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We study the Voronoi and void statistics of superhomogeneous (or hyperuniform) point patterns in which the
infinite-wavelength density fluctuations vanish. Superhomogeneous or hyperuniform point patterns arise in
one-component plasmas, primordial density fluctuations in the Universe, and jammed hard-particle packings.
We specifically analyze a certain one-dimensional model by studying size fluctuations and correlations of the
associated Voronoi cells. We derive exact results for the complete joint statistics of the size of two Voronoi
cells. We also provide a sum rule that the correlation matrix for the Voronoi cells must obey in any space
dimension. In contrast to the conventional picture of superhomogeneous systems, we show that infinitely large
Voronoi cells or voids can exist in superhomogeneous point processes in any dimension. We also present two
heuristic conditions to identify and classify any superhomogeneous point process in terms of the asymptotic
behavior of the void size distribution.
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I. INTRODUCTION

Point patterns are ubiquitous in nature. Examples include
those defined by the coordinates of the particles in a many-
particle system, such as the molecules of a liquid or crystal,
stars of a galaxy, or trees in a forest. Understanding how the
number of points fluctuates at a given length scale reveals
important structural information about the point pattern.
Such local density fluctuations have been studied for a vari-
ety of physical systems, including one-component plasmas
[1], molecular liquids [2], and the large-scale structure of the
universe [3].

Point patterns in which the infinite-wavelength density
fluctuations vanish, referred to as superhomogeneous [3] or
hyperuniform [4], are of particular interest to us in the
present paper. Regular lattices of points in space are the sim-
plest examples of superhomogeneous point patterns, but such
point processes are neither statistically spatially stationary
(homogeneous) nor isotropic. Stochastic superhomogeneous
point processes and fluctuations have been demonstrated to
be very important in a variety of physical contexts, including
the study of one component plasmas [5], the evolution of
primordial matter density fluctuations in cosmology [3], and
the structural properties of jammed configurations of hard
spheres systems [4]. It is considerably more difficult to con-
struct point patterns that are statistically stationary and iso-
tropic, although some examples have been identified [1,3,4].
In order to shed light on this problem, our general goal is to
understand the statistics of the underlying Voronoi cells as-
sociated with the points of stationary and isotropic superho-
mogeneous point processes in arbitrary space dimension d. A
Voronoi cell associated with a given point consists of the
region of space closer to this point than to any other point
[6].

A first step toward the stated goal is to start by examining
stationary superhomogeneous point processes in any dimen-
sion (where isotropy is not an issue). Specifically, we analyze
such a particular one-dimensional model by studying size
fluctuations and correlations of the associated Voronoi cells.

We derive exact results for the complete joint statistics of the
size of two Voronoi cells. It is additionally shown that infi-
nitely large Voronoi cells can exist in superhomogeneous
point processes in any dimension. We also provide a sum
rule that the correlation matrix for the Voronoi cells must
obey in any space dimension.

II. PRELIMINARIES

Before discussing the details of the model, we recall some
general definitions of basic quantities that are used to statis-
tically characterize point processes (for rigorous definitions
and analysis see Ref. [7]).

A single realization of a point process is completely de-
termined by the stochastic microscopic density function n̂sxd,
which in d dimension, can be expressed as

n̂sxd = o
i

dsx − xid , s1d

where dsxd is the usual d-dimensional Dirac delta function,
xi is the position of the ith point in the system and the sum is
over all of the points. The microscopic density has the fol-
lowing integral property:

E
V

ddxn̂sxd = NfVg ,

where V is any measurable set of the space (i.e., the one-
dimensional line in the one-dimensional case of interest) and
NfVg is the number of points (particles centers) contained in
that set.

The statistics of a point process is completely determined
by the infinite set of correlation functions:

Imsx1, . . . ,xmd ; kn̂sx1d ¯ n̂sxmdl ,

for any integer mù1, and where k¯l indicates the ensemble
average over all the possible realizations of the point process.
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For definitions of more general correlation functions see Ref.
[6]. Clearly, all of the functions Im are invariant under any
permutations of the variables x1 , . . . ,xm. For n=1, we have
that

I1sxd ; nsxd = kn̂sxdl

gives the local average density of points at the spatial posi-
tion x and characterize completely all the one-point statisti-
cal properties of the system. However, very often a constant
global average density is also evaluated through a volume
average,

n0 = lim
V→+`

1

V
E

V

ddxn̂sxd , s2d

which gives the average density of particles in the system as
a whole, and where V is, for example, a spherical volume.
Systems in which volume averages as in Eq. (2) are equal to
the relative ensemble averages are called ergodic systems.
The quantity I2sx ,ydddx ddy gives the joint a priori probabil-
ity of finding a point in the volume element ddx around x and
at the same time another in the element ddy around y. It is
the most commonly used function to study the correlation
properties of an empirical particle distribution.

If all the Imsx1 , . . . ,xmd are invariant under a constant
translation of all the points, i.e., if Imsx1 , . . . ,xmd= Imsx1

+x0 , . . . ,xm+x0d for any x0 and m, the stochastic point pro-
cess is said to be spatially statistically stationary (or statis-
tically homogeneous). In most of what follows we will limit
our considerations to this class of point process. In such in-
stances, nsxd=n0.0 (the condition .0 excludes fractal
point distributions) does not depend on x, and I2sx ,yd
= I2sx−yd depends only on the displacement vector. If more-
over the system is statistically isotropic I2 depends only on
the scalar distance ux−yu.

A d-dimensional point process is said to be ergodic if, for
any function Ffn̂sx1d , n̂sx2d , . . . , n̂sxldg of the microscopic
density n̂sxd in the arbitrary points x1 ,x2 , . . . ,xl (where l is
finite but arbitrary), the following relation holds:

lim
V→+`

1

V
E

V

ddx0 Ffn̂sx0 + x1d, n̂sx0 + x2d, . . . , n̂sx0 + xldg

= kFfn̂sx1d, n̂sx2d, . . . , n̂sxldgl . s3d

It is clear from Eq. (3) that spatial stationarity is a necessary
condition for ergodicity [6,8,9]. Ergodicity is often supposed
a priori as a valid working hypothesis in the analysis of
(spatially or temporally) stationary stochastic processes.

In order to measure the density-fluctuation correlations
dn̂sxd= n̂sxd−n0 between two different points in a statisti-
cally stationary point process, the covariance function (also
called reduced two-point correlation function) Csxd is intro-
duced via

Csxd = kdn̂sx0ddn̂sx0 + xdl = I2sxd − n0
2. s4d

It is simple to show, from (1) that Csxd can be written as

Csxd = n0dsxd + n0
2hsxd ,

where n0dsxd is the diagonal part of Csxd present in any
stochastic point process independently of the correlations be-
tween different spatial points and due only to the discrete
nature of the massive point-particle distribution, while
n0

2hsxd, meaningful for xÞ0, is the nondiagonal part charac-
terizing the real correlation between different points and van-
ishing for x= uxu→`. The function hsxd is referred to as the
total correlation function in the theory of liquids [10].

Another important quantity, characterizing the relative
weight of each Fourier mode to a realization of the stochastic
point process, is the so-called power spectrum sskd (propor-
tional to the so-called structure factor [11] and called also
Bartlett spectrum [12]), which is defined by

sskd = lim
L→+`

kudnsk;Ldu2l , s5d

where

dnsk;Ld =
1

Ld/2E
−L/2

L/2

. . . E
−L/2

L/2

ddx dn̂sxde−ik·x

is the Fourier element of the density contrast dn̂sxd in a cubic
volume of size L. It is simple to show that if the point pro-
cess is spatially stationary then sskd is simply the Fourier
transform of Csxd,

sskd = n0 + n0
2E ddx hsxde−ik·x = n0 + n0

2ĥskd ,

where ĥskd is the Fourier transform in the infinite volume of
hsxd. This result implies the so-called Wiener-Khinchtine
theorem [6,13], which states that the covariance function of a
stationary point process has a positive Fourier transform con-
verging to n0 for sufficiently large k and integrable around
k=0.

Finally if the system is also statistically isotropic also sskd
depends only on k= uku.

III. SUPERHOMOGENEOUS (HYPERUNIFORM) POINT
PROCESSES

Here we briefly review definitions and basic properties of
superhomogeneous (or hyperuniform) point processes. Given
a spatially stationary point process in d dimensions, we can
define the variance in the number of points in a sphere VsRd
of radius R (the origin of the sphere is arbitrary because of
the spatial stationarity) as

s2sRd = kN2sRdl − kNsRdl2, s6d

where

NsRd = E
VsRd

ddxn̂sxd ,

is the number of points in the sphere VsRd, which is a sto-
chastic function.

It is simple to show that Eq. (6) can be expressed in terms
of the covariance function Csxd as follows:
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s2sRd = E
VsRd

E
VsRd

ddx ddyCsx − yd . s7d

Equivalently, we can express the same quantity in terms of
the power spectrum sskd [4] in the following way:

s2sRd =
1

s2pdd E ddkuwsk;Rdu2sskd , s8d

where the integral is over all the k space, and

wsk;Rd = E
VsRd

ddx e−ik·x

is the so-called window function.
All stationary point processes can be classified in terms of

the scaling behavior of s2sRd for large R as follows [3].
(i) If

E ddx Csxd = ss0d = A . 0,

i.e., the correlations are mainly positive and short ranged,
then

s2sRd , Rd

for sufficiently large R si.e., for R larger than the range of
correlationsd. The prototypical example of this class of sys-
tems is the so-called Poisson point process f4,14g, which can
be generated by randomly placing points in the space with a
given average density n0.0 in an uncorrelated manner. In
this case, it is simple to show that simply Csxd=n0dsxd and
sskd=n0. For this reason we call this class of point patterns
essentially Poissonian. This is the most common behavior
for the number fluctuations for homogeneous systems in
thermal equilibrium se.g., an ordinary gas in equilibrium at
high temperature or a liquid away from critical pointsd.

siid If, instead,

E ddx Csxd = ss0d = + ` ,

with sskd,k−g for sufficiently small k where, for definite-
ness, 0,g,d, then

s2sRd , Rd+g

for sufficiently large R. In this case, two-point correlations
are again mainly positive but are long ranged. This situation
characterizes order parameters of a thermodynamical system
at the critical point of a second order phase transition se.g.,
the gas-liquid transition at the critical temperature and pres-
sured. For this reason, we call this class critical systems.

siiid Finally, if

E ddx Csxd = ss0d = 0, s9d

it is possible to show that

s2sRd , Ra, s10d

with a,d. In particular, it is possible to show that in any
case d−1øa,d, i.e., s2sRd,Rd−1 is the minimal scaling
behavior for the number fluctuations versus R for any point
process sall these considerations can be directly extended to
include also any “genuine” continuous stochastic mass den-
sity field f3gd. In this case, there is an exact balance between
positive and negative correlations in the density fluctuations
in such a way to have Eq. s9d. Therefore, infinite wavelength
density fluctuations vanish, which imparts a degree of “or-
der” even to stochastic point processes that satisfy s9d. At
sufficiently small k, we have

sskd , kg, s11d

with g.0. It is possible to show f3g that a and g are related
in the following way: sid if 0,gø1, we have a=d−g; siid if
gù1, then a=d−1 sthe “proper” condition for superhomo-
geneityd. For g=1 there will be logarithmic corrections.

Since for the class of systems that satisfy (9) the number
fluctuations increase with the spatial scale slower than in a
large class of correlated and uncorrelated point processes
(e.g., Poisson distribution), we call them superhomogeneous
or hyperuniform point processes. Note that superhomoge-
neous point processes are at a type of “critical” point, but one
in which the direct two-point correlation function [4] rather
than the covariance Csxd is long ranged.

IV. THE ONE-DIMENSIONAL MODEL

In order to construct a superhomogeneous point process
suitable for a complete study, we begin with a one-
dimensional regular lattice of points, i.e., a chain of point
particles with constant spatial separation (lattice constant) a
(see Fig. 1). The microscopic density for such a regular point
process is given by

n̂sxd = o
j=−`

+`

dsx − jad , s12d

where a.0 is the lattice spacing. Clearly, such a set is not
spatially stationary, but only possesses discrete translational
invariance. However, it is the one-dimensional superhomo-
geneous point process with the lowest number variance as a
function of R [4]. The global average density of the system is
simply n0=1/a.

In order to obtain a stochastic superhomogeneous one-
dimensional point process suitable for our study, we shuffle

FIG. 1. Schematic representation of the one-dimensional lattice
with lattice constant a.
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the lattice by introducing a random displacement field. That
is, we move each point from its initial lattice position
through a random displacement with a given probability dis-
tribution, each point being displaced independently of the
others. In practice, if the initial position of the mth point is
ma, the final one will be xm=ma+um, where um is a random
variable extracted from the probability density function
(PDF) psud. Note that the average density n0 is not changed
by the application of the displacements, since the number of
points in the system is conserved.

It is possible to show (see the Appendix) that if each point
of a general initial spatial distribution is displaced from its
initial position independently of the others with a PDF psud,
then the new power spectrum sskd will be given by

sskd = n0f1 − up̃skdu2g + sIskdup̃skdu2, s13d

where sIskd is the initial power spectrum before the displace-
ments and

p̃skd = E
−`

+`

du psude−iku s14d

is the Fourier transform of psud, i.e., the so-called character-
istic function of the random-displacement PDF (for a more
general discussion of the effect of a stochastic displacement
field with arbitrary spatial correlation on a given point pro-
cess see Ref. [15]). In general, we take psud to be symmetric,
i.e., psud= ps−ud. Note that for all possible psud, we have the
limit condition p̃s0d=1 and that for small k in the symmetric
case

p̃skd . 1 − Aka s15d

with a=2 and A= ū2 /2 if ū2 is finite, and where fsud
=e−`

+`du psudfsud means the average over the uncorrelated
displacements. For d=1, this is the case if psud decreases
faster than uuu−3 for large uuu. Otherwise [15], if ū2= +`, i.e.,
psud.Buuu−b for large uuu with 1,b,3, then a=b−1,

A = 2BE
0

+`

dx x−bs1 − cos xd , s16d

where B is a positive constant.
In the case of a lattice, it is well known [3] and simple to

show that

sIskd =
2p

a2 o
mÞ0

dSk −
2pm

a
D ,

where the sum is over all of the integers m, except m=0.
Therefore, from Eq. (13), the power spectrum of the
“shuffled” lattice is

sskd =
1 − up̃skdu2

a
+

2p

a2 o
mÞ0

dSk −
2pm

a
DU p̃S2pm

a
DU2

.

s17d

Recall that superhomogeneity (or hyperuniformity) of the
point process is given by only the behavior of sskd in the
vicinity of k=0. Therefore, since in the first Brillouin zone

the power spectrum of a lattice is identically zero (i.e., the
first Bragg peaks are at uku=2p /a), the small k behavior of
sskd is determined only by that of p̃skd. In particular, for
uku,2p /a and uku! s1/Ad1/a [cf. Eqs. (15) and (16)] we have
from the discussion above that

sskd =
2Aka

a
with

5a = 2 and A =
ū2

2
if ū2 , + `

a = b − 1 and A from Eq.s16d if ū2 = + `

,

s18d

which always satisfies the superhomogeneity condition
a.0. In particular, for b.2 we have 1,aø2, and the
condition of minimal mass fluctuations-length scaling for
point process in d dimensions [i.e., s2sRd,Rd−1] is satisfied
(for b=2 there are logarithmic corrections in L).

In the case in which each point is completely randomly
displaced inside its own unit cell, i.e.,

psud =

uSa

2
− uuuD
a

,

where usxd is the usual Heaviside step function, the final
point distribution is not only superhomogeneous, but also
completely statistically stationary (i.e., with a complete sta-
tistical translational invariance), even though the original lat-
tice array was not.

We first analyze the behavior of the fluctuations associ-
ated with the volumes of the Voronoi cells in the simple case
in which (see Fig. 2)

psud =

uSD

2
− uuuD
D

with D ø a . s19d

The statistics of the Voronoi cells are relatively simple
because no point is allowed to move into the unit cell cen-
tered at the initial position of another point. In what follows,
starting from the results for this model, we will extend some
of the results to the most general class of superhomogeneous
point processes in any dimension.

V. VORONOI-CELL STATISTICS

As stated above, we start from a regular lattice of points
with microscopic density given by Eq. (12), and displace
each point independently of the others by applying to it a
displacement whose PDF psud is given by Eq. (19). Taking
the Fourier transform of this PDF yields the characteristic
function p̃skd to be exactly given by

p̃skd =

sinS kD

2
D

kD

2

.

Consequently, applying Eq. (17) we obtain
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sskd =
1

a
H1 − F 2

kD
sinS kD

2
DG2J

+
2p

a2 o
mÞ0

dSk −
2pm

a
DF a

mpD
sinSmpD

a
DG2

.

s20d

We can verify directly that, since sinsmpd=0 for any integer
m, only if D=a the contribution to Eq. (20) coming from the
Bragg peaks of the underlying lattice structure completely
vanishes. In fact, it is the only case in which the point pro-
cess is fully translationally invariant.

We can now proceed to the evaluation of the statistics of
the Voronoi cells. For a point process in any dimension, the
Voronoi cell associated with a given point consists of the
region of space closer to this point than to any other point.
The collection of all of the Voronoi cells that tiles the space
is referred to as a Voronoi tessellation. Clearly, in the initial
lattice configuration, the Voronoi cell associated with each
point coincides with the unit cell of size (length) a around
each point. According to Eq. (19), a randomly displaced
point that was at the original lattice position ja (integer j)
remains within its original unit cell. Consequently, we will
always refer to this as point j. The size of its new Voronoi
cell v j will be given, by definition, by the size of the line
segment that joins the point that lies exactly midway be-
tween the points j+1 and j and the point lies exactly midway
between the points j and j−1, i.e.,

v j = a +
u j+1 − u j−1

2
, s21d

where u j is the displacement applied to point j. The PDF
f1svd characterizing the size of the single Voronoi cell is
formally given by

f1svd =E E
−`

+`

dx dy psxdpsyd

3dSv − a −
x − y

2
D . s22d

Use of Eq. (19) yields (see Fig. 3)

f1svd =
2

D2 35
0 if uv − au ù

D

2
,

2sv − ad + D if −
D

2
ø v − a ø 0,

− 2sv − ad + D if 0 ø v − a ø
D

2
.

s23d

Let s. . .d denote the average over the realizations of the dis-
placement field. Since we start from a deterministic point
distribution (i.e., a lattice), this average is equivalent to the
ensemble average over the final point process. In general,
when also the initial state is a realization of a stochastic point
process, the ensemble average over the final configurations
by the double average ks¯dl must be taken, where k¯l is the
average over the realizations of the initial point process, and
s¯d is the average over the displacements conditioned to the
initial configuration. If the realization of the displacement
field, seen as a continuous stochastic field with a value usxd
in each spatial point, is independent of the realization of the
initial point distribution, the order of the two averages is
totally arbitrary. It is only under this hypothesis that Eq. (13)

is valid.
Clearly, the average size of a Voronoi cell is given by

v̄ ; E
0

`

dv vf1svd = a .

The variance of the size of the Voronoi cell is given by

FIG. 2. “Shuffled” lattice with the PDF of the uncorrelated displacements psud= fusD /2d− uuug /Dwith Døa. The filled circles represent
the initial lattice configuration (i.e., a lattice with a lattice constant a), while the empty circles are the new positions of the points after the
displacements ui. The quantity vi is the size of the final Voronoi cell of the point initially at the lattice position a · i.

FIG. 3. Representation of the one-cell size PDF f1svd for our
model.
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v
2̄ − v̄

2 =
D2

24
.

Note that, as only finite up to D /2 jumps are permitted, only
finite fluctuations for v are possible. The interesting question
of whether infinitely large cell-size fluctuations are permitted
in a superhomogeneous point process will be tackled in the
next section together with other important aspects of Voronoi
cells fluctuations.

In the rest of this section, we analyze the joint probability
distribution of two different Voronoi cells. In particular, we
find an important “conservation law” for cell-cell correla-
tions.

In order to find the two-cell joint PDF f2svi ,v jd, it is im-
portant to note that in light of Eq. (21) vi and v j are two
dependent variables only if ui− ju=2. This means that for ui
− juÞ2, we have

f2svi,v jd = f1svidf1sv jd .

For j= i+2, the PDF f2svi ,vi+2d will be given by the integral

f2svi,vi+2d =E E E
−`

+`

dui−1 dui+1 dui+3 psui−1d

3psui+1dpsui+3ddSvi − a −
ui+1 − ui−1

2
D

3dSvi+2 − a −
ui+3 − ui+1

2
D , s24d

where psud is still given by Eq. (19). By performing explic-
itly the calculations and calling w j =v j −a for all j, it is
simple to show that

f2svi,vi+2d =
4

D3 35
D − 2swi + wi+2d in A1,

D − 2wi in A2,

D − 2wi+2 in A3,

D + 2swi + wi+2d in A4,

D + 2wi in A5,

D − 2wi+2 in A6,

0 elsewhere,

s25d

where (see Fig. 4) the Ai are the joint conditions

A1 = hwi ù 0 and 0 ø wi+2 ø − wi + D/2j ,

A2 = h0 ø wi ø D/2 and − wi ø wi+2 ø 0j ,

A3 = hwi ù 0 and − D/2 ø wi+2 ø − wij ,

A4 = hwi ø 0 and − wi − D/2 ø wi+2 ø 0j ,

A5 = h− D/2 ø wi ø 0 and 0 ø wi+2 ø − wij ,

A6 = hwi ø 0 and − wi ø wi+2 ø D/2j .

The most basic and important quantity characterizing cor-
relations between the size of different Voronoi cells is given
by the correlation matrix Cij defined by

Cij = svi − adsv j − ad ,

where in this case the average is taken by using f2svi ,v jd [cf.

Eq. (25)]. Clearly, Cii=v
2̄− v̄

2. By direct calculation we have

Cij =5
D2

24
for i = j ,

−
D2

48
for i = j ± 2,

0 for i Þ j, j ± 2.

s26d

We see that different Voronoi cells are either anticorrelated
or uncorrelated in such a way that

o
j=−`

+`

Cij = 0, s27d

i.e., positive and negative correlations must balance so that
the sum of Cij over j is exactly zero. Because of the strong
resemblance with the basic property Eq. (9) of all the super-
homogeneous point processes in arbitrary d dimensions, we
expect that Eq. (27) is a general property of all superhomo-
geneous point processes in any dimension.

To show that this expectation is indeed true, consider a
spatially stationary superhomogeneous point process in d di-
mensions with average density of points n0.0. For such a
point process, we know that the variance in the number of
points NsRd in a sphere of radius R for sufficiently large R
satisfies the relation

kN2sRdl − kNsRdl2 , Ra with d − 1 ø a , d . s28d

We will focus our attention on a given sufficiently large sub-
set S of volume V (e.g., a sphere or an ellipsoid) and con-
sider the number of points contained within it. The average
value of this number is kNsSdl=n0V. Let us call vi the vol-
ume of the Voronoi cell associated with point i. Since the set

FIG. 4. Regions of the plane swi=vi−a ,wi+2=vi+2−ad where
the joint PDF f2svi ,vi+2dÞ0.
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of point particles is countable, we can arbitrarily label and
enumerate them. By definition, kvil=1/n0.

Let us now study the fluctuations of the quantity

UsSd = o
i=1

NsSd

vi

under the condition of superhomogeneity. Its precise value
for a single realization will fluctuate from its average value
given by

kUsSdl = kNsSdlkvil = V . s29d

In light of Eq. (28), we can write

kuUsSd − Vu2l , Va/d, s30d

where it is to notice that sa /dd,1. But from Eq. (29), we
can rewrite

kuUsSd − Vu2l =K o
i,j

1,NsSd

wiw jL , Va/d, s31d

where, as in the one-dimensional case, wi=vi−1/n0. This
equation with a,d (condition of superhomogeneity), to-
gether with the fact that NsSd grows proportionally to V and
the supposed spatially stationarity of the stochastic point pro-
cess, implies directly that in the limit of an infinite subset S,
we have

lim
V→+`

Ko
j=1

NsSd

wiw jL = o
j

Cij = 0, s32d

where Cij = kwiw jl and the last sum is extended over all of the
point j of the system in the infinite volume limit. This result
can be shown rigorously by various techniques, but it is suf-
ficiently self-evident to avoid having to present the math-
ematical details. This result is valid for any Voronoi cell i. In
fact, while the matrix Cij = kwiw jl depends on the way we
have enumerated the points, in the case of the spatially sta-
tionary point process, the sum o jCij does not depend on the
enumeration. This is a quite interesting aspect of relation
(32).

Therefore, in addition to Eq. (9), we have found another
“sum rule” that applies to all spatially stationary superhomo-
geneous point processes. To check that nonsuperhomoge-
neous point processes do not generally satisfy Eq. (32) is a
very simple task. In fact from Eq. (31) it is simple to see that
if aùd Eq. (32) cannot hold.

VI. LARGE CELL-SIZE FLUCTUATIONS IN
SUPERHOMOGENEOUS POINT PROCESSES AND VOID

DISTRIBUTION

In the preceding sections, we analyzed the main proper-
ties of the one- and two-point statistics of Voronoi cells for
superhomogeneous point processes. We found an important
sum rule involving that the sum along any line or column of
the Voronoi cells correlation vanishes for any superhomoge-
neous point process. In this section, we tackle two more im-

portant questions about superhomogeneous point processes:
(1) Can there be infinitely large Voronoi cells, or, equiva-
lently, infinitely large voids, for superhomogeneous point
processes? (2) Is it possible to find a functional expression
for void size distribution linking the probability of having a
void of a certain size to the correlation properties of the
superhomogeneous point process? We will see that the an-
swers to both questions are in the affirmative.

The first question is motivated by the following facts.
(i) All the commonly known superhomogeneous point

processes (lattices, quasicrystals [16], the one-component
plasma [5,17], g2-invariant processes [4], etc.) in the infinite-
volume limit have only finite Voronoi cells and spherical
voids.

(ii) By taking Eq. (8), for a general stochastic mass dis-
tribution (continuous or pointlike), it is possible to show [3]

that, if sskd,kn at small k, then the wave modes which
contribute essentially to create mass (i.e., number in point
processes) fluctuations on large spatial scales R satisfy, k
,1/R if n,1 [and therefore s2sRd,Rd−n], and k,k0 inde-
pendent of R if nù1 [and therefore s2sRd,Rd−1 for all n
ù1]. In particular, k0 marks the departure from the small k
behavior of sskd to its crossover to the large k behavior; in
general “shot-noise” behavior for a point process, and a rapid
cutoff to zero for a continuous mass distribution. Therefore,
one might surmise that, at least in the case n.1, voids much
larger than the inverse of this cutoff wave mode k0 are not
permitted at all. This certainly is the case for the one-
dimensional model presented in the preceding section in
which Voronoi cells larger than twice the original unit cell
(i.e., the inverse of the average density) are not permitted.

However, more generally, we will see here that even in
the case of Eq. (28) with a=d−1, there are superhomoge-
neous point processes for which we can find spherical (or
spherical-like) voids (and therefore Voronoi cells) that are
arbitrarily large. Moreover, and importantly, for the case of
shuffled lattices, we will derive mathematical relations be-
tween the probability of applying large displacements and
the probability of having a void of the same size. This will
permit us to formulate an ansatz for the characterization of
the whole class of superhomogeneous point processes in
terms of the void size distribution.

With this aim, we start again from the one-dimensional
regular lattice of the preceding section with lattice constant
a=1 and microscopic density given by Eq. (12). We then
again apply to it an uncorrelated displacement field, but now
we choose psud with an unlimited tail. As already shown in
Eq. (18) of the preceding section, the final point process is
always superhomogeneous satisfying the condition ss0d=0
for all possible psud. With the aim of simplicity but no loss
of generality in the final result, we restrict the analysis to the
case in which ps−ud= psud.

Let us take the segment f0,2Rg (i.e., the one-dimensional
sphere of radius R) with R@a=1, and ask for the probability
WsRd that after the application of the displacement field no
point is contained in it. Clearly, WsRd can be identified also
with the probability that a randomly chosen void has a radius
larger than R. Therefore, vsRd=−dWsRd /dR gives the PDF
of the size (i.e., radius) of the voids.

VORONOI AND VOIDS STATISTICS FOR… PHYSICAL REVIEW E 70, 041105 (2004)

041105-7



Given a point particle initially at the lattice position m, it
is simple to show that the probability wmsRd, after the dis-
placement u, outside of the segment f0,2Rg, is

wmsRd = 1 − fs− md + fs− m + 2Rd , s33d

where

fsxd = E
x

+`

du psud . s34d

Note that because psud is integrable over all the space,

lim
x→+`

fsxd = 0 and lim
x→−`

fsxd = 1 s35d

in any case. Since WsRd is the probability that all of the
points in the system are outside of the segment f0,2Rg after
the displacements, we can write

WsRd = p
m=−`

+`

f1 − fs− md + fs− m + 2Rdg . s36d

In this equation, we can distinguish between two multiplica-
tive contributions by writing

WsRd = W1sRdW2sRd .

The former contribution W1sRd is given by the points ini-
tially outside the segment f0,2Rg, and the latter W2sRd by
those initially inside it. We show that the large-R behavior of
WsRd is determined essentially by this second contribution.

(1) Let us consider the first contribution

W1sRd = p
m,0,m.2R

f1 − fs− md + fs− m + 2Rdg . s37d

Because of the discrete translational invariance of the initial
configuration, W1sRd can be rewritten as

W1sRd = Fp
m=1

+`

f1 − fsmd + fsm + 2RdgG2

= expF2o
m=1

+`

lnf1 − fsmd + fsm + 2RdgG . s38d

For any finite value of R, the convergence properties of the
series

o
m=1

+`

lnf1 − fsmd + fsm + 2Rdg s39d

are given by the large-m behavior of lnf1−fsmd+fsm
+2Rdg. Because of Eq. s35d we can say that for sufficiently
large m

lnf1 − fsmd + fsm + 2Rdg . − fsmd + fsm + 2Rd .

At this point we must distinguish between two subcases.
sid The PDF psud is such that

E
−`

+`

duuuupsud , + ` .

In this case,

lim
x→+`

xfsxd = 0.

This implies that

o
m=1

+`

fsmd , + `

and so om=1
+` lnf1−fsmdg will do. Therefore, to lowest order

in 1/R, we can neglect fsm+2Rd with respect to fsmd in
Eq. s38d and write

W1sRd = p0 . 0, s40d

where p0=exph2om=1
+` lnf1−fsmdgj. Corrections to Eq. s40d

vanish for R→ +`.
siid If the PDF psud is such that

E
−`

+`

duuuupsud = + ` ,

i.e., if psud=Bu−b−1 with 0,bø1 for sufficiently large u,
then

lim
x→+`

xfsxd = + ` .

This implies that

o
m=1

+`

fsmd = + ` ,

being fsmd.sB /bdm−b for large m. At any rate, the conver-
gence of Eq. s39d, for any finite R, is still ensured by the
following observation. In the limit m@2R, we can write

lnf1 − fsmd + fsm + 2Rdg . − fsmd + fsm + 2Rd .

− 2B Rm−b−1,

which guarantees the convergence of Eq. s39d. This implies
that for large R, W1sRd will have this main behavior

W1sRd . expf− asbdR1−bg , s41d

where asbd.0. In particular, for b=1, we expect that W1sRd
goes to zero for R→ +` as a power law.

s2d Let us now analyze the second contribution to Eq.
s36d,

W2sRd = p
0ømø2R

f1 − fs− md + fs− m + 2Rdg

= p
0ønø2R

f1 − fsn − 2Rd + fsndg , s42d

where in the last step we have adopted the change of variable
n=2R−m. Note that n−2Rø0 and that for R→ +` with n
fixed fsn−2Rd→1. Using the symmetry property ps−ud
= psud of the PDF of the jumps f18g, we can write

fsn − 2Rd = 1 − fs2R − nd .

Therefore, Eq. s42d can be rewritten as
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W2sRd = p
0ønø2R

ffs2R − nd + fsndg

= expF o
0ønø2R

lnffs2R − nd + fsndgG . s43d

In order to evaluate o0ønø2R lnffs2R−nd+fsndg let us ap-
proximate the sum by an integral as follows:

o
0ønø2R

lnffs2R − nd + fsndg . E
0

2R

dx lnffs2R − xd + fsxdg

= 2E
0

R

dx lnffs2R − xd + fsxdg .

s44d

Since fsxd is a decreasing function of x, we can introduce a
further approximation by developing the ln in the Taylor
series to the first order in fs2R−xd /fsxd,

o
0ønø2R

lnffs2R − nd + fsndg

. 2E
0

R

dxFlnfsxd +
fs2R − xd

fsxd
G . s45d

In general, the contribution given by the term fs2R
−xd /fsxd can be neglected for large R with respect to the
first one. We will use this approximation to study some
simple but important cases: sAd a power-law tailed psud and
sBd a generalized-exponential tailed psud.

sAd Let us consider the case in which psud=B u−b−1 with
b.0 for sufficiently large u. In this case for sufficiently
large R one obtains

E
0

R

dx lnfsxd . − bR lns2Rd .

This implies in the same limit of large R,

o
0ønø2R

lnffs2R − nd + fsndg . − 2bR lns2Rd . s46d

Corrections to this approximation can be neglected for large
R as they are of the same or lower order than R. Finally, we
can write

W2sRd , e−2bR lns2Rd = s2Rd−2bR.

We see that for any b.0 the quantity W2sRd decreases faster
than an exponential exps−ARd, and therefore this is the
main contribution to the behavior of WsRd for large R, i.e.,

WsRd , W2sRd , e−2bR lns2Rd = s2Rd−2bR.

For b→0, the linear corrections in R to Eq. s46d dominate
giving WsRd,exps−ARd. This is well understood by con-
sidering that for b→0 the final configuration of the point
distribution will no longer be superhomogeneous, but
Poissonian for which it is well known that the size of
voids is exponentially distributed f6g.

sBd Let us consider now the case in which psud
.cuuupexp

3f−suu u /u0dag at sufficiently large uuu sin particular
uuu.u0d with u0.0, a.0 and any p. Again, we can use
the approximation

o
0ønø2R

lnffs2R − nd + fsndg . 2E
0

R

dx ln fsxd .

It can be shown by different techniques that for large x
@u0,

fsxd . c
u0

a

a
xp−a+1 expF− S x

u0
DaGf1 + osu0/xdg .

Therefore, for asymptotically large R si.e., 2R@maxf1,u0gd,
the dominating behavior will be

o
0ønø2R

lnffs2R − nd + fsndg . −
2u0

a + 1
S R

u0
Da+1

,

which implies

W2sRd , expF−
2u0

a + 1
S R

u0
Da+1G .

Since in this case W1sRd approximately does not depend on
R for large R, as in the previous case, W2sRd determines the
behavior of WsRd, i.e.,

WsRd , W2sRd , expF−
2u0

a + 1
S R

u0
Da+1G .

From the analysis of these two examples, we expect that,
if psud is a PDF with an unlimited tail such that (as power
laws and generalized exponentials) at large R,

ln psgRd = g8 ln psRdf1 + os1dg s47d

with g ,g8 two positive related constants of order 1, then the
following relation holds:

WsRd , expfAR ln psRdg , s48d

where A is a suitable constant depending on the average
density of points n0 and on the details of psud. In fact, this
result can be generalized to any other psud with unlimited tail
[19].

The extension of this result to higher dimensions, in
which again a regular lattice is perturbed by an uncorrelated
displacement field characterized by a PDF with an unlimited
tail, is straightforward when the PDF of the d-dimensional
displacement factorizes into a product of the PDF’s of the
single components pdsud=pi=1

d psuid. In this case, by follow-
ing the same procedure for the one-dimensional case, one
can find that, given a cube of large size 2R, the probability
that it becomes completely void after the application of the
displacement field is

WsRd , expfARd ln psRdg . s49d

We expect that the above relation, with a suitable A, is also
valid if instead of taking a cube size 2R we take a sufficiently
compact volume (e.g., a spheroid) linear size R. The math-
ematical treatment in the case of isotropic displacements
pdsud= pdsud is more difficult, but we expect qualitatively the
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same result. We give only a rough sketch of this treatment.
Let us take a sphere of very large radius R and, as above,
factorize the probability WsRd that after the application of the
displacements it becomes empty into the product of the prob-
ability W1sRd that all particles initially out of the sphere stay
out and the probability W2sRd that all the particles initially in
the sphere go out of it because of the displacements. As in
the previous case, we expect that W2sRd is the dominating
factor for what concerns the large R decreasing behavior of
WsRd. This can be seen through the following arguments. In
order to evaluate W1sRd at sufficiently large R, we approxi-
mate the probability that a point, initially at a distance be-
tween r and r+Dr from the center of the sphere with r@R
and Dr!r, will stay out of the sphere after the displacement,
as

1 − pdsrd
Vd

d
Rd,

with Vd the complete spherical angle in d dimensions. Now
the number of these particles in the initial lattice configura-
tion is around n0Vdrd−1Dr. Therefore, by taking the product
over the spherical shells of thickness Dr for radii greater than
R, we can write

W1sRd . p
Dr
S1 − pdsrd

Vd

d
RdDn0Vdrd−1Dr

. s50d

In the given limits Eq. (50) can be reapproximated as

W1sRd . expF− n0
Vd

2

d
RdE

R

+`

dr rd−1pdsrdG . s51d

In complete analogy with the one-dimensional case, it is
simple now to see that, if pdsud decays faster than u−2d at
large u, then W1sRd at asymptotically large L converges to a
positive constant 0, p0,1. Instead if pdsud,Bu−d−b at
large u with 0,b,d then

W1sRd . expf− aRd−bg ,

where the constant a can be obtained approximatively by Eq.
(51). For what concerns the probability W2sRd we can say
that for sure it must be smaller than the probability PsRd of
the following event: all the particles [whose number NsRd is
about sVd /ddsR /2dd] within a distance R /2 from the center
of the sphere make a displacement u larger than R /2. This
probability PsRd is [in the large hypothesis Eq. (47)] roughly
given by

PsRd = SVdE
R/2

+`

du ud−1pdsudDNsRd

. expfCRd ln pdsRdg

with C.0 appropriate and depending on d, and where we
have considered the fact that, by definition, pdsud decays
faster the u−d at large u. On the other hand, WsRd must be
larger than the probability QsRd that all the particles in the
sphere make a jump of size larger than 2R. By similar rea-
soning one can find that

QsRd . expfDRd ln pdsRdg

with D another suitable constant depending on d. Since
pdsRd decrease to zero at large R, this shows at the same time
that the decaying behavior of the factor W2sRd prevails on
the one of W1sRd, and that again WsRd must have the form
given by Eq. (49).

We recall now that in general in a Poisson point process in
arbitrary dimension and with average density n0, the prob-
ability WPsVd that a given volume V is found empty of points
is given by

WPsVd = e−n0V. s52d

For point processes that are essentially Poisson with prima-
rily positive and short-range correlations, due to the only
short-range clusterization of points, we expect a similar re-
lation for sufficiently large voids, but with n0 replaced by an
appropriate smaller constant [6,20]. On the other hand, in
“critical” point processes, because of the strong clusteriza-
tion of points at all scales due to large-scale positive corre-
lations, we expect a larger probability of finding large voids
than in the Poisson one. Therefore, for superhomogeneous
point processes generated by displacing the points of a
d-dimensional regular lattice in an uncorrelated manner, the
probability that a compact volume of sufficiently large linear
size R decays with R faster than in any nonsuperhomoge-
neous point process.

This observation suggests the following general heuristic
conclusion.

(i) A point process is superhomogeneous if and only if its
void size distribution WsRd satisfies the limit condition

lim
R→+`

ln WsRd
Rd = 0.

Moreover, the above discussion about the void distribution
generated in a lattice by an uncorrelated but power-law-tailed
displacement PDF suggests a second general heuristic con-
clusion.

(ii) A point process for which

lim
R→+`

ln WsRd
Rd ln R

= 0

not only is superhomogeneous but its power spectrum satis-
fies sskd,kn at sufficiently small k with nù2. However,
this proposition cannot be inverted. In fact, nù2 is obtained
also in the case of power-law-tailed pdsud, but with a finite
variance.

VII. CONCLUSIONS

Superhomogeneous stochastic point processes, and more
generally superhomogeneous mass stochastic density fields,
are very important mathematical models of many systems
not only in material science and condensed matter physics,
but also in diverse fields such as cosmology. For instance,
slightly perturbed crystal lattices, quasicrystals [16], one-
component plasmas [5], particular glassy systems, strictly
jammed stochastic hard spheres configurations [4] can all be
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seen as superhomogeneous point density fields. Cosmologi-
cal models predict a spectrum of the primordial mass density
perturbations of the Universe typical of superhomogeneous
systems [3,17], and superhomogeneous point processes
(typically perturbed lattices or glasslike particle distribu-
tions) are used as initial conditions in n-body simulations to
study the mass collapse and the structure (e.g., galaxies and
clusters of galaxies) formation problems during the history
of the Universe.

Usually a point process is recognized to be superhomoge-
neous by studying the scaling behavior of its number fluc-
tuation ssRd with respect to the distance at asymptotically
large spatial scales [see Eq. (10)], or by analyzing the spatial
integral of the density covariance Csxd [see Eq. (9)] or
equivalently the power spectrum sskd at small wave numbers
[see Eq. (11)].

In this paper, we have characterized superhomogeneous
systems by studying the statistical properties of the Voronoi
cells and of void size distribution. It is an important achieve-
ment because the knowledge of the statistical properties of
Voronoi cells is an important issue in many subjects of dis-
ordered materials. This task has been accomplished mainly
with the detailed study of the so-called one-dimensional
“shuffled lattice,” i.e., a regular chain of particles whose par-
ticles are randomly displaced from their lattice positions with
no correlations between the displacements. Inspired by the
achievements obtained for these systems, we have general-
ized the main results to the whole class of superhomoge-
neous point processes in arbitrary spatial dimension.

The main results that we have obtained can be summa-
rized as follows.

(i) For a particular subclass of one-dimensional “shuffled
lattices,” one and two Voronoi cell statistics have been
solved exactly.

(ii) The correlation matrix Cij of the Voronoi cells of any
superhomogeneous point process satisfies a sum rule o jCij
=0, which is independent of the way in which the single
Voronoi cells have been labeled. This is a very important
relation because it is a special property of only superhomo-
geneous point processes. Indeed, this sum rule is the
Voronoi-cell equivalent of Eq. (9), which is the definition of
a superhomogeneous point process in terms of the covari-
ance function.

(iii) In contrast to the conventional picture of superhomo-
geneous systems, we have shown that arbitrarily large
Voronoi cells or voids are permitted in the superhomoge-
neous class. This is true despite the fact that superhomoge-
neous point processes possess the slowest number (mass)

fluctuations-length scaling relation possible for any point
process.

(iv) For the most general one-dimensional shuffled lat-
tice, we have found the asymptotic form of the void size
distribution and its dependence on the “shuffling” statistics.

(v) This result for void statistics has been extended to
higher dimensions, and suggests the introduction of two heu-
ristic conditions to identify and classify any superhomoge-
neous point process in terms of the asymptotic behavior of
the void size distribution.

This last result together with the sum rule about the cor-
relation matrix of the Voronoi cells are the two most signifi-

cant achievements of this study. The present analysis and
results open the possibility for new studies on even more
complex morphological characterizations of superhomoge-
neous point processes.
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APPENDIX

In this Appendix we give a brief derivation of Eq. (13).
For a more general analysis of the effect of a stochastic dis-
placement field on the power spectrum of a given point pro-
cess see Ref. [15].

Let us call n̂Isxd=oi=1
N dsx−xid the initial microscopic den-

sity of a given point process, defined on the line segment
f−L /2 , l /2g, where −L /2øxiøL /2 is the position of the ith
point particle of the system before the application of the
displacement field. Ultimately, we will take the limit L→`.
Let us also suppose we know the global average density n0
=limL→` N /L and the power spectrum sIskd of such a point
process as defined, respectively, by Eqs. (2) and (5). We now
apply to each point i, independently of the others, a stochas-
tic displacement ui extracted from the probability density
function psud. The new microscopic density will be

n̂sxd = o
i

dsx − xi − uid .

By definition, the new power spectrum sskd will be given by

sskd = lim
L→+`

1

LKo
i,j

1,N

e−iksxi−xj+ui−ujdL − 2pn0
2dskd , sA1d

where s¯d stands for the average over all the possible real-
izations of the displacement field for a given realization of
the initial point process, and k¯l stands for the ensemble
average over all the possible realizations of the initial point
process. In our hypothesis the displacement field and the
point process are considered statistically independent, and
hence the two averages commute and they can be taken in an
arbitrary order. We will first take the average over the dis-
placements by separating the diagonal contribution from the
nondiagonal one in the double sum of Eq. (A1),

o
i,j

1,N

e−iksxi−xj+ui−ujd = N + up̃skdu2o
i,j

1,N

8e−iksxi−xjd,

where p̃skd is defined by Eq. (14) and oi,j8 means the sum
over all i=1, . . . ,N and j=1, . . . ,N with iÞ j. Therefore, we
can rewrite Eq. (A1) as
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sskd = lim
L→+`

FN

L
s1 − up̃skdu2d +

up̃skdu2

L Ko
i,j

1,N

e−iksxi−xjdLG
− 2pn0

2dskd , sA2d

where we have added and subtracted the term sN /Ldup̃skdu2

=oi=1
N fup̃skdu2 /Lg in order to complete the double sum. Equa-

tion (13) is recovered by noticing that the following relations
hold:

p̃s0d = 1,

lim
L→+`

N

L
= n0,

lim
L→+`

1

LKo
i,j

1,N

e−iksxi−xjdL − 2pn0
2dskd = sIskd .

The extension to higher spatial dimensions is obvious.
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