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A wide class of two-phase disordered media, such as 
suspensions or dispersions, porous media, and composite 
materials, are composed of discrete particles statistically dis­
tributed throughout another phase, which we generically re­
fer to as the matrix phase (fluid, solid, or void). A funda­
mental understanding of the effective or bulk property of 
such materials rests upon knowledge of distribution func­
tions that statistically characterize the microstructure. 

For random media consisting of equisized spheres in a 
matrix, the set of n-point distribution functions Gn arise in 
various expressions for transport and mechanical properties 
of two-phase media. l-s The quantity Gn (rl, ... ,rn )dr2" 'drn 

gives the probability of finding the point r l in the matrix 
phase, and the center of any particle in volume element dr2 
about r2, ... , and the center of another particle in volume ele­
ment dr n about r n • In particular, the lower-order functions 
G 1 (equal simply to the matrix volume fraction <p 1 for statis­
tically homogeneous media), G2, and G3 turn up in rigorous 
bounds on the viscosity of suspensions, 1 rate constant of dif­
fusion-controlled reactions in porous media,2 fluid perme­
ability of porous media,3 and electrical (or thermal) conduc­
tivity of composite media.4 Moreover, G1 and G2 arise in 
recently derived approximate expressions for a host of bulk 
properties of random media. S In all these cases, the lower­
order Gn appear in multidimensional integrals. Although 
conductivity bounds which involve integrals over G2 and G3 

have recently been computed,4.6 knowledge of the distribu­
tion functions themselves has been virtually nonexistent for 
even simple models of random media.7 

The purpose of this note is to compute and tabulate, for 
the first time, the two-point distribution function G2 for an 
isotropic dispersion of equisized impenetrable spheres of ra­
dius R for virtually the entire range of sphere volume frac­
tions. This is accomplished by utilizing an exact series repre­
sentation of the G ~ in terms of n-particle probability density 
functions Pn; quantities which, in principle, are known for 
the ensemble under consideration. The quantity 
Pn (r), ... ,rn )dr)· "drn gives the probability of finding the 
center of any particle in volume element dr) about r»" .. , and 
the center of another particle in volume element dr n about 
r n' For isotropic distributions of equisized impenetrable 
spheres, it has been shown that4 

G2(r12) =e(r12 )[p _p2 J dr3g2(r23)m(rI3)], (1) 

where 

m(r) = {
I, 

0, 
(2) 

e(r) = 1 - m(r) , (3) 

rij = Ir; - rj I, P is the number density, and g2(r) 
= P2 (r) / p2 is the radial distribution function. We shall cal­

culate the convolution integral in Eq. (1) for an eqUilibrium 
ensemble of impenetrable spheres. In particular, we employ 
the accurate Verlet-Weis8 fit of the radial distribution func­
tion. The observation that the integral ofEq. (1) is in fact a 
convolution integral enables one to employ highly accurate 
Fourier-transform techniques. The details of such a calcula-

TABLE I. G2 (r)/p¢!, at various values of rat ¢!2 = 0.1,0.2,0.3,0.4,0.5, and 
0.6. 

G2 (r)/p¢!, 

r/R ¢!2 = 0.1 0.2 0.3 0.4 0.5 0.6 

1.0 l.lll 1.250 1.429 1.667 2.000 2.500 
1.2 1.l04 1.230 1.382 1.565 1.783 2.023 
1.4 1.089 1.186 1.287 1.381 1.444 1.424 
1.6 1.070 1.136 1.186 1.203 1.159 1.018 
1.8 1.051 1.087 1.095 1.060 0.967 0.821 
2.0 1.033 1.044 1.023 0.962 0.865 0.771 
2.2 1.018 1.010 0.973 0.907 0.835 0.806 
2.4 1.005 0.986 0.944 0.891 0.857 0.882 
2.6 0.997 0.974 0.938 0.908 0.916 0.980 
2.8 0.993 0.972 0.950 0.952 0.999 1.089 
3.0 0.994 0.982 0.982 1.018 1.l01 1.211 
3.2 0.996 0.995 1.012 1.061 1.128 1.155 
3.4 0.998 1.002 1.023 1.058 1.072 0.996 
3.6 1.000 1.005 1.022 1.035 1.003 0.892 
3.8 1.000 1.006 1.015 1.008 0.954 0.876 
4.0 1.001 1.005 1.006 0.986 0.938 0.921 
4.2 1.003 0.998 0.975 0.949 0.986 
4.4 1.001 0.993 0.976 0.976 1.042 
4.6 0.999 0.991 0.984 1.008 1.073 
4.8 0.999 0.994 0.996 1.032 1.072 
5.0 0.999 0.997 1.008 1.040 1.039 
5.2 1.014 1.029 0.982 
5.4 1.013 1.005 0.938 
5.6 1.007 0.984 0.936 
5.8 1.000 0.974 0.969 
6.0 0.995 0.978 LOll 
6.4 0.994 1.004 1.045 
6.8 1.000 1.017 1.002 
7.2 1.003 0.964 
7.6 0.989 0.993 
8.0 0.995 1.028 
8.4 1.006 1.009 
8.8 1.006 0.980 
9.2 0.997 0.989 
9.6 0.995 1.015 

10.0 1.001 LOll 
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FIG. 1. G2(r)lpr/J1 vs the distance rat the sphere volume fraction r/J2 = 0.5. 

tion are given in Refs. 9-11 where related but different two­
point functions were computed. 

Table I displays G2 (r) scaled by its long-range valueptPl 
at various values of the distance r for sphere volume fractions 
tP2 of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Note that the value 

tP2 = 0.6 corresponds to approximately 94% of the random 
close-packing value. 12 G2 (r)lptPl oscillates about its long­
range value of unity (an indication of some short-range or­
der) with amplitude that becomes negligible after several 
diameters. The correlation length {defined to be the distance 
at which the quantity [G2 (r) - PtP 1)1 PtP I becomes negligi­
ble} increases as ¢2 increases for all realizable ¢2' Figure 1 
gives G2 (r)lp¢1 vs r for ¢2 = 0.5. 
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No data for the internal rotational potential of benzo­
phenone appear to be available for the vapor. As summar­
ized, I the angles of twist () of the phenyl groups away from 
the CC(O)C plane in the liquid or in solution are variously 
estimated to range from 12° to 42°. No internal potential is 
given, however, so that expectation values «(}) are not avail­
able. In the solid,2 () is 30° with C2 symmetry. Extensive se­
miempirical MO computations3 yield () values greater than 
70°. An extended Hiickel calculation4 gives 38°. 

For the planar molecule (() = 0°) the computed internal 
barrier3,4lies between 355 and 612 kJ/mol, intuitively unrea­
sonable, but between 0 and 14.1 kJ/mol at () = 90°. Of 
course, if the latter barrier approaches zero, then the mole­
cule samples many () values near 300 K and the conforma­
tion in the crystal is a consequence of packing forces. 

For benzaldehyde, the STO 3G MO barrie~ of24.5 kJI 
mol lies close to the latest gas phase values6

,7 of 19.3 and 22.7 

kJ/mol, and is much closer to experiment than that obtained 
from 4-21G, 4-31G, and 6-31G bases.8 Perhaps the minimal 
basis set is therefore useful for benzophenone. The computa­
tions used MONSTERGAUSS9 and an Amdahl 470!V8 system 

TABLE I. STO 3G MO energies for benzophenone. 

() (deg) 

o 
15 
30 
32 

Energy (kJ/mo!) 

0.00' 
-15.28 
- 33.11 
- 33.67 

O.OOb.c 
-1.90 
- 5.49 

• For the C2 structure (see Fig. 1). 
b For the non-C2 structure (see Fig. 1). 
CEnergyof - 565.864128 a.u. 

() (deg) 

45 
60 
75 
90 

Energy (kJ/mo!) 

- 29.86 - 8.04 
- 20.23 -9.50 
- 12.23 -9.83 
-9.02 -9.02 

J. Chern. Phys. 85 (10), 15 November 1986 0021-9606/86/226249-02$02.10 © 1986 American Institute of PhySiCS 6249 

Downloaded 15 Oct 2010 to 128.112.70.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


