, at tP2 = 0.6, kolks is 7.75 times larger than 
kMlks. This is to be contrasted with the fact that for 
tP2 <0.24, kMlks is at most 1.27 times larger than kolks . 
Secondly, in the vicinity of tP2 = 0.1, bound (3) is in better 
agreement with the low-density expansion of Mattern and 
Felderhof Eq. (1), than is relation (2), e.g., at tP2 = 0.1, 
kMFlks = 2.01, kMlks = 2.30, and kolks = 1.82. (For 
very small tP2' the converse is true.) Thirdly, it has been 
shown that the Doi bound on the fluid permeability of an 
array of impenetrable spheres [which involves the same inte­
gral as in (3)] is in relatively good agreement with the em­
pirical Kozeny-Carman relation. 12 In light of the fact that 
flow and diffusion problems are closely related, this indi­
cates that kolks can provide useful estimates of k Iks for 
the case of impenetrable sinks for a wide range of tP2. This 
offers hope that bounds which include higher-order correla­
tion functions 13 will lead to even more accurate estimates of 
k. 

Comparison of the Doilower bound on k I ks forimpen-
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FIG. 1. The reduced rate constant k /ks VStP2' Solid (-) and dashed (---) 
lines are, respectively, the Doi lower bound and EMA relation for impen­
etrable spherical sinks. Dotted ( ... ) line is the Doi lower bound for fully 
penetrable spherical sinks. 

etrable and fully penetrable sinks reveals that increasing the 
degree of penetrability decreases the effective rate constant 
at the same tP2. This is not unexpected since the specific sur­
face for fully penetrable spheres (41TR 2ptP1 ) is always 
smaller than the specific surface for impenetrable spheres 
(41TR 2p) at the same tP2. 
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