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Necessary Conditions on Realizable Two-Point Correlation Functions of Random
Media®

S. Torquato*

Department of Chemistry, Program in Applied and Computational Mathematics, PRISM, and
Princeton Center for Theoretical Physics, Princeton L#msity, Princeton, New Jersey 08540

A fascinating inverse problem that has been receiving considerable attention is the construction of realizations
of random two-phase heterogeneous media with a target two-point correlation function. However, not every
hypothetical two-point correlation function corresponds to a realizable two-phase medium. Here, we collect

all of the known necessary conditions on the two-point correlation functions scattered throughout a diverse
literature and derive a new, but simple, positivity condition. We apply the necessary conditions to test the

realizability of certain classes of proposed correlation functions.

1. Introduction then the procedure could be used to categorize classes of random
microstructures, which would be a valuable accomplishment.
(i-|owever, not every hypothetical two-point correlation function
‘corresponds to a realizable two-phase mediufherefore, it

is of great fundamental and practical importance to determine
the necessary conditions that realizable two-point correlation
functions must posse32We note, in passing, that this question

Random two-phase heterogeneous media abound in syntheti
products and nature. Examples include composite materials
colloidal dispersions, gels, foams, wood, geologic media, and
animal and plant tissue® The effective transport, mechanical,
and electromagnetic properties of such heterogeneous material
are.k.nown to be dgpendenft on correlation functions that is closely related to realizability issues of pair-correlation
statistically characterize the microstructitehas recently been - : 15

: ; functions of many-particle syster.
suggested that microstructure reconstruction problems can be o . .
One objective of this paper is to gather all of the known

posed as optimization problerh$ A set of target correlation necessary conditions on the two-point correlation function of

functions are prescribed, based on experiments or theoretical . p .
. A o two-phase random media, also known as “random closed sets
models. Starting from some initial realization of the random

; . . in the field of stochastic geomet#1” Some of these conditions
two-phase medium, the reconstruction method proceeds to find ; . . .
RO f : are well-known in the physical sciences literature, but others
a realization by evolving the microstructure such that the

; . . are more arcane and are contained in obscure mathematical
calculated correlation functions best match the target functions. X . :
e . AV technical reports and/or proceedings. We also derive a new but
This intriguing inverse problem is solved by minimizingemnor . o " . h -
; imple positivity condition on the two-point correlation function.
based on the distance between the target and calculate . . . .
. . . : . e consider some illustrative examples of proposed correlation
correlation functions. The two-phase medium can be a dispersion : :
. . e . functions and test whether they can correspond to realizable
of particles in some matrix (liquid or soli¢lpr, more generally, .
S . two-phase random media.
a digitized image of a two-phase material.
An effective reconstruction procedure enables one to generate -
accurate structures at will, and subsequent analysis can be?- Necessary Conditions

performed on the image to obtain desired macrqscopic properties Here, we collect all of the known necessary conditions on
(e.g., transport, electromagnetic, and mechanical properties) ofihe two-point correlation function of random media that are
the media. This becomes especially useful in generating three-gcattered throughout a diverse literature. We also derive a new
dimensional structures from planar information when tt\ree- positivity condition.

dimensional imaging techniques are not available (a "poor ™ gacp, realizatiom of the two-phase random medium occupies

man’s” tomography experimenty. the region ofd-dimensional Euclidean space € 2.9 of volume
Interestingly, the same procedure has been used to “construct’

T ) X V that is partitioned into twaandom sets orphases whose
realizations of two-phase media from a hypothetical target ;. :ariors are disjoint: phase 1, a regiof:(w) of volume
correlation functior?:”-*10In this mode, the procedure is called fractiongy, and phase 2, a regicr;@’z(w) of volume fractiongs.
a constructionalgorithm. There are many different types of For a givén realizatiom),theindicator functions O(x; w) for
statistical descriptors of two-phase me#liagwever, the most phasei at any position vectox € 7’ is defined by '
basic one is the two-point correlation function, which gives the
probability of finding two points in one of the phases (see
definition below) and is obtainable from small-angle X-ray 7 Yx; w) ={
scattering:! The construction algorithm can be used to determine
if a prescribed two-point correlation function is, in fact,
realizable. If such a two-point correlation function is realizable, Thus, a two-phase random medium is described by a binary
stochastic procesg7 )(x): x € 929 . For statistically homo-

Tltis a great pleasure and privilege for the author to contribute an geneous but anisotropic media, the first two correlation functions
article in a volume to honor the career of William B. Russel on the are given by
occasion of his 60th birthday.
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and

) = Ox).7 Yx,)0 3)

The task of determining the necessary and sufficient condi-
tions that B must possess is very complex. It has been shown
that autocovariance functions in B must not only meet the
condition of eq 8 but another condition on “corner-positive”

wherei = 1 or 2, angular brackets denote an ensemble average matrices® Little is known about corner-positive matrices;

I = X3 — Xz, and the symbab is henceforth dropped for brevity.
(The generalization ta-point correlation functions fon > 1

is straightforward) Clearly, ¢ lies in the closed interval [0, 1]
and ¢1 + ¢ = 1. The two-point or autocorrelation function
$)(r) for statistically homogeneous media gives the prob-
ability of finding the end points of a vectorin phasd. Debye
and Buech¥® showed that the two-point correlation function
of a porous medium can be obtained experimentally via small
X-ray scattering. Note that the two-point function for phase 2
is simply related to the corresponding function for phase 1 via
the expression

) =S(r) — 26, +1 (4)
and, thus, thewutocaariance function
2() =S9r) — .2 = Sr) — ¢, )

for phase 1 is equal to that for phase 2. Generallyyfer O,

FO)=¢, (6)
and in the absence of atgng-rangeorder,
lim 1)~ ¢ (7)
rf—o

An important necessary condition for the existence of a two-
point correlation functiorsg)(r) for a two-phase statistically
homogeneous medium witll dimensions is that thed-
dimensional Fourier transform of autocovarian¢e), denoted
by %(k), must be non-negative for all wave vectérse.,

200 = [ oxr)e™dr=0 ®)

where x(r) is given by eq 5. Physically, this non-negativity
condition results becauggk) is proportional to the scattered
intensity, which must be positivEThis is sometimes called the
Wiener—Khintchine conditior? which is necessary but not
sufficient for the class B correlation functions that come from
binary stochastic processgs O(x): x € 29 . The Wienetr
Khinchtine condition is easily proved by exploiting a well-
known theorem that states any continuous funciém) must

be positive semi-definite (non-negative) in the sense that for
any finite number of spatial locations, rz, ...,rmin %29 and
arbitrary real numbers;, ay, ..., am,

(for all k)

(9)

m m

> S aau—1)=0
I=1j=

if and only if it has a non-negative Fourier transfofk). Note

that this property does not prevert) from being pointwise
negative for certain values of Importantly, whereas the real-
space condition is difficult to check, the spectral version (eq 8)
is straightforward to test. It is noteworthy that if the medium in
d dimensions is both statistically homogeneous and isotropic,
then the one-, two-, ..., andtkdimensional Fourier transforms
of x(r) must all be non-negativ@. This is a consequence of

the fact thaty(r) for such a random medium is an invariant in
any m-dimensional subspace, wheare= 1, 2, ..., f — 1).

therefore, this theorem is very difficult to apply in practice. Thus,
a meaningful characterization of B remains an open and
interesting problem, especially in the contexidedimensional
two-phase random media.

No attempt will be made to address the complete character-
ization of B here; instead, we summarize the known necessary
conditions, in addition to the condition 8, that characterize B,
most of which are described in ref 3. The two-point correlation
function must satisfy the bounds

0= =9

The lower bound states thgﬁ)(r) must be non-negative for all

r, but in the discussion presented below, we show that either
Sy or SP(r) must strictly be positive foy = 5. The
corresponding bounds on the autocovariance function are given

by?

(for all r) (20)

—min(g,, ¢,°) < 7(r) < 1,  (forallr)  (11)

Another consequence of the binary nature of the process in the
case of statistically homogeneous and isotropic media, i.e., when
§2')(r) is dependent only on the distance= |r|, is that its
derivative atr = 0 is strictly negative, or

d_§2i)

dr

_d

dr <0

r=0

(forall0O<¢; <1) (12)

r=0
This is a consequence of the fact that sloperat 0O is
proportional to the negative of the specific surfadéis means
thatS)(r) has a cusp at the origin, implying that the two-point
function is nonanalytic at the origin. It is a property of binary
processes that jf1(r) andyz(r) are in B, thenyi(r)-x2(r) is in
B andaya(r) + (1 — oyo(r) is in B for everya in [0, 1]. This
was proven by Sheppin one dimension, but the proof should
extend trivially tod dimensions.

A little-known necessary condition for statistically homoge-
neous media is the so-called “triangular inequality” that

was first derived by Sheppand later rediscovered by Matheron:
19

) = e + Dt) — ¢,

wherer =t — s. The derivation of the triangular inequality 13
is straightforward. Following Shepp, we introduce the random
variable YO(x):

(13)

1 (fxe 7)
—1 (otherwise)

Yox)=270x) —1= { (14)

The mean ofy()(x) is [YO(x)O= 2¢; — 1, which is equal to
zero if g1 = ¢ = 1. Observe thay)(x;) — YO (xp) + YO (xy)
is an odd number (either3, — 1, 1, or 3) and, therefore,
YO(xy) — YOx,) + YOl 1 (15)
Using the fact thafYO(x;) YO(xp) 0= 4S)(x1 — x2) — 4 + 1,

where we have invoked statistical homogeneity, we immediately
obtain the triangular inequality 13.



Note that if the autocovarianggr) of a statistically homo-

geneous and isotropic medium is monotonically decreasing, non-

negative, and convex (i.e.2dr)/dr? > 0), then it satisfies the
triangular inequality 13° The triangular inequality implies
several pointwise conditions on the two-point correlation
function. For example, for statistically homogeneous and
isotropic media, the triangular inequality implies the condition

Ind. Eng. Chem. Res., Vol. 45, No. 21, 2006925

max(0, 2, — 1) < inf[SV(r)] = ¢

(see Figure 1).

(20)

3. lllustrative Examples

It is convenient to introduce the scaled autocovariance

12, the fact that the steepest descent of the two-point correlationfunction f(r), which is defined as

function occurs at the origitf i.e.,

1SD) = | )| (forallr) (16)
and the fact thag)(r) must convex at the origiff,i.e.,
P 5
—% =9z . 17)
dre lr=o drelr=o

From the “stochastic continuity” theorem for general stochastic
processedl it follows that if S)(r) is continuous at = 0, then

it is continuous for alr. This continuity condition can also be
proven using the triangular inequality. Note tigit(r) can be
discontinuous at the origin if the specific surfegis infinitely
large.

The triangular inequality is actually a special case of the more-

general conditio#

m m
1I=1]=

(for ¢, = £1 (wherei = 1, ...,mandmis odd)) (18)

This necessary condition is much stronger than expression 9,0nly on the magnitude

x(r) _ SAr) — ¢
019, D19,

From expression 19, we obtain the triangular inequalityffor

f(r)= (forO=<r < +c) (21)

f(r) = f(s) +f(t) — 1 (22)
Moreover, the bounds of expression 19 become
—min ¢;1 ¢;2 =fin=1 (for allr) (23)
¢, 1

Our focus in this paper will be hypothetical continuous functions
f(r) that are dependent on the distance= |r| and could
potentially correspond to statistically homogeneous and isotropic
media without long-range order, such th@) = 1 andf(r) tends
toward zero ag — oo sufficiently fast, so that the Fourier
transform of y(r) = S)(r) — ¢?2 exists. The latter two
properties off(r) ensure tha@(r) obeys its proper asymptotic
limiting behaviors, as specified by expressions 6 and 7,
respectively. When the scaled autocovariaffceis dependent

Ir|, then the Fourier transform

implying that there are other necessary conditions beyond thosecondition 8 onf(k) can be written in any space dimensidn

identified thus far. However, the condition 18 is difficult to

ag?

check in practice, because it does not have a simple spectral

analogue, in contrast to expression 9 (cf. eq 8). Note that the

integerse; = +1 in expression 18 can be replaced with general

integers, which would lead to an even more general condition

on x(r).

k
0= en) [ iy @2 D o

(kr)(d/Z)—l =0

(24)

wherek = |k| andJ,(X) is the Bessel function of order. The

Here, we report a new simple consequence of the lower boundpounds defined by expression 20 are equivalent to
of expression 11. Because the autocovariance is the same for

phase 1 and phase 2, then it immediately follows from the lower

bound of expression 11 that
$r) = max(0, 2 — 1)

Thus, forg; > 15, ﬁ)(r) is strictly positive, such that it must
be greater than® — 1. Interestingly, the lower bound of
expression 11 for the autocovariange), first obtained in ref

3, was derived from the trivial pointwise non-negativity condi-
tion §2"(r) > 0. However, the consequences of going back to
the two-point correlation functioﬁg)(r) were heretofore not
examined. The nontrivial positivity condition 19 results because

(forallr) (29)

the statistics of phase 1 are not independent of the statistics of

phase 2. Becausg? is the large-distance asymptotic limit of
$)(r), its global minimum value or, more precisely, its infi-
mum (greatest lower bound) must be less than or equ@fio
(Technically, one must consider the infimum and not the

minimum, because the minimum may not actually be achieved,

e.g., a monotonically decreasing function that only asymptoti-
cally approaches its minimum value ¢#£.) Clearly, the lower
bound 19 holds for the infimum of)(r), which will be
denoted by inf§)(r)]. In summary, the infimum of any two-
point correlation function of a statistically homogeneous medium
must satisfy the inequalities

|1 P2
—min|—

¢, 1

wherefiy is the infimum off(r). Note that when functiof(r) is
independent of the volume fracti@n, it would correspond, if
realizable, to a two-phase medium wphase-inersion sym-
metry3 A two-phase random medium possesses phase-inversion
symmetry if the geometry of phase 1 at volume fracijaris

<f <

0 (25)

1
0.8
—_ /
= 06 ,/
= /
o Upper bound/,
= 04 r /
£ S
4
02t ,//
vd
7 Lower bound
0 == - '
0 0.2 0.4 0.6 0.8 1

o
Figure 1. Graphs of the upper bound (dashed curve) and lower bound

(solid lines) of expression 20 on the infimum ﬁf(r) for a statistically
homogeneous medium.
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Figure 2. Graphical depiction of the bounds described by expression 25

on the infimum {in) for volume-fraction-independefir). The quantityfins
must lie within the region delineated by the heavy solid lines.

statistically identical to that of phase 2 in the system where the
volume fraction of phase 1 ig; and, hence,

SH(r, by, 0 = ST, b2 1) (26)

By construction, the upper bound of expression 25 is always
satisfied. All of the functiond(r) considered below are taken
to be independent of the volume fractigp and, therefore, any 28 is a special case of a more-general realizable subclass of B,
violation of the lower bound of expression 25 implies that a given by thecompletely monotonic functiof%i.e.,

two-phase statistically homogeneous and isotropic medium

Figure 3. Construction of a digitized two-dimensional realization of a
“Debye” random medium (400 pixels 400 pixels)3’ Here, the volume
fractions arep1 = ¢» = 0.5 and the correlation length &= 2 pixels.

cannot exist for the following volume-fraction intervals: f(r) = f“ expAr) dF(1) (29)
0
f
0<¢ < l (27a) whereF(1) is a non-negative bounded measure (bounded and
L [finel nonincreasing function on (&)), i.e., & = 0 and/y dF(1) =

1. We see that if = ©(1 — a™1), thendd = 6(4 — a™1) and

and eq 28 is recovered, whef@(x) andd(x) are the Heaviside and
Dirac delta functions, respectively.
1 <g¢ <1 (27b) Another natural monotonic scaled autocovariance function
1+ [figl f(r) to consider is the Gaussian function, i.e.,
Figure 2 depicts the bounds of expression 25;gifior f(r) that f(r) = eXF{_(g)Z] (30)
are independent of volume fraction.

First, we note that, for anffr) that monotonically decreases
inr to its long-range value of zero, the pointwise non-negativity Although any such Gaussian function has a non-negative spectral
condition 23 is obeyed for & ¢; < 1. However, as some function f(k), it cannot correspond_ to a two-phase random
examples below will demonstrate, such fér) function does medium ing?9, because the slope @’(r) atr =0 s zero (i.e.,
not necessarily obey the triangular inequality 22. A natural the specific surface is zero) and, therefore, violates the condition

example of a monotonic scaled autocovariance fundiigns 12 or, more generally, the triangular inequality 22. For precisely
the simple exponentially decaying function, i.e., the same reasons, the class of monotonic functions
r ol
f(r) = exd_ é) (28) f(r) = ex;{—(g‘) ] (foranya > 1) (31)

wherea is a positive parameter that we call the “correlation and
length”. This function was first proposed by Debye and co- 1
workers!123who believed that it should correspond to structures =

in which one phase consists of “random shapes and sizes” but 1+ (r/a)z]ﬁf1
presented no proof that such was the case. The function . .
described by eq 28 obeys the necessary non-negativity conditionc‘?mnOt . correspond 1o a _two-phase random med'“'_“d n
24 on the spectral functiditk) for anyd, as well as the triangular Q|men5|on§. These specific examples, some. C.)f Wh'ch. are
inequality 22. The satisfaction of these necessary conditions doe§"us”""‘teOI In I_:|gure 4’. show t_hat the non-negativity condition
not ensure that such a correlation is realizable. However, the24 ar_u_j the triangular inequality 13 are independent necessary
aforementioned inverse optimization construction techriique condmo_ns. . . . .

was applied to generate a two-dimensional digitized realization Th? final monotone function that we test is the simple linear
corresponding to eq 28 (see Figure 3). This leads one to believefunc'[Ion
that eq 28 is exactly realizable. Indeed, there are specific two-
phase microstructures that achieve the “Debye” random-medium f(r) = {
function (eq 28) in the plan¥. The function described by eq

(foranyp = d) (32)

1—(r/a) (ifr < a)

0 (otherwise) (33)
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0.75

0.5

f(r)

0.25

0

0 0:5 1 1.5 2 2.5
r/a ¢o =02 by =0.5

Figure 4. Examples of scaled autocovariance functions that cannot _ : . ) . o .
correspond to statistically homogeneous and isotropic two-phase randomFigure 6.‘ Construction ofdlgl_tlzed two-dimensional realizations (4(_)0 p|>§els
media: f(r) = 1/(1 + r2)* for d < 5 (curve 1);f(r) = exp(=r?) for anyd x 400 pixels) that computatively correspond to the target function given
(curve 2); andi(r) = exp(~r°) for anyd (curve 3). by eq 34 forg, = 0.2 and 0.5 Here,a = 32 pixels andj = 8x/a. We
now know that this function is not exactly realizable, because even though
the construction technigue matched eq 34 for almost &licould not yield

1 - . . . the necessary convex behavior in the vicinity of the origin.
038 r 1 —0.1818 (see Figure 4), and therefore, according to expression
06 | 27, eq 34 is not realizable for the volume-fraction intervals
S o4l 0 < ¢ <0.1538 (35a)
02t : and
0 \//\\/ 0.8461< ¢ < 1 (35b)
02002 04 o6 o8 1 Interestingly, two realizations of digitized two-dimensional two-
r/a phase media were previously construétedhat putatively
Figure 5. Graphical depiction of the damped sinusoidal function defined correspond to the scaled autocovariance function (eq 34) for
by eq 34, withga = 8. ¢2 = 0.2 and 0.5, respectively, and the aforementioned choice

of a and q are shown in Figure 6. Ap, = 0.2, the system
resembles dilute particle suspensiowith “particle” diameters

of orderb. At ¢, = 0.5, the resulting pattern isbyrinthing

such that the characteristic sizes of the “patches” and “walls”
are of the order of and 2r/q, respectively. For these sets of
parameters, all of the aforementioned necessary conditions on
the function are met, except for the triangular inequality.
Although eq 34 satisfies the negative slope condition 12 at the

Shepp® proved that such a scaled autocovariance is realizable
by a statistically homogeneous two-phase medium in one
dimension. However, this autocovariance is not realizable in
higher dimensions, because its spectral funcfi@h can take
on negative values for certain valueskoit is noteworthy that
it has been shown that, for any positive defini(g) in one

dimension, the function 2 arcsiz, as well as & 23 (2k + origin, it only satisfies the convexity condition 17 foa <

17f((2k + 1)) are in B2 /3, which we see is violated in these instances, implying that
A generalization of the Debye random-medium function (eq  the triangular inequality must be violated. As it turned out, the
28) that is nonmonotone and would be characterized by short-construction procedure matched the target function (eq 34) for
range order is the following expressién: almost allr, but it could not yield convex behavior in the vicinity
of the origin. The triangular inequality was not known at the
__asSin(@r) time; therefore, it was difficult to ascertain whether the slight
=€ qr (34) discrepancy in the curvature of the function at the origin was
numerical imprecision. We now know, in retrospect, that the
whereq is an inverse length scale that controls oscillations in construction technique revealed that a two-phase medium with
the term singr)/(gr). The spectral functiof(k) of eq 34 in one, a sgaled au.tocqvanance function (eq 34) cannpt be exactly
two, and three dimensions obeys the non-negativity condition r€@lized, which is a testament to the power of this method.
24. Interestingly, Torquafoobserved that, although eq 34 )
satisfies the upper bound of the binary condition, as described4- Conclusions

by expression 11, it does not necessarily satisfy the lower bound e have identified all of the known necessary conditions on
of expression 11 or, equivalently, the lower bound of expression ¢, two-point correlation functio@(r) of statistically homo-

23 for all 1, depending on the values afandq. In other words, geneous two-phase media, and we have derived a new but
there are values of the infimufia; (which, in this case isatrue  simple positivity condition that it must satisfy. Using these
global minimum) that violate the lower bound of expression conditions, we were able to ascertain the realizability of certain
25. Letro be the radial distance at whiéfr) achieves its global  classes of proposed correlation functions. In future work, it will
minimum. The minima of(r) are solutions to the transcendental be important to identify other checkable necessary conditions.
equationg(a + r) tan(gr) = g?r. The extremum valugro can The stochastic optimization construction technitaepears to

be shown to lie in the intervak] 37/2) for arbitrarya andaq. be a very powerful numerical tool in guiding such a search.
For example, foraq = 8z, ro ~ 5.671a andfm, ~ —0.1818 Finally, we note that the analogous realizability problem for
(see Figure 5) and, foaq = 8x, ro ~ 0.1772 and fyin ~ the pair correlation functiog, of point processés 1524.25offers

f(r)
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many interesting challenges. It has recently been conjectured

that the known standard non-negativity conditionsgrare

sufficient to ensure the existence of point processes at and abov:

some sufficiently high space dimensi#’ Application of this

conjecture implies the possibility that the densest sphere

packings in sufficiently high dimensions are disordered rather
than periodic, implying the existence of disordered classical
ground states for some continuous potentials. In future work, it
would be interesting to investigate whether an analogous
conjecture applies to binary stochastic processes.
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