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Sandstone, granular media, bone, wood, and cell membranes are just a few examples of porous
media that abound in Nature and in synthetic situations. Two important effective properties of
fluid-saturated porous media that have been extensively studied are the trapping constantg and
scalar fluid permeabilityk. Exact expressions for the “void” bounds ong andk for coated-spheres
and coated-cylinders models of porous media are derived. In certain instances, the bounds are shown
to be optimal, i.e., the void bounds coincide with the corresponding exact solutions ofg andk for
these coated-inclusions models. In the optimal cases, we obtain exact expressions for the relevant
length scale that arises in the void bounds, which depends on a two-point correlation function that
characterizes the porous medium. By contrast, optimal bounds on the effective conductivity and
elastic moduli of composite media have long been known. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1829379]

I. INTRODUCTION

It is well established that the effective properties of a
random heterogeneous material depend on an infinite set of
statistical correlations that characterize the microstructure.1

Thus, exact determinations of effective properties are avail-
able for only a few special cases.1–3 In the absence of exact
solutions, one can estimate the effective properties using ap-
proximation schemes1,2,4 or by deriving rigorous bounds on
them.1–3,5–8 Bounds are useful because:(i) As successively
more microstructural information is included, the bounds be-
come progressively narrower;(ii ) one of the bounds can pro-
vide a relatively sharp estimate of the property for a wide
range of conditions, even when the reciprocal bound di-
verges from it; and(iii ) they can be utilized to test the merits
of a theory or computer experiment.1 Moreover, it is highly
desirable to find optimal bounds when possible and the mi-
crostructures that attain them.

Perhaps the best known bounds in the cases of the effec-
tive conductivity and effective bulk modulus of two-phase
media are the Hashin–Shtrikman bounds.5,6 These are opti-
mal bounds, given the phase volume fractions, because they
are realizable by, among other geometries,1–3 certain coated-
spheres and coated-cylinders assemblages in three and two
dimensions, respectively. The coated-spheres model has been
extended to the effective conductivity of multiphase
composites.9–11

Sandstone, granular media, bone, wood, and cell mem-
branes are just a few examples of porous media that abound
in Nature and in synthetic situations. The trapping constant
g1,12–14and scalar fluid permeabilityk1,4,12,15–19are two im-
portant effective properties of fluid-saturated porous media.
Bounds on the trapping constant1,20–24 and fluid
permeability1,25–28 of porous media have been derived and
computed. Heretofore, however, microstructures that exactly

realize(or attain) any of these bounds have yet to be identi-
fied. Torquato1 observed that the difficulty in identifying op-
timal microstructures for these classes of problems lies in the
fact thatg and k are length-scale dependent quantities and
known bounds on them depend nontrivially on the specific
forms of two-point and higher-order correlation functions.
For example, the so-calledvoid bounds ong andk (Refs. 1,
24, and 28) depend on the probabilityS2srd of finding two
points—separated by a distancer—both in the pore phase of
an isotropic porous medium and have been evaluated for
various particle models for the trapping constant1,24,29 and
fluid permeability.1,25,26,28

In this article, we derive analytical expressions for the
void bounds on the trapping constantg and fluid permeabil-
ity k for the coated-spheres and coated-cylinders models of
porous media. We demonstrate that in some instances the
void bounds are optimal, i.e., the void bounds coincide with
the corresponding exact solutions ofg and k for these par-
ticular coated-inclusions porous-media models. In these
cases, we obtain exact expressions for the relevant length
scale that arises in the void bounds, which depends on a
two-point correlation function that characterizes the porous
medium. In a recent letter,30 we reported some of these re-
sults but very few details concerning the derivation of the
bounds were presented. The purpose of this article is to pro-
vide detailed derivations of the exact expressions ofg andk
for the coated-sphere and coated-cylinder models of porous
media, and to display the bounds graphically.

Section II briefly summarizes the basic equations and
variational void bounds for the trapping and flow problems.
In Sec. III, we derive some exact results involving the
Green’s function of the Laplace operator for the coated-
spheres and coated-cylinders models. We derive our major
results for the trapping constant and fluid permeability in
Secs. IV–VI. In Sec. VII, we present our conclusions and
discuss future work.

a)Author to whom correspondence should be addressed; electronic mail:
torquato@electron.princeton.edu
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II. BASIC EQUATIONS AND VARIATIONAL BOUNDS

Each realization of the porous medium occupies the re-
gion of spaceVPRd of volumeV that is partitioned into two
disjoint regions: A pore space(phase) VP of porosityfP and
a solid space(phase) VS of volume fraction fS=1−fP.
Clearly,VPøVS=V andVPùVS=Ø. Let ]V denote the sur-
face of interface betweenVP andVS. The pore-spaceindica-
tor functionIsPdsxd is given forxPV by

IsPdsxd = H1, x in VP

0, otherwise.
s1d

The indicator functionMsxd for the interface is defined as

Msxd = u ¹ IsPdsxdu. s2d

For statistically homogeneous media, the ensemble averages
of the indicator functions(1) and(2) are, respectively, equal
to the phase volume fractionfP , i.e.,

fP = kIsPdsxdl, s3d

and the specific surfaces (interfacial area per unit volume),
i.e.,

s= kMsxdl, s4d

where angular brackets denote an ensemble average.

A. Trapping problem

Consider the steady-state trapping problem.1 The pore
spaceVP is the region in which diffusion occurs(i.e., trap-
free region), and VS is the trap region. The concentration
field of the reactantscsxd at positionx exterior to the traps is
governed by the mass conservation equation

D¹2csxd + G = 0 in VP, s5d

with the boundary condition at the pore–trap interface, for
the case of perfectly absorbing traps, given by

csxd = 0 on ] V. s6d

Here, D is the diffusion coefficient of the reactant,G is a
generation rate per unit trap-free volume. The two-scale ho-
mogenization theory enables one to show that the trapping
constantg obeys the first-order rate equation

G = gDC, s7d

whereC represents an average concentration field. For a sta-
tistically homogeneous and ergodic medium, it can be dem-
onstrated that the trapping constant has the alternative
representation1,23

g−1 = kul = lim
V→`

1

V
E

V
usxddx, s8d

whereusxd is the scaled concentration field that solves the
boundary-value problem

¹2usxd = − 1, x P VP, s9d

usxd = 0, x P ] V. s10d

It follows that the trapping constantg for any d has dimen-
sions of the inverse of length squared.1

A variational principle was formulated by Rubinstein
and Torquato23 in terms of a trial functionnsxd, which en-
ables one to obtain the following lower bound ong for er-
godic media:

g ù
1

k¹vsxd · ¹ vsxdIsPdsxdl
, s11d

wherevsxd is required to satisfy the Poisson equation

¹2vsxd = − 1, x P VP. s12d

Elsewhere, Torquato and Rubinstein24 constructed what they
referred to as thevoid lower bound in three dimensions by
using a specific trial field. The generalization of this trial
field to any dimensiondù2 is given by1

vsxd =
1

fS
E

V
gsx − ydfIsPdsyd − fPgdy, s13d

where

gsr d =5
1

2p
lns

1

r
d, d = 2

1

sd − 2dVsdd
1

rd−2 , d ù 3,

s14d

is thed-dimensional Green’s function for the Laplace opera-
tor, Vsdd is the total solid angle contained in ad-dimensional
sphere given by

Vsdd =
2pd/2

Gsd/2d
, s15d

fS is volume fraction of the trap phase, andr ;ur u. Substi-
tution of trial field (13) into the variational principle(11)
yields the void lower bound ong for general statistically
homogeneous and isotropicd-dimensional porous media1 as

g ù
fS

2

,P
2 , s16d

where,P is a pore length scale defined by

,P
2 =5 −E

0

`

fS2srd − fP
2gr ln rdr , d = 2

1

sd − 2dE0

`

fS2srd − fP
2grdr , d ù 3,

s17d

andS2sr d is the two-point correlation function defined by

S2sr d = kIsPdsxdIsPdsx + r dl. s18d

The functionS2sr d can also be interpreted as being the prob-
ability of finding two points separated by the displacement
vector r in the pore space.1

B. Flow problem

Using homogenization theory, Rubinstein and Torquato28

derived the conditions under which the slow flow of an in-
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compressible viscous fluid through macroscopically aniso-
tropic random porous medium is described by Darcy’s law

U = −
1

m
k · ¹ p0, s19d

where U is the average fluid velocity,¹p0 is the applied
pressure gradient,m is the dynamic viscosity, andk is the
symmetric fluid permeability tensor. In particular, for the
special case of macroscopically isotropic media, the scalar
fluid permeability k=Trskd /d (where Tr denotes the trace
operation) is given by

k = kw ·el = lim
V→`

1

V
E

V
wsxddx, s20d

where w is a scaled velocity andP is a scaled pressure,
which satisfy the scaled Stokes equations

¹2w = ¹ P − e in VP, s21d

¹ ·w = 0 in VP, s22d

w = 0 on ] V, s23d

ande is a unit vector. It follows that the permeabilityk for
any d has dimensions of length squared.1

A “void” upper bound on the permeability was derived
by Prager25 using a variational principle. Afterward, Berry-
man and Milton26 corrected a normalization constraint in the
Prager variational principle using a volume-average ap-
proach and thus corrected a constant factor in the void
bound. Rubinstein and Torquato28 developed upper and
lower bound variational principles utilizing an ensemble-
average approach and also derived the void upper bound.

For our purposes, the Rubinstein–Torquato variational
principle for the upper bound on the permeability is the most
natural starting point. This variational principle states that for
ergodic media the trial functionqsxd enables one to obtain
the following upper bound onk:

k ù kqsxd: ¹ qsxdIsPdsxdl, s24d

whereq(x) is required to satisfy the momentum equation

¹ 3 ¹2sq + ed = 0, x P VP. s25d

Rubinstein and Torquato28 constructed thevoid upper bound
on k in three dimensions by using a specific trial field. The
generalization of this trial field to any space dimensiond
ù31 is given by

q(x) =
1

fS
E

V
Csx − yd ·efIsPdsyd − fPgdy, s26d

where

C(r) =
d

sd2 − 3dVsddrd−2fI + nng, d ù 3, s27d

is the d-dimensional Green’s functionC (second-order ten-
sor) associated with the velocity for Stokes flow,n=r / r, and
fS is the volume fraction of the obstacles. Substitution of
trial field (26) into the variational principle(24) yields the

void upper bound onk for general statistically homogeneous
and isotropicd-dimensional porous media1 as

k ø
sd + 1dsd − 2d

d2 − 3

,P
2

fS
2, d ù 3, s28d

where,P is the length scale defined by Eq.(17), which is
precisely the same as the one that arises in the void lower
bound on the trapping constantg for dù3.31,13,1

III. COATED-SPHERES MODEL

The coated-spheres model5 consists of composite
spheres that are composed of a spherical core of phase 2
(inclusion) and radiusRI, surrounded by a concentric shell of
phase 1(matrix) and outer radiusRM. The ratiosRI /RMdd is
fixed and equal to the inclusion volume fractionf2 in space
dimensiond. The composite spheres fill all space, implying
that there is a distribution in their sizes ranging to the infini-
tesimally small(see Fig. 1). The inclusion phase is always
disconnected and the matrix phase is always connected(ex-
cept at the trivial pointf2=1).

A. Size-distribution restrictions

The coated-spheres model places restrictions on the size
distribution of the composite spheres. Consider a macro-
scopically large but finite-sized spherical sample of the po-
rous medium of volumeV and radiusR in d dimensions.
The coated-spheres porous medium occupies the spaceV and
is partitioned into two disjoint regions: A matrix phaseV1

and inclusion phaseV2. The composite spheres are uniformly
distributed inV and the corresponding radius of the inclu-
sion. It is clear that the radius of the largest composite
sphere, which we denote byRmax, must be such that it obeys
the conditionRmax!R. Thus, the specimen is virtually sta-
tistically homogeneous. Ultimately, we will take the infinite-
volume limit, i.e.,R→` or V→`. Without loss of general-
ity, we will assume that the composite spheres possess an
infinite number of discrete sizes. Letrk be the number den-
sity (number of particles per unit volume) of the kth type of

FIG. 1. Schematic of the coated-spheres model microstructure.
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composite sphere of radiusRMk
and letRIk

denote the corre-
sponding radius of the inclusion. Moreover, we know that the
fraction of space covered by the composite spheres, denoted
by F, is unity, and therefore we have the following condition
on the size distribution:

F = o
k=1

`

rkv1sRMk
d = 1, s29d

wherev1srd is thed-dimensional volume of a single sphere
of radiusr given by1

v1srd =
pd/2

Gs1 + d/2d
rd, s30d

andGsxd is the gamma function.
It is clear that for the volume fractionF to remain

bounded[i.e., for the sum(29) to converge], rkRMk

d must also
remain bounded for allk, and thus we have that

rk ~
1

RMk

d , ∀ k. s31d

An important conclusion is that the number densityrk must
diverge to infinity asRMk

approaches zero. This in turn
means that the specific surfaces must also diverge, since
rkRMk

d−1 diverges asRMk
approaches zero. Note that volume

fraction f2 of the inclusion phase is given by

f2 = o
k=1

`

rkv1sRIk
d =

pd/2

Gs1 + d/2dok=1

`

rkRIk
d . s32d

It is convenient to introduce the followingnth moment ofRI:

kRI
nl =

1

r
o
k=1

`

rkRIk
n , s33d

wherer is a characteristic density(e.g., the inverse of the
volume of the largest composite sphere) andn is any integer
nùd. Note that the inclusion volume fractionf2 can now be
re-expressed as

f2 = r
pd/2

Gs1 + d/2d
kRI

dl. s34d

B. Integral identities

Next, following Pham,9,10 we evaluate some key inte-
grals involving the Green’s function of the Laplace operator
for the coated-spheres microstructure. We will subsequently
employ these integral identities to evaluate the void bounds
for this model.

Let Xi si =1,2, . . . ,dd represent a Cartesian coordinate
emanating from the center of the spherical representative
volume. In the coated-spheres model, every spherical inclu-
sion SI ,V2 is coated by a concentric spherical shellSM of
the matrix phasesSM ,V1d. Consider a composite sphere
SIM =SI øSM and construct a local Cartesian coordinatexi

emanating from the center of each inclusionSI (or composite
sphereSIM):

xi = Xi + constant. s35d

SinceV, SI, andSIM are spherical regions, we have from the
theory of harmonic potentials that ford=3

E
S

gsx − yddy =5−
1

6
xixi + constant, x P S

R3

3Îxixi

, x P V \ S
s36d

E
V

gsx − yddy = −
1

6
XiXi + constant, x P V, s37d

and ford=2

E
S

gsx − yddy=5−
1

4
xixi + constant, x P S

−
R2

2
lnÎxixi , x P V \ S

s38d

E
V

gsx − yddy= −
1

4
XiXi + constant, x P V, s39d

where S representsSI or SIM, R is the radius ofS, and
repeating indices indicate a summation. Moreover, if we let
SIM8 be any composite sphere apart fromSIM sSIM8 ùSIM

=xd, then for pointsxPSIM, we obtain the identities

E
SI8

gsx − yddy= f2E
SIM8

gsx − yddy, s40d

E
SM8

gsx − yddy= f1E
SIM8

gsx − yddy, s41d

where the inclusionSI8,SIM8 and the matrixSM8 ,SIM8 . Using
relations(36)–(41), we find what is called the “far-field in-
teraction” via the harmonic potential forxPSIM, i.e., the
contribution of the harmonic field at a pointx inside SIM

from all of the inclusions outside ofSIM:

E
V2\SI

gsx − yddy = o
SI8ùSI=x

E
SI8

gsx − yddy

= f2E
V\SIM

gsx − yddy

= f2SE
V

gsx − yddy

−E
SIM

gsx − yddyD
=

f2

2d
sxixi − XiXid + constant. s42d

Similarly, we have

E
V1\SM

gsx,yddy =
f1

2d
sxixi − XiXid + constant. s43d
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IV. VOID LOWER BOUNDS ON THREE-DIMENSIONAL
TRAPPING CONSTANT

A. Inclusions as the pore space

We first evaluate the void lower bound ong for the
three-dimensional coated-spheres model. To begin, we take
the connected matrix phaseV1 to be the traps and the dis-
connected inclusion phaseV2 to be the pore space. There-
fore, the porosity is given byfP=f2. Using the void trial
field (13) for vsxd, we can obtain from Eq.(11) the lower
bound on the trapping constant

g ù F lim
V→`

1

V
E

V
¹ v · ¹ vIs2dsxddxG−1

, s44d

where we have equated ensemble averages with volume av-
erages via the ergodic hypothesis. We can explicitly calculate
the void trial fieldvsxd using identities(36), (37), and (42)
for xPSI:

f1vsxd =E
V2

gsx,yddy − f2E
V

gsx,yddy

=E
SI

gsx,yddy +E
V2\SIM

gsx,yddy

− f2E
V

gsx,yddy

= −
1

6
xixi +

f2

6
sxixi − XiXid +

f2

6
XiXi + constant

= −
f1

6
xixi + constant. s45d

Letting r2;xixi, it follows that

¹v = −
1

3
xi and ¹ v · ¹ v =

1

9
r2. s46d

The lower bound(44) is readily calculated using the result
immediately above:

g−1 ø lim
V→`

1

V
E

V2

¹ v · ¹ vdx

= lim
V→`

1

V
o

SIPV2

E
SI

r2

9
dx

= lim
V→`

1

V

4p

9 o
SIPV2

E
0

RI

r4dr

= lim
V→`

1

V

4p

45 o
SIPV2

RI
5

=
4p

45o
k=1

`

rkRI
5 =

f2

15

kRI
5l

kRI
3l

,

where we have used the definitions(34) and (33). Based on
our earlier discussion concerning restrictions on the size dis-
tribution, we see from the sum in the last line that the infini-
tesimally small spheres do not make any contribution to the

trapping constant. Thus, using the fact thatf2=fP, the void
lower bound is exactly given by32

g ù
15kRI

3l
fPkRI

5l
. s47d

Interestingly, by comparing this result to the general expres-
sion for the void upper bound(16), which is given in terms
of the two-point correlation functionS2srd, we see that the
square of the pore length scale,P for d=3 is exactly given
by

,P
2 =E

0

`

fS2srd − fP
2grdr =

fPfS
2

15

kRI
5l

kRI
3l

s48d

for the coated-spheres model.
Now we show that bound(47) coincides with the exact

expression for the trapping constant for this particular
coated-spheres model. Specifically, the exact solution of the
boundary-value problem

¹2u = − 1, in SI ,

u = 0, on ] SI , s49d

for diffusion inside a spherical inclusionSI with r2=xixi is
given by1

u =
1

6
sRI

2 − r2d, 0 ø r ø RI . s50d

Therefore, using the definition(8), we find thatg, for non-
overlappingsphere models with ageneral size distribution
(not just the coated-spheres model) is exactly given by

g−1 = kul = lim
V→`

1

V
o

SIPV2

E
0

RI 1

6
sRI

2 − r2d4pr2dr

= lim
V→`

1

V

4p

45 o
SIPV2

RI
5 =

f2

15

kRI
5l

kRI
3l

, s51d

or

g =
15kRI

3l
fPkRI

5l
. s52d

It is important to note that the void lower bound(47)
coincides with the exact solution(52) for the coated-spheres
model, and hence the bound is exactly realizable when the
inclusions are taken to be the pore phase. This may immedi-
ately lead one to conclude that the void bound is optimal
among all microstructures, but such a statement cannot be
made unless one attaches special conditions. Recall that un-
like the effective conductivity or effective elastic moduli, the
trapping constant as well as the fluid permeability are length-
scale dependent quantities. Thus, any statement about opti-
mality must fix not only the porosity but the relevant length
scales. The correct statement is the following: The void
bound is optimal among all microstructures that share the
same porosityfP and pore length scale,P defined by rela-
tion (17). Indeed, the bound is shown to be attained by the
coated-spheres model. Observe that one can always adjust
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the pore length scale[Eq. (48)] of the coated-spheres model
at some porosityfP to be equal to,P for any microstructure
with the same porosity.

As noted above, relation(52) applies to diffusion within
nonoverlapping spheres with a general size distribution. Ac-
cordingly, let us define another squared length scaleLP

2

=kRI
5l / kRI

3l for such a general nonoverlapping sphere model.
In what follows, superscriptsg andc are appended to quan-
tities associated with the general sphere model and coated-
spheres model, respectively. The use of expressions(16),
(47), and (52) reveals the following interrelations between
these two models: At fixedfP, if LP

sgd=LP
scd, then gsgd=gscd

and ,P
sgdù,P

scd, and if ,P
sgd=,P

scd, then gsgdùgscd and LP
sgd

øLP
scd.

B. Matrix as the pore space

Here, we take the connected matrix phaseV1 to be the
pore space and the disconnected inclusion phaseV2 to be the
traps. Therefore, the porosity is given byfP=f1. Employing
the void trial field(13) for vsxd, we can obtain from Eq.(11)
the lower bound on the trapping constant

g ù F lim
V→`

1

V
E

V
¹ v · ¹ vIs1dsxddxG−1

. s53d

We can evaluate the void trial fieldvsxd using Eqs.(36),
(37), and(43) for xPSM:

f2vsxd =E
V1

gsx,yddy − f1E
V

gsx,yddy

= −
f2

6
xixi −

RI
3

3Îxixi

+ constant. s54d

It directly follows that

¹v = −
1

3
xi −

RI
3xi

3sxkxkd3/2f2

¹v · ¹ v =
1

9
xixi +

RI
6

9f2
2sxixid2 +

2RI
3

9f2sxixid1/2. s55d

Now the void lower bound(53) can be calculated as

g−1 ø lim
V→`

1

V
E

V1

¹ v · ¹ vdx

=
kRI

5l
kRI

3l
1

3f2
s1 +

1

5
f2

1/3 − f2 −
1

5
f2

2d. s56d

Thus, identifyingf2 with the volume fractionfS of the traps,
we obtain the void lower bound for the model as

g

gs
ù s1 +

1

5
fS

1/3 − fS−
1

5
fS

2d−1, s57d

where

gs =
3fSkRI

3l
kRI

5l
. s58d

We plot the void lower bound(57) over a range offS in
Fig. 2.

V. LOWER BOUNDS ON TWO-DIMENSIONAL
TRAPPING CONSTANT

We can repeat the whole procedure of the previous sec-
tion for the coated-cylinders model. The only difference is
that one should use Eqs.(38) and (39) for the two-
dimensional problems instead of Eqs.(36) and(37). The re-
sults are summarized below.

A. Inclusions as the pore space

For diffusion inside circular inclusions, we obtain the
void lower bound as

g ù
8kRI

2l
fPkRI

4l
, s59d

which coincides with the exact result

g =
8kRI

2l
fPkRI

4l
. s60d

Comparison of this result to the general relation for the void
upper bound(16) yields the following exact expression for
the square of the pore length scale,P for the coated-
cylinders model:

,P
2 = −E

0

`

fS2srd − fP
2gr ln rdr =

fPfS
2

8

kRI
4l

kRI
2l

. s61d

B. Matrix as the pore space

For diffusion exterior to the circular inclusions, we ob-
tain the void lower bound as

g

gs
ù s− ln fS−

3

2
+ 2fS−

1

2
fS

2d−1 s62d

where

FIG. 2. Void lower bound(57) on the scaled trapping constantg /gs vs solid
phase volume fractionfS for diffusion in the matrix phase of the three-
dimensional coated-spheres model.
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gs =
4kRI

2lfS

kRI
4l

. s63d

We plot the void lower bound(62) over a range offS in
Fig. 3.

VI. UPPER BOUNDS ON FLUID PERMEABILITY

A. Axial flow in the coated-cylinders model

Consider fluid flow along(inside or outside) bundles of
parallel cylindrical circular tubes corresponding to the
coated-cylinders model. The velocity field reduces to an
axial compoenent only, and the Stokes equation reduces to a
simple Poisson equation identical to that of the two-
dimensional trapping problem[Eqs. (8)–(12)]. Hence, we
have exactly the same solution for the axial component of
velocity as for the concentration field in the trapping prob-
lem, leading to the exact result thatk=g−1 (see Ref. 1). Ex-
ploiting this observation, we simply summarize the appropri-
ate results below fork using the results of Sec. V.

1. Inclusions as the pore space

In particular, for axial flow inside the cylindrical tubes
(Poiseuille flow) in the coated-cylinders model, the void up-
per bound onk is obtained from the lower bound(59) on g
and the identityk=g−1 (which applies only for this special
geometry), i.e.,

k ø
fPkRI

4l
8kRI

2l
, s64d

which coincides with the exact result1 and thus is optimal.
Thus, the exact expression for the square of the pore length
scale ,P for the coated-cylinders model in thetransverse
plane is given by Eq.(61).

A well-known empirical estimate fork is the Kozeny–
Carman relation1

k =
fP

3

cs2 , s65d

wherec is an adjustable parameter ands is the specific sur-
face defined by Eq.(4). However, for the coated-spheres or
coated-cylinders models with the inclusions of all sizes down

to infinitesimally small, we saw in Sec. III thats diverges to
infinity and therefore the Kozeny–Carman relation incor-
rectly predicts a vanishing permeability. This serves to illus-
trate the well-established fact that the permeability cannot
generally be represented by a simple length scale, such as the
specific surface.1,15,17 It should be pointed out that the per-
meabilities of real porous media with high tortuosities will
lie well below the optimal void upper bound.

2. Matrix as the pore space

For flow exterior to the cylindrical tubes, we obtain the
void upper bound as

k

ks
ø − ln fS−

3

2
+ 2fS−

1

2
fS

2 s66d

where

ks =
kRI

4l
4fskRI

2l
. s67d

We plot the void upper bound(66) over a range offS in
Fig. 4.

B. Three-dimensional flow exterior to spherical
obstacles

Here, we exploit the fact that the void upper bound(28)
on k is trivially related to the void lower bound(16). Thus,
we deduce the upper bound onk for flow exterior to spheri-
cal inclusions in the coated-spheres model from the corre-
sponding bound(57) on the trapping constant:

k/ks ø 1 +
1

5
fS

1/3 − fS−
1

5
fS

2, s68d

where

ks =
2kRI

5l
9fSkRI

3l
. s69d

We plot the void upper bound(68) over a range offS in
Fig. 5.

FIG. 3. Void lower bound(62) on the scaled trapping constantg /gs vs solid
phase volume fractionfS for diffusion in the matrix phase of the two-
dimensional coated-cylinders model.

FIG. 4. Void upper bound(66) on the scaled permeabilityk/ks vs solid
phase volume fractionfS for axial flow in the matrix phase of the coated-
cylinders model.
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VII. CONCLUSIONS

In contrast to bounds on the effective conductivity and
elastic moduli of composite media, microstructures that ex-
actly realize bounds on either the trapping constant or fluid
permeability were heretofore unknown. The void lower
bound (16) on the trapping constantg and the void upper
bound(28) on the fluid permeabilityk both generally depend
on the pore length scale,P, defined by Eq.(17), which in-
volves an integral over the two-point correlation function
S2srd that characterizes the porous medium. We have derived
exact expressions for the void lower bounds on the trapping
constant and void upper bounds on the fluid permeability for
certain coated-spheres and coated-cylinders models of po-
rous media. For diffusion inside the sphericalsd=3d and cy-
lindrical inclusionssd=2d, the void lower bound ong was
shown to be exact. Similarly, for axial flow inside the cylin-
ders of the coated-cylinders model, the void upper bound on
k was demonstrated to be exact. In these instances, the void
bounds are optimal among all microstructures that share the
space porosityfP and pore length scale,P as the coated-
spheres model. For cases of diffusion and flow exterior to the
spheres and cylinders in the coated-inclusions model of po-
rous media, exact results are not available, but we still ob-
tained simple analytical expressions for the void bounds ong
andk.

In future studies, it will be of interest to investigate the
optimal microstructures that correspond to the improved
two-point “interfacial-surface” bounds on bothg and k.1 In
addition to depending on the two-point correlation function
S2, they also incorporate two-point surface correlation func-
tions.
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