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Exactly realizable bounds on the trapping constant and permeability
of porous media
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Sandstone, granular media, bone, wood, and cell membranes are just a few examples of porous
media that abound in Nature and in synthetic situations. Two important effective properties of
fluid-saturated porous media that have been extensively studied are the trapping cerestant

scalar fluid permeabilitk. Exact expressions for the “void” bounds grandk for coated-spheres

and coated-cylinders models of porous media are derived. In certain instances, the bounds are shown
to be optimal, i.e., the void bounds coincide with the corresponding exact solutionarafk for

these coated-inclusions models. In the optimal cases, we obtain exact expressions for the relevant
length scale that arises in the void bounds, which depends on a two-point correlation function that
characterizes the porous medium. By contrast, optimal bounds on the effective conductivity and
elastic moduli of composite media have long been knowr20®5 American Institute of Physics

[DOI: 10.1063/1.1829379

I. INTRODUCTION realize(or attair) any of these bounds have yet to be identi-

It is well established that the effective properties of af!ed' Torquaté observed that the difficulty in identifying op-

random heterogeneous material depend on an infinite set |]mal microstructures for these classes of problems I_i(_as in the
statistical correlations that characterize the microstructure 2t thaty andk are length-scale dependent quantities and
Thus, exact determinations of effective properties are availknown bounds on them depend nontrivially on the specific
able for only a few special cas&@ In the absence of exact forms of two-point and higher-order correlation functions.
solutions, one can estimate the effective properties using ap-0" €xample, the so-callecbid bounds ony andk (Refs. 1,
proximation schemég* or by deriving rigorous bounds on 24, and 28 depend on the probabilit@,(r) of finding two
them!>°®Bounds are useful becaus@ As successively points—separated by a distance-both in the pore phase of
more microstructural information is included, the bounds be-an isotropic porous medium and have been evaluated for
come progressively narrowsii) one of the bounds can pro- various particle models for the trapping const&At® and

vide a relatively sharp estimate of the property for a widefluid permeability?>2-2

range of conditions, even when the reciprocal bound di- In this article, we derive analytical expressions for the
verges from it; andiii ) they can be utilized to test the merits void bounds on the trapping constaptand fluid permeabil-

of a theory or computer experimehMoreover, it is highly ity k for the coated-spheres and coated-cylinders models of
desirable to find optimal bounds when possible and the miporous media. We demonstrate that in some instances the
crostructures that attain them. _ void bounds are optimal, i.e., the void bounds coincide with

~ Perhaps the best known bounds in the cases of the effegse corresponding exact solutions pfand k for these par-

tive conductivity and effective bulk modulus of two-phase (icjar coated-inclusions porous-media models. In these
media are the_Hashln—Shtnkman bouﬁ@s‘l’_hese are opti- cases, we obtain exact expressions for the relevant length
mal bounds, given the phase volume iractions, because thps)éale that arises in the void bounds, which depends on a

are realizable by, among other geometfieertain coated- two-point correlation function that characterizes the porous

spheres and coated-cylinders assemblages in three and two_
' . . medium. In a recent lettéf, we reported some of these re-
dimensions, respectively. The coated-spheres model has been

extended to the effective conductivity of multiphase sults but very few details conceming the Qerlvgtlon of the
composite§.‘“ bounds were presented. The purpose of this article is to pro-

Sandstone, granular media, bone, wood, and cell mem\4ide detailed derivations of the exact expressiony ahdk

branes are just a few examples of porous media that abourl@ the coated-sphere and coated-cylinder models of porous
in Nature and in synthetic situations. The trapping constanf€dia, and to display the bounds graphically.

2% and scalar fluid permeabilitg™**?*>%are two im- Section |l briefly summarizes the basic equations and
portant effective properties of fluid-saturated porous mediavariational void bounds for the trapping and flow problems.
Bounds on the trapping constaft?* and fluid In Sec. lll, we derive some exact results involving the

permeability?>2% of porous media have been derived andGreen’s function of the Laplace operator for the coated-
computed. Heretofore, however, microstructures that exactlgpheres and coated-cylinders models. We derive our major
results for the trapping constant and fluid permeability in

3Author to whom correspondence should be addressed; electronic maiﬁ_ecs' IV-VL. In Sec. VII, we present our conclusions and
torquato@electron.princeton.edu discuss future work.
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II. BASIC EQUATIONS AND VARIATIONAL BOUNDS ux)=0, xe . (10)

Each realization of the porous medium occupies the rett follows that the trapping constant for any d has dimen-
gion of space’ e |9 of volumeV that is partitioned into two  sions of the inverse of length squared.
disjoint regions: A pore spaa@haseé Vp of porosity ¢ and A variational principle was formulated by Rubinstein
a solid space(phas¢ Vg of volume fraction ¢pg=1-dp. and Torquatf)3 in terms of a trial functiorw(x), which en-
Clearly, VoUVs=V andVp N Vs=@. Let dV denote the sur- ables one to obtain the following lower bound erfor er-
face of interface betweevi, and Vs The pore-spacidica-  godic media:
tor functionZ®®(x) is given forx e V by

1
. = , 11
o 1, xinVp 7T Vo) - Vo0ZP(x) v
7P(x) = 0 otherwi (1)
» otherwise. wherev(x) is required to satisfy the Poisson equation
The indicator functionM (x) for the interface is defined as V(x)=-1,x e Vp. (12)
M(x) =|VIP(x). (2 Elsewhere, Torquato and Rubinstéiconstructed what they

- . referred to as th&oid lower bound in three dimensions by
For statistically homogeneous media, the ensemble averages. P - T
L . . using a specific trial field. The generalization of this trial
of the indicator functiongl) and(2) are, respectively, equal . . . L
, ; field to any dimensio=2 is given b
to the phase volume fractiogy , i.e.,

1
¢p=(TP(x)), 3 w0 = f gx =VIZPA(y) - ¢pldy, (13
SsJy
and the specific surface(interfacial area per unit volumge
ie. where
1 1
s=(M(x)), (4) —In(>), d=2
) 2w
where angular brackets denote an ensemble average. 9(r) = 1 1 (14)

_— =
(d-2)Q(d) r+?’ 4=3,

is thed-dimensional Green'’s function for the Laplace opera-

tor, (d) is the total solid angle contained irdedimensional
Consider the steady-state trapping probfeffhe pore sphere given by

spaceVr is the region in which diffusion occurg.e., trap- 2702

free region, and Vg is the trap region. The concentration Q(d) :L, (15)

field of the reactants(x) at positionx exterior to the traps is I(di2)

governed by the mass conservation equation ¢s is volume fraction of the trap phase, ane |r|. Substi-
DV2c(x)+G=0 in Vp, (5 tution of trial field (13) into the variational principlg11)
yields the void lower bound ory for general statistically
with the boundary condition at the poretrap interface, forhomogeneous and isotropidimensional porous medias
the case of perfectly absorbing traps, given by 2

_ 95
c(x)=0 on V. (6) Y= 2 (16)

A. Trapping problem

Here, D is the diffusion coefficient of the reactar® is a  where{p is a pore length scale defined by
generation rate per unit trap-free volume. The two-scale ho- o
mogenization theory enables one to show that the trapping —J [Sy(r) = ¢,23]r Inrdr, d=2
constanty obeys the first-order rate equation {5% _ 0

1 o]
G=1DC, (7) ﬂf [Sy(r) - ¢plrdr, d=3,
- 0
whereC represents an average concentration field. For a sta- _ ) . ) ]
tistically homogeneous and ergodic medium, it can be demandSy(r) is the two-point correlation function defined by
onstrated t_hatgthe trapping constant has the alternative Sy(r) = <I(P)(X)I(P)(x +1)). (18)
representatiorf

17)

The functionS,(r) can also be interpreted as being the prob-
y1=(U) = lim lf u(x)dx @) ability of finding two points separated by the displacement
v ' vectorr in the pore spacé.

V—oo

whereu(x) is the scaled concentration field that solves theB. Flow problem

boundary-value problem
y P Using homogenization theory, Rubinstein and Torq%?ato

Vaux)=-1, xe Vp, (9 derived the conditions under which the slow flow of an in-
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compressible viscous fluid through macroscopically aniso-
tropic random porous medium is described by Darcy’s law

1
U:——k-VpO, (19)
m

where U is the average fluid velocityyp, is the applied
pressure gradienty is the dynamic viscosity, ankl is the
symmetric fluid permeability tensor. In particular, for the
special case of macroscopically isotropic media, the scalar
fluid permeability k=Tr(k)/d (where Tr denotes the trace
operation is given by

k=(w-e)=lim lf w(x)dx, (20)
Viy

Voo

wherew is a scaled velocity andl is a scaled pressure,
which satisfy the scaled Stokes equations

2 _ _ .

Viw=VII-e in Ve, (21) FIG. 1. Schematic of the coated-spheres model microstructure.

V-w=0 in Ve, (22 void upper bound ok for general statistically homogeneous
and isotropicd-dimensional porous medias

w=0 on 4V, (23

(d+1)(d-2) €3

ande is a unit vector. It follows that the permeabilikyfor ks ——% -5

. ) d“-3 o5
any d has dimensions of length squatjed.

A “void” upper bound on the permeability was derived where ¢, is the length scale defined by E@L7), which is

by Pragef” using a variational principle. Afterward, Berry- precisely the same as the one that arises in the void lower
man and Miltori® corrected a normalization constraint in the bound on the trapping constaptfor d= 333131
Prager variational principle using a volume-average ap-
proach and thus corrected a constant factor in the voidil. COATED-SPHERES MODEL
bound. Rubinstein and Torqué?odeveloped upper and
lower bound variational principles utilizing an ensemble-
average approach and also derived the void upper bound.

d=3, (29

The coated-spheres modelconsists  of composite
spheres that are composed of a spherical core of phase 2

For our purposes, the Rubinstein-Torquato variationafindusmm and radiusR;, surrounded by a concentric shell of

. . . d .
principle for the upper bound on the permeability is the mos _hase Umatrix) and outer radiugy. The ratio(R/Ry)® is

natural starting point. This variational principle states that for(;(ed ar_1d qufl_?]l to the mc_ltusmnhvolun;_(lel frﬁmw@ n ;pa?g
ergodic media the trial functiog(x) enables one to obtain Imensiond. The composité spheres Till all space, implying

the following upper bound ok: thaF there is a distribu.tion in their size; ranging tq the infini-
tesimally small(see Fig. 1 The inclusion phase is always
k= (q(x): Va)Z®(x), (24)  disconnected and the matrix phase is always conndeted
. . . . t at the trivial poi =1).
whereq(x) is required to satisfy the momentum equation cept at the trivial poinip,=1)
VX V3q+e)=0, Xe Vp. (25) A. Size-distribution restrictions

Rubinstein and Torquatdconstructed theoid upper bound ~ The coated-spheres model places restrictions on the size
on k in three dimensions by using a specific trial field. Thedistribution of the composite spheres. Consider a macro-
generalization of this trial field to any space dimensin scopically large but finite-sized spherical sample of the po-

=3lis given by rous medium of volume/ and radiusR in d dimensions.
The coated-spheres porous medium occupies the 3pand
q(x) = if W(x-vy) - ZPA(y) - ppldy, (26) is pe_lrtition_ed into two disjoint reg_ions: A matrix phz_mg
dsty and inclusion phas¥,. The composite spheres are uniformly
distributed inV and the corresponding radius of the inclu-
where sion. It is clear that the radius of the largest composite
d sphere, which we denote i, must be such that it obeys
w(r) = W[I +nn], d=3, (27)  the conditionR,,<R. Thus, the specimen is virtually sta-

tistically homogeneous. Ultimately, we will take the infinite-
is the d-dimensional Green’s functio (second-order ten- volume limit, i.e.,R —« or V— . Without loss of general-
son associated with the velocity for Stokes flowsr/r, and ity, we will assume that the composite spheres possess an
¢s is the volume fraction of the obstacles. Substitution ofinfinite number of discrete sizes. Lgt be the number den-
trial field (26) into the variational principlg24) yields the  sity (number of particles per unit volumef the kth type of
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composite sphere of radilRMk and IetR|k denote the corre- X; = X; + constant. (35
sponding radius of the inclusion. Moreover, we know that the ) )

fraction of space covered by the composite spheres, denotefc€V: Si, andSy are spherical regions, we have from the
by @, is unity, and therefore we have the following condition theory of harmonic potentials that fd~=3

on the size distribution: 1
- éxixi +constant, XeS$

oo

® =2 pwi(Ry) =1, (29) f g(x —y)dy = R (36)
k=1 S > X e V\S
BVXiXi

wherewv,(r) is the d-dimensional volume of a single sphere
of radiusr given by

1
92 ; f g(x-y)dy=- éxixi +constant, x € V, (37)
r=————rd, 30 v
1= F v a) (30
and ford=2
andI’(x) is the gamma function.

It is clear that for the volume fractiod to remain —}x-x- +constant. Xxe S
bounded;i.e., for the sum?29) to convergé ka‘,f,,k must also e " ' 28
remain bounded for ak, and thus we have that Sg(x —y)dy= RZ — (38)

L - Eln\s’xixi, x e V\S
> —5, Uk (3D
RM
K 1
An important conclusion is that the number dengifymust L g(x —y)dy=- inxi *constant, x eV, (39)

diverge to infinity asRy, approaches zero. This in turn
means that the specific surfasemust also diverge, since where S representsS, or S)y, R is the radius ofS, and
kaf\’,l‘kl diverges asRy, approaches zero. Note that volume repeating indices indicate a summation. Moreover, if we let

fraction ¢, of the inclusion phase is given by Sy be any composite sphere apart frafijy (Sjy N Sy
=), then for pointsx e S, we obtain the identities

* 92 =
b= 2 pa(R) = ——— > R} (32)
AT rad gt f g(x - y)dy= ¢zf g(x - y)dy, (40
S/ S|
It is convenient to introduce the followingth moment ofR;: ' .
(R = 22 R (33) j , 9x—y)dy= ¢1f - 9(x—y)dy, (41
P1 K 5w Sim

where p is a characteristic densitie.g., the inverse of the Where the inclusio; C Sj and the matri>6‘,(,|C:‘S',’M. Using
volume of the largest composite spheaadn is any integer relations(36)—(41), we find what is called the “far-field in-

n=d. Note that the inclusion volume fractiap, can now be ~ téraction” via the harmonic potential fore Sy, i.e., the
re-expressed as contribution of the harmonic field at a pointinside Sy
4o from all of the inclusions outside af,y:

=PTa+a2) d,2)<R.">. (34)

b2
gx-y)dy= 2> g(x —y)dy
VS, sinsi=g Y Si
B. Integral identities

= ¢2f g(x —y)dy
NS

Next, following Phant:'® we evaluate some key inte-
grals involving the Green’s function of the Laplace operator = qﬁz(f g(x —y)dy
for the coated-spheres microstructure. We will subsequently v
employ these integral identities to evaluate the void bounds
for this model. —J
Let X; (i=1,2,...d) represent a Cartesian coordinate S
emanating from the center of the spherical representative oo
volume. In the coated-spheres model, every spherical inclu- = Z_d(xixi = XiX;) + constant. (42
sion §,C V), is coated by a concentric spherical sh8)| of
the matrix phasdSy CV;). Consider a composite sphere Similarly, we have
Sv=8USy and construct a local Cartesian coordinate
emanating from the center of each inclusi&nor composite f g(x,y)dy = ﬂ(XiXi - X;X;) + constant. (43
sphereSy): V1\Sy 2d

gx - y)dy>

IM
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IV. VOID LOWER BOUNDS ON THREE-DIMENSIONAL
TRAPPING CONSTANT
A. Inclusions as the pore space

We first evaluate the void lower bound opn for the

J. Appl. Phys. 97, 013535 (2005)

trapping constant. Thus, using the fact that ¢p, the void
lower bound is exactly given §

15RP)

Dol s

Y=

three-dimensional coated-spheres model. To begin, we take _ _ _
the connected matrix phasg to be the traps and the dis- Interestingly, by comparing this result to the general expres-
connected inclusion phaseé, to be the pore space. There- sion for the void upper bound.6), which is given in terms

fore, the porosity is given bybp=d¢,. Using the void trial
field (13) for v(x), we can obtain from Eq(1l) the lower
bound on the trapping constant

-1
y= l lim Ef Vuv-V vfz)(x)dx] , (44)
V—mV Vv

of the two-point correlation functioi®,(r), we see that the
square of the pore length scalg for d=3 is exactly given

by

¢P¢s <R5>

15 <R3> “48)

J[Sz(r) ¢P]d

where we have equated ensemble averages with volume afr the coated-spheres model.

erages via the ergodic hypothesis. We can explicitly calculate

the void trial fieldv(x) using identities(36), (37), and (42)
forxeS:

dw(X)= [ gxy)dy - ¢, f g(x,y)dy

Vs, \Y
=f g(x,y)dy+f g(x,y)dy

S Va\Sim

~ ¢z f g(x,y)dy
\

= —éxx + ¢2(xx - XX) + dézxx + constant
. NI 45
=8 XX; + constant. (45)

Letting r’=xx;, it follows that

1
Vv=—§xi and Vuv-Vov== (46)

The lower bound44) is readily calculated using the result

immediately above:

J d
V X

f —dx
V_)OOVS EV2

—Im——E

Jy v
V*mnv 9 SEVZ

= I|m— s R
V*)wv 4556‘/2

'y_lS lim

V—oo

2 (R)

5

45k 1

where we have used the definitiof8} and(33). Based on

Now we show that bound47) coincides with the exact
expression for the trapping constant for this particular
coated-spheres model. Specifically, the exact solution of the
boundary-value problem

Vu=-1, in §,

u=0, on 4§, (49

for diffusion inside a spherical inclusiof, with r’=xyx; is
given by
_1o o
u—é(R|—r), 0<sr<R,. (50
Therefore, using the definitiof8), we find thaty, for non-
overlappingsphere models with general size distribution
(not just the coated—spheres moydisl exactly given by

yi=(u=lim= E R2— r2)4r2d

V=2V§ev,Jo 6

14772 5= ¢2<R5>

QAR AR T oy
or
15(RP)
= . 52
$p(RP) 52

It is important to note that the void lower bourd?)
coincides with the exact solutiai2) for the coated-spheres
model, and hence the bound is exactly realizable when the
inclusions are taken to be the pore phase. This may immedi-
ately lead one to conclude that the void bound is optimal
among all microstructures, but such a statement cannot be
made unless one attaches special conditions. Recall that un-
like the effective conductivity or effective elastic moduli, the
trapping constant as well as the fluid permeability are length-
scale dependent quantities. Thus, any statement about opti-
mality must fix not only the porosity but the relevant length
scales. The correct statement is the following: The void
bound is optimal among all microstructures that share the

our earlier discussion concerning restrictions on the size dissame porositypp and pore length scalé, defined by rela-
tribution, we see from the sum in the last line that the infini-tion (17). Indeed, the bound is shown to be attained by the
tesimally small spheres do not make any contribution to theoated-spheres model. Observe that one can always adjust
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the pore length scalgEq. (48)] of the coated-spheres model
at some porositypp to be equal tfp for any microstructure
with the same porosity.

As noted above, relatio62) applies to diffusion within

nonoverlapping spheres with a general size distribution. Ac-

cordingly, let us define another squared length sd@e

=(R")/(R®) for such a general nonoverlapping sphere model.

In what follows, superscriptg andc are appended to quan-

tities associated with the general sphere model and coated-

spheres model, respectively. The use of expressi@by
(47), and (52) reveals the following interrelations between
these two models: At fixedp, if L(F‘;]’):L(F‘f), then /9= (©
and €9=¢\9, and if ¢9=¢, then 9= and LY
<LY.

B. Matrix as the pore space

Here, we take the connected matrix phaseto be the
pore space and the disconnected inclusion pivage be the
traps. Therefore, the porosity is given Byg=¢,. Employing
the void trial field(13) for v(x), we can obtain from Eq11)
the lower bound on the trapping constant

-1
y?[liml f Vv-VvI(l)(x)dx] : (53)
VooV Vv

We can evaluate the void trial field(x) using Eqgs.(36),
(37), and(43) for x e S\

dv(x)= | a(x,y)dy - ¢, f g(x,y)dy
V

%1
RS
=- ﬂxixi - —— + constant. (54)
6 3VXiXi
It directly follows that
v 1 R,
==X -
P73 360,
Vu-V 1 + R'G + ZR'3 (55)
v+ Vu==XX .
97 9g(xx)®  9a(xix) M

Now the void lower bound53) can be calculated as
Vv - Vodx

1
’y_l$ lim —f
V*}OOV Vl
RO LT e

= Ry3e, 5% (56)

1
¢2—§¢§)-

Thus, identifyingg, with the volume fractionpg of the traps,
we obtain the void lower bound for the model as

1 1
Y-a+ 080~ g oY (57)

Vs

where

J. Appl. Phys. 97, 013535 (2005)

8 ! ¥ ' I ' T M ¥

3D Trapping Constant

0.6 0.8

FIG. 2. Void lower bound57) on the scaled trapping constaptys vs solid
phase volume fractiorps for diffusion in the matrix phase of the three-
dimensional coated-spheres model.

= 3R
G

We plot the void lower bound@57) over a range ofps in
Fig. 2.

(58)

V. LOWER BOUNDS ON TWO-DIMENSIONAL
TRAPPING CONSTANT

We can repeat the whole procedure of the previous sec-
tion for the coated-cylinders model. The only difference is
that one should use Eqg38) and (39) for the two-
dimensional problems instead of E¢386) and(37). The re-
sults are summarized below.

A. Inclusions as the pore space

For diffusion inside circular inclusions, we obtain the
void lower bound as

8(RD)
> 1o 59
77 he(RY (59
which coincides with the exact result
8(RY)
= . 60
7T (R (€0

Comparison of this result to the general relation for the void
upper bound16) yields the following exact expression for
the square of the pore length scafg for the coated-
cylinders model:

Pods(R)

. 61
8 (R} (o1

o=~ f 80 - GRr Inrdr =
0

B. Matrix as the pore space

For diffusion exterior to the circular inclusions, we ob-
tain the void lower bound as

3 1
L= (o In o= + 205 Y (62)

s

where
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801" 2D Trapping Constant i 2D Axial Permeability
0.8}

60 L =
0.6F .

g0 ] <

041 .

20 ] 02F .

0 N 1 . 1 R 1 L o . | N | N 1 .
0 0.2 04 0.6 08 1 0 0.2 04 06 038 1
¢s ¢S

FIG. 3. Void lower bound62) on the scaled trapping constapttys vs solid  FIG. 4. Void upper bound66) on the scaled permeability/ks vs solid
phase volume fractionps for diffusion in the matrix phase of the two- phase volume fractioms for axial flow in the matrix phase of the coated-

dimensional coated-cylinders model. cylinders model.
2 C . . . .
_ AR s 63) to infinitesimally small, we saw in Sec. Il thatdiverges to
& (Rh infinity and therefore the Kozeny-Carman relation incor-

rectly predicts a vanishing permeability. This serves to illus-
trate the well-established fact that the permeability cannot
generally be represented by a simple length scale, such as the
specific surfacé*>*" It should be pointed out that the per-
meabilities of real porous media with high tortuosities will

A. Axial flow in the coated-cylinders model lie well below the optimal void upper bound.

We plot the void lower bound62) over a range ofps in
Fig. 3.

VI. UPPER BOUNDS ON FLUID PERMEABILITY

Consider fluid flow alondinside or outsidgbundles of
parallel cylindrical circular tubes corresponding to the )
coated-cylinders model. The velocity field reduces to ar?- Matrix as the pore space
axial compoenent only, and the Stokes equation reduces to a For flow exterior to the cylindrical tubes, we obtain the
simple Poisson equation identical to that of the two-yoid upper bound as
dimensional trapping problerfEgs. (8)«12)]. Hence, we
have exactly the same solution for the axial component of k <-In ¢s- 3 + 2s— l¢2 (66)
velocity as for the concentration field in the trapping prob- 2 27°
lem, leading to the exact result thiet ! (see Ref. 1 Ex-
ploiting this observation, we simply summarize the appropri-

ate results below fok using the results of Sec. V. _ (RY 67
_ S Ad4R)
1. Inclusions as the pore space ot th ” 5 _
In particular, for axial flow inside the cylindrical tubes \ILYS ZOI the void upper bounds6) over a range ofs in
(Poiseuille flow in the coated-cylinders model, the void up- = ="
per bound ork is obtained from the lower boun@9) on y
and the identityk=+"! (which applies only for this special , , , ,
; B. Three-dimensional flow exterior to spherical
geometry, i.e.,
i obstacles
R . :
k< iRZO, (64) Here, we exploit the fact that the void upper bou28)
&Ry on k is trivially related to the void lower boun@L6). Thus,

which coincides with the exact restiand thus is optimal. We deduce the upper bound &rfor flow exterior to spheri-
Thus, the exact expression for the square of the pore lengfff! inclusions in the coated-spheres model from the corre-
scale ¢p for the coated-cylinders model in theansverse SPonding bound57) on the trapping constant:

plane is given by Eq(61). 1 1 1,
A well-known empirical estimate fok is the Kozeny— Kks<1+_d5"~ s ¢s, (68)
Carman relatioh
¢3 where
k=, (65)
cd G 1 (69
IR}

wherec is an adjustable parameter asds the specific sur-
face defined by Eqé4). However, for the coated-spheres or We plot the void upper boun8) over a range ofpg in
coated-cylinders models with the inclusions of all sizes dowrFig. 5.
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FIG. 5. Void upper bound68) on the scaled permeabilitg/ks vs solid
phase volume fractionpg for flow in the matrix phase of the three-
dimensional coated-spheres model.
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