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We compare the general Beran bounds on the effective electrical conductivity of a two-phase 
composite to the bounds derived by Torquato for the specific model of spheres distributed 
throughout a matrix phase. For the case of impenetrable spheres, these bounds are shown to be 
identical and to depend on the microstructure through the sphere volume fraction ¢2 and a 
three-point parameter t2, which is an integral over a three-point correlation function. We 
evaluate t2 exactly through third order in ¢2 for distributions of impenetrable spheres. This 
expansion is compared to the analogous results of Felderhof and of Torquato and Lado, all of 
whom employed the superposition approximation for the three-particle distribution function 
involved in t2' The results indicate that the exact t2 will be greater than the value calculated 
under the superposition approximation. For reasons of mathematical analogy, the results 
obtained here apply as well to the determination of the thermal conductivity, dielectric 
constant, and magnetic permeability of composite media and the diffusion coefficient of porous 
media. 

I. INTRODUCTION 

The determination of the bulk or effective properties of 
two-phase composite materials is of great practical and theo­
retical importance. l

-4 A two-phase composite material is a 
heterogeneous mixture of two different homogeneous mate­
rials. The fundamental problem is to determine the bulk 
property of the composite in terms of the phase property 
values and the details ofthe microstructure. In this article we 
shaH be interested in the electrical conductivity of statistical­
ly homogeneous dispersions and, thus, because of math­
ematical analogy, the thermal conductivity, dielectric con­
stant, magnetic permeability, and diffusion coefficient of 
such media. 

In general, the microstructure is completely character­
ized by an infinite set of correlation functions. 5

.
6 Knowledge 

of the complete set of statistical functions is almost never 
known in practice. Variational bounds, however, provide a 
means of estimating the effective property for a wide range of 
phase conductivities 0'1 and 0'2 and volume fractions ¢I and 
¢2' The most well-known bounds are due to Rashin and 
Shtrikman (HS). 7 These provide the best possible bounds on 
the effective conductivity 0'., given the simplest of micros­
tructural parameters; the volume fraction of one of the 
phases. As is wen known, the HS lower bound for 0'2 > 0'1 is 
identical to a formula derived by Maxwell.s 

The HS bounds, while providing rigorous limits for all 
a = 0'2/ 0'1 and ¢2' are restrictive only for a limited range of a 
and ¢2' In order to extend the range of utility, it becomes 
necessary to introduce statistical information beyond that 
contained in ¢2' The bounds due to Beran9 and Torquato lO 

introduce such additional morphological information; infor­
mation not contained in the Maxwell. formula or the effective 
medium approximation of Bruggeman. II 

a) Author to whom correspondence should be addressed. 

In Sec. II we describe the Beran and Torquato bounds 
and the statistical quantities involved therein, and show that 
the bounds are identical for microstructures made up of dis­
persions of impenetrable spheres. For the case ofimpenetra­
ble spheres, the bounds depend not only upon the sphere 
volume fraction ¢2 but also upon a microstructural param­
eter that involves a three-point correlation function. In Sec. 
III we evaluate this key three-point parameter through third 
order in ¢2' for an equilibrium distribution of impenetrable 
spheres in a matrix, in the superposition approximation and 
exactly. 

II. THE BOUNDS OF BERAN AND OF TORQUATO 

Rigorous bounds on O'e may be derived using the vari­
ational principles of minimum potential and minimum com­
plementary potential energy. Both Beran9 and Torquato lO 

employed these variational principles using trial fields of the 
same general form. 

Beran 9 employed the first two terms from the perturba­
tion series expansions for the trial fields to obtain bounds 
which were later simplified by Torquato and Stell 12 and Mil­
ton. 13 The resulting expression 
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Here (J' is the local conductivity and angular brackets denote 
an ensemble average. The statistical quantities Sn are called 
n-point matrix probability functions and give the probability 
of simultaneously finding n points in the matrix phase. 14-16 

Torquato, on the other hand, uses the first two terms 
from the cluster expansion for a dispersion of spherical parti­
cles (phase 2) in a matrix (phase 1) for the trial fields. More 
specifically, the trial fields are taken to be a constant vector 
added to the sum of contributions from individual isolated 
spheres. Torquato's bounds 10 

for spheres of unit radius, involve the four parameters A, B, 
e, and D, where 

and 

A =AI +A2 +A3, (4) 

B=BI +Bz +B3 +B4, 

e= 2A1 + 4A z +A3, 

D=4BI +Bz + 4B3 +B4, 

AI = 3TJ, 

Q(r12,r13 ):::= (GiZ)(rIZ,rI3,r23) -pGl2)(rd 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 

(12) 

(13) 

, (14) 

-pGj2)(r13 ) +p2G~2)]. (15) 

In the equations given above, p is the number density of 
spheres, TJ = i 1Tp is a dimensionless number density, h(r) 
[ g(Z)(r) - 1, whereg(2) is the pair or radial distribution 
function] is the total correlation function, P2 is the second 
Legendre polynomial, and the G ~2) are point/n-particle cor­
relation functions. The G ~2) give the probability of finding a 
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point at r I in phase 2 and any sphere center in volume ele­
ment dfz about fz, another sphere center in df3 about f3, ... , 
and another sphere center in df n about f n' For statistically 
homogeneous media, G 6Z

) is simply equal to the sphere vol­
ume fraction <Pz. 

The Beran bounds are more general than the Torquato 
bounds which are restricted to spherical inclusions of arbi­
trary penetrability. However, for spheres of intermediate 
penetrability the statistical functions in the Torquato 
bounds, and hence the bounds themselves, are easier to cal­
culate. 

For microstructures made up of dispersions of impen­
etrable spheres the G ~ 2 ) and the S n can be expressed in terms 
of the n-particle distribution functions gin) and the sphere 
indicator function 10 

{
o, r> 1 

m(r) = 
1, r< 1. 

(16) 

Note that the gin) correspond to the gn of Ref. 10. For this 
specific case, the low-order G ~2) are given bylO 

and 

G62 )=¢2' (17) 

G \2)(r12 ) = pm(rl2) + p 2e(rl2) f df l3 m (r13 )gI2)(r23 ), 

(18) 

G iZ) (rl2>r13,rZ3 ) 

=p2[m(r12 ) + m(r13 ) - m(r12)m(rl3) ]g(2)(rz3) 

+ p3e(r12 )e(r13) f drI4m(rI4)gl3)(rz3,rz4,r34)' (19) 

where e (r) = 1 - m (r). The low order S n can be expressed 
in terms oftile G ~z) 

SI = 1- G62
) =¢I' 

fd { (Z) 'I SZ(rI2 ) = SI + fl3 m(r13 ) G I (rZ3 ) - P,' 

and 

S3(rI 2,r13,r23 ) 

=S2(r23 ) + f dr I4 m(rI4 ) [Gl2)(r34 ) -p] 

-f f dfl4 dfls m(rI4 )m(r2S ) 

X [G f) (r34 ,r35,r4S) - p2gI2l(r45 )]· 

(20) 

(21) 

(22) 

We now show that for dispersions of impenetrable 
spheres the Beran and Torquato bounds are identical. Com­
paring Eq. (1) with Eq. (3) and noting TJ = <P2 for impen­
etrable spheres, we find that if 

and 

A = 3<PI<P2' (23) 

B = ¢i¢2 + 2;2<P1<P2' 

e = 6<Pl<P2' 

D = 4<Pi<P2 + 2;z<PI<Pz, 

(24) 

(25) 

(26) 

then the bounds are equivalent. 
Lado and Torquato l7 reduce Eq. (2) for;2 for disper-
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sions of impenetrable spheres. Using the representations of 
the S" from Ref. 16 for impenetrable spheres, they obtained 

;2 = (3!UP2 + AtP~ )/tPI' (27) 

where 

Felderhofl8 also obtained Eqs. (27), (28), and (29). He did 
not, however, start with Eq. (2) and theS" , but arrived at his 
result by an alternate method. [In both Felderhof's and 
Lado and Torquato's notation;2 = (9/ltPltP2)K.J 

Consider now Eqs. (9) and (10) for A2 andA 3• Making 
the change of variable cos ()2l3 = (~2 + ~3 - ~3 )/2r12r 13 

and changing the order of integration results in 

A2 = 772f dr(fi, r - ~,-3 + 3?)h(r) (30) 
I 

Substituting Eq. (34) into Eqs. (13) and (14) gives B3 

= - 2tP~ + tP~ and, after some rearrangement, 

B4 = 2p3J J f dr12 dr l3 dr l4 e(rI2)e(rl3)m(rI4) 

X P2(COS ()213) [g(3)(r23,r24,r34) - g(2J(r24 )g(2)(r34 )]. 

ri2ri3 
(35) 

The h(r24 )h(r34 ) term has been dropped due to orthogona­
lity of the Legendre polynomials, but the g(2J(r24)g(2)(r34 ) 

term has been retained to facilitate subsequent numerical 
calculations. Except for a trivial factor, Eq. (35) is identical 
with an intermediate expression in Ref. 17 which leads to 
B4 = 2AtPi. 

and 

In summary, 

A = 3tP2 - 3tPL 
B = tP2 - ltP~ + tP~ + 6!up~ + 2AtPL 
c = 6tP2 - 6tPL 

(36) 

(37) 

(38) 

D = 4<P2 - 8tP~ + 4tP~ + 6ntP~ + 2AtP~ . (39) 

Combining Eqs. (27)-(29) and (36)-(39) along with the 
relation tPl = I - tP2 verifies Eqs. (23)-(26) and hence 
shows the equivalence of the Beran and Torquato bounds for 
impenetrable spheres. 

We have shown that for the special case of impenetrab1e 
spheres the Beran and Torquato bounds are identical. This 
result is not unexpected. Both sets of bounds are derived 
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and 

(31) 

Notice that the resulting expressions depend on the total 
correlation function only through r values inside the diame­
ter. For impenetrable spheres of unit radius h (r) = - 1 for 
r < 2 and, therefore, A2 = - tP~. 

From Eqs. (1.1) and (18) it is obvious that B 1 = tP2' It 
can also be shown in a manner similar to that for A2 and A3 

that 

B2 = 6772100 

dr ?g(2J(r)x(r), 

where 

(32) 

{
1!(?-1)\ r>2 

x(r) = {r/[ 16(r + 1 )3]}(12 + 12r - ? - 3~), r < 2. 
(33) 

For impenetrable spheres of unit radius, i21(r) = 0 for r < 2 
and B2 = 6!up; . 

Combining Eqs. (15) with Eqs. (17)-( 19) for impen­
etrable spheres of unit radius yields 

(34) 

'from the same variational principles, namely, the minimum 
potential and complementary potential energy principles. 
For the case of impenetrable spheres, the trial fields em­
ployed by Beran and by Torquato give rise to precisely the 
same system energy. This energy is equal to that resulting 
from interaction between up to three impenetrable spheres 
which interact with induced dipole moments such that only 
single reflections between spheres are considered. This is 
equivalent to stating that the fields are assumed to be a con­
stant vector added to a sum of contributions from individual 
isolated spheres. 

In the more general case of spheres distributed with ar­
bh:rary degree of penetrability, the trial fields employed by 
Torquato do not correctly include the interaction effects due 
to overlap, and hence result in bounds which, although still 
useful, are not as restrictive as the Beran bounds which do 
correctly include the overlap interaction effects. However, 
for partially penetrable spheres, the G ~2) and hence the Tor­
quato bounds are easier to evaluate. 10 

m. EVALUATION OF ~ FOR IMPENETRABLE SPHERES 

FeJ.derhofl9 considered. an equilbrium dispersion of im­
penetrable spheres and computed;2 through third order in 
tP2 (the volume fraction of spheres). Unfortunately, there 
appears to be an error in the coefficient of tP~. Torquato and 
Lad020 later extended this resul.t to calculate;2 for tP2 up to 
about 94% of the random-close-packing value. Both Felder­
hof, and Torquato and Lado used the superposition approxi­
mation for the triplet correlation function involved in the 
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calculation of /;2' Here we obtain the correct results for /;2 in 
the superposition approximation through order 1,6~. More­
over, through the same order in 1,62' we calculate /;2 exactly 
and thus determine the error involved in using the superposi­
tion approximation. 

A. The density expansion of ~ for Impenetrable 
spheres 

The integrals for n and A can be expanded in density by 
making use of the density expansions of the correlation func­
tions: 

"" g(2)(r) = L g~2)(r)pn (40) 
n=O 

and 
00 

g<3)(r ,s,t) = L g~3) (r ,s,t)pn. (41 ) 
n=O 

Substituting Eqs. (40) and (41) into Eqs. (27). (28), and 
(29) gives 

(42) 

(43) 

00 

/;2 = L cnl,6~, (44) 
n=1 

l
"" r g~2) (r) 

n = dr --
n 2 (r - 1)3 V7 ' (45) 

A - 9 ~ / 1 1 Jf d P, (cos Om) 
n - 32-2 £.., ( -) r1zdr l3 _1+ Ll+ I 

1T ,= 2 '12 '13 

Cn+l=cn+3nn+An_I' n=1,2,3, .... (48) 

Here VI = ~ 1T is the volume of a sphere of unit radius. 

B. IEvaluation of the low order fin 

Analytical expressions for g{/)(r), gj2)(r). and g~2)(r) 
are known. 2 

1.22 The two lowest-order terms are 

(2) r = fl. r>2 
go () 0, otherwise (49) 

and 

{
¥ 1T[1- ~ (r) + rh (r)3], 

gl2)(r) = . 
0, otheIWlse. 

(50) 

Simple integration leads to no = ~ - -h In 3 and !l I = ~ 
+ * In 5 - In 3. Nijboer and Van Hove22 give the analytical 

expression for g~2)(r) and we find numerically that 
!l2:::::: 0.080 980. The values for no. n I' and n2 were first ob­
tained by Felderhof. 
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C. Evaluation of the An 

The first term in the density expansion of g(3) is simply a 
product of three g~2)'S. specifically 

g~3) (r12,r\3,r23 ) = g~2) (r12)g~2) (rl3 )g~2) (r23 ). (51) 

The expression for Ao then becomes 

Ao = 9--2 i /(l- 1)ffdrI2dr\3g~2)(rI2)g~2)(r13) 
3211 1= 2 

X [ (2)(r ) -1] p/(cos02 \3) . 
go 23 -1+11.+ 1 

'12 13 

(52) 

Angular integrations are performed by expanding angle de­
pendent functions in Legendre polynomials 

"" 
/(r23) = L A,(r\2.r\3;!)P, (cos 02\3), (53) 

'=0 

where the expansion coefficients are given by 

A/(r\2,rn ;!) 

2/+ 1 I+I 
= -- d(cos (213)/(r23 )P, (cos 0213)' 

2 -I 
(54) 

The angle 0213 is related to the angles 02' °3,1,62' and 1,63 by the 
addition theorem: 

, (1- s)! 
p/ (cos Om) = p/(cos (2)P/(COS (3) + 2 L ~-=-­

s=O (/+s)! 

XPi (cos (2)Pi(COS (3)COS[S(1,62 - 1,63)]' 
(55) 

TABLE I. The three-point parameter t2 for impenetrable spheres as a func­
tion of sphere volume fraction. The columns correspond to the density ex­
pansion under the superposition approximation Eq. (68). the work of Tor­
quato and Lado (Ref. 21 ). and the exact density expansion Eq. (69). 

0.0001 
0.005 
0.010 
0.025 
0.050 
0.075 
0.100 
0.125 
O.ISO 
0.175 
0.200 
0.225 
0.2SO 
0.275 
0.300 
0.325 
0.3SO 
0.375 
0.400 
0.425 
O.4SO 
0.475 
0.500 
0.525 
0.5SO 
0.575 
0.600 

Eq. (68) 

0.0000211 
0.0010S2 
0.002102 
0.005236 
0.01041 
O.ot5 SO 
0.02051 
0.02543 
0.0302S 
0.03497 
0.03957 
0.04404 
0.04839 
0.05259 
0.05665 
0.060 55 
0.064 29 
0.06785 
0.07123 
0.07443 
0.07743 
0.08023 
0.08281 
0.08517 
0.08730 
0.08920 
0.090 8S 

Ref. 20 

0.000021 1 
0.001052 
0.002 102 
0.005236 
0.01041 
0.01551 
0.02053 
0.02547 
0.03033 
0.Q35 II 
0.03983 
0.044 SO 
0.04916 
0.05388 
0.05875 
0.06390 
0.06954 
Om595 
0.08356 
0.09301 
0.1051 
0.1203 
0.140 7 
0.1681 
0.2051 
0.2563 
0.3277 

Eq. (69) 

0.0000211 
0.001052 
0.002102 
0.005238 
0.01042 
0.Ql554 
0.02060 
0.Q2561 
0.03055 
0.Q3544 
0.04028 
0.04506 
0.04978 
0.05444 
0.05905 
0.06360 
0.06810 
0.072 54 
0.07692 
0.08125 
0.08553 
0.08975 
0.09392 
0.09803 
0.1021 
0.106 1 
0.1101 
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After applying the expansion and performing the angular 
integrations, Eq. (52) becomes 

Ao=i. i 1(/-1) roo dr (a> ds 1 
2 1 ~ 2 21 + 1 Jo Jo (rs) 1 - I 

Xg62
) (r)g62

) (s)A 1 (r ,s;G62
) - 1). (56) 

An alternate method was employed by Felderhofl9 to 
transform Eq. (52) to an integration in wave vector space 

Ao=_3- i 1(1-1) (00 dk[So(k) -IHF}0)(k)}Zk 2, 

rr¢Jz 1 ~ 2 Jo 
(57) 

where 

L
oo g(Z)(r) 

F}n)(k) = drjl(kr) _n __ 
° I-I 

(58) 

and 

Sn(k) -1 =.A.Jdr[g~2)(r) -Dno]exp(ik-r). 
VI 

(59) 

Here S(k) is the usual structure function,jl is a spherical 
Bessel function, and 8ij equals 1 for i = j and 0 otherwise. 
The two reduction methods (i.e., the expansion in Legendre 
polynomials and transformation to wave-vector space) are 
equivalent and thus agreement between the results obtained 
from them should provide a self-consistent check on our cal­
culations. 

Evaluation of the integrals in Eqs. (56)-(59) lead to 

Ao = 1f - ~.Jf3 + ~ In ( 17 - 4.Jf3). This result was first 
obtained by Felderhof. Under the superposition approxima­
tion the next term in the expansion of g(3) is given by 

3 

g\3)(rI2,rI3,r23) = L g~~)(rI2)g~;)(r13)g~~)(r23)' (60) 
i= 1 

Reducing the expression for A';" as before gives 

A';" = i. f 1(1- 1) (00 dr ('" ds 1 
2 1 = 2 21 + 1 Jo Jo (rs ) 1 - I 

X (g6Z
) (r)g\2) (s) + g62) (S)g\2) (r») 

VI VI 

9 '" l(l 1) i'" i'" XA 1 (r,s;g62) - 1) + - L - dr ds 
2/=22/+10 ° 

X g(Z)(r)g(Z)(s)A r,s' _1_ 
1 ( g(2») 

(rs)/-1 ° ° I, VI 
(61 ) 

or 

A,;,,=_3_ i 1(/-1) ('" dkS
I
(k)[F}0)(k)]2k 2 

rr¢J2 1 = 2 Jo 

6 '" +- L /(1-1) 
rr¢Jz 1 = 2 

X fO dk So(k)FjO)(k)Fjl)(k)k 2, (62) 

where the superscript sa refers to the use ofthe superposition 
approximation. 

Felderhof obtained the correct A';" value for 1 = 2 of 
- H + ilib::::: - 0.017 26. Fe1derhof, however, appears to 

have incorrectly determined the value for 1 = 3 and truncat­
ing the series after this term found A';"::::: - 0.0298. From 
either Eq. (61) or (62) we find that for 1 = 3 A';" 
= ( - 187863/788480)::::: - 0.238 26. Numerically, we 

find through / = 7 A';"::::: - 0.282 42. 

D. Corrections to the superposition approximation 

The exact first-order term in the expansion of g(3) is23 

X fdrI4f(rI4)f(r24)f(r34)' (63) 

The quantity f (r) is the Mayer-f function which, for impen­
etrable spheres of unit radius, is equal to - 1 for r < 2 and 
zero otherwise. For impenetrable spheres of unit radius, the 
integral over the product of three Mayer-f functions turns 
out to be minus the intersection volume of three spheres of 
radius 2 with centers separated by r 12' r 13' and r 23' respective­
ly. Analytical solutions exist for this volume,24.25 denoted 
here by V~. The resulting integral for Al is exactly 

- - L - dr ds g62
) (r)g62

) (s)A 1 r,s;g62) --=:. - 1 9 00 /(/ 1) 1'" 1'" 1 (VI ) 
2 1 = 2 21 + 1 ° ° (rs) 1 - I VI ' 

(64) 

which numerically results in A I::::: - 0.19354. 
In summary we find that 

3580 

n = 0.070 226 + 0.103 62¢J2 + 0.080 98O¢J~ , 

Asa = - 0.568 47 - 0.282 42¢Jz, 

A = - 0.568 47 - 0.1935#2' 

;;a = 0.210 68m2 - 0.046 93¢Ji - 0.086 41¢JL 
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(65) 

(66) 

(67) 

(68) 

I 
and 

;2 = 0.210 68¢J2 - 0.046 93¢J~ + 0.002 47f,6~. (69) 

Equations (68) and (69) show that the exact ;2 will 
always be greater than ;;a through order f,6~ . A comparison 
of the predicted values from Eqs. (68) and (69) with the 
results of Torquato and LadozO (who calculated ;2 in the 
superposition approximation through all orders in ¢J2) is 
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made in Table I. We find excellent agreement between Eq. 
(68) and the results of Torquato and Lado up to a value of 
4>2 ::::;0.15. For values greater than 4>2 ::::;0.15, the terms of or­
der higher than 4>~, which are included in Torquato and La­
do's work, appreciably contribute to; S;. 

Evidence that the correct value of;2 is greater than; ~a 
through all orders in 4>2 is given by Torquato,6 who has re­
cently derived a highly accurate expression for O'e of disper­
sions which depends upon ;2' Using this expression together 
with the tabulation of; S; of Ref. 20, Torquat06 found that 
the predicted value of O'e was somewhat lower than the ex­
perimental data of Turner,26 for impenetrable spheres indi­
cating that; S; is smaller than the exact value; 2' 

IV. CONCLUSIONS 

The general bounds of Beran have been compared to the 
Torquato bounds for suspensions of spheres. For the special 
case of impenetrable spheres, these bounds are shown to be 
identical For partially penetrable spheres, the Torquato 
bounds are not as restrictive as the Beran bounds. The Tor­
quato bounds, however, appear to be much easier to com­
pute when the spheres are allowed to overlap. 10 

We have also evaluated; 2' a microstructural parameter 
that arises in both the Beran and Torquato bounds, for sus­
pensions of impenetrable spheres through third-order in the 
sphere volume fraction 4>2 in the superposition approxima­
tion and exactly. The exact;2 is found to be greater than ; S;. 
In the case of spheres which are more conducting than the 
matrix, this implies that the lower bound (the bound that 
provides the better estimate of O'e) obtained using; S; is an 
underestimation of the exact lower bound on O'e' 
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