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Abstract

The determination of the maximal packing arrangements of two-dimensional, binary hard disks

of radii RS and RL (with RS6RL) for su0ciently small RS amounts to 1nding the optimal ar-

rangement of the small disks within a tricusp: the nonconvex cavity between three close-packed

large disks. We present a particle-growth Monte Carlo algorithm for the generation of geometric

packings of equi-sized hard disks within such a tricusp. The 1rst 19 members of an in1nite

sequence of maximal density structures thus produced are reported. In addition, the Monte Carlo

algorithm is applied to the geometric packing of disks within a 8at-sided equilateral triangle

and compared to published results for that packing problem. We perform an analysis of geo-

metric properties of the packings, e.g. packing fractions and symmetries of structures con1ned

to both containers. Interestingly, we 1nd a non-monotonic increase in the packing fraction with

increasing number of disks packed within both the 8at-sided triangle and tricusp. It is important

to note that for disk packings within a 8at-sided equilateral triangle, this non-monotonic behavior

of the packing fraction had not been reported in previously published works. For the 8at-sided

equilateral triangle, local maxima occur at the triangular integers NS=1; 3; 6; 10; 15 : : : ; as well as

NS = 12; where NS is the number of disks in each packing. However, local maxima for packings

within the tricusp exist at NS =1; 3; 6; 10; 18 : : : : Finally, we analyze the asymptotic approach to

the upper bound on the packing fraction of the in1nite sequence of maximal structures of disks

con1ned to the tricusp.
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1. Introduction

Due to the fact that the structure of a many-particle system is often determined pri-

marily by repulsive interactions, hard-sphere packings serve as useful models for a va-

riety of systems. Examples include simple liquids, colloidal dispersions, 1ber-reinforced

composites, granular media, and glasses [1–5]. Hard spheres only interact when they

are in contact with each other, resulting in an in1nite repulsion that re8ects their im-

penetrable core [6]. We will deal with hard, circular disks in two dimensions for the

purposes of this paper and reserve the three-dimensional extension, which diJers from

the present two-dimensional problem by virtue of a percolating interstitial space, for

later consideration.

Polydispersity in particle size is a fundamental feature of the microstructure of a

wide class of many-particle systems. In two dimensions, a monodisperse disk system

crystallizes in a triangular close-packed (TCP) lattice with a packing (covering) frac-

tion, �= �=
√
12 ≈ 0:906899 : : :; in general, one is able to exceed this packing fraction

by introducing some polydispersity into the system of congruent (equi-sized) disks.

Intuitively, the wider the distribution of available disk sizes, the higher the packing

e0ciency of the system in question as the disk sizes range to the in1nitesimally small.

However, our studies indicate that this is not necessarily the case.

The eJect of polydispersity on microstructure and the eJective properties can be

dramatic and thus is of great interest. A particular case is one in which particles with

conducting properties are prevented from forming a connected network as a result of

the relative size and composition of surrounding non-conducting particles. Evidently,

the resulting arrangement will have a substantial eJect on the binary system properties

as compared to the properties of the individual monodisperse systems [6]. Another case

in point involves the dissolution of a crystal comprised of polydisperse disks. The large

disks will restrict the solubility of the crystal in the solvent [7].

Real-world applications of maximal, polydisperse disk structures include optimal

packing of cables in a conduit (viewed in cross section). In addition, maximal or-

dered arrangements have been studied in the investigation of the phase diagram of

two-dimensional binary mixtures of hard disks [8]. That investigation is accomplished

by minimizing the area per particle for each given alloy. Alternatively, a particular

area of interest for engineers concerns 8uid 8ow in packed bed reactors. An extension

of our research to three dimensions should provide information on the optimal packing

of spherical catalyst pellets, which can aid in studying the nature of 8ow patterns and

reaction through the reactor.

The understanding of hard-particle packings in con1ned regions of space [9] is an

important subject of applied interest. In particular, the subject of capillary condensation

which involves the liquid–gas transition of a 8uid in a restricted cavity has been ex-

plored for parallel walls [10] and slit-like pores [11]. Freezing in hard-particle systems

con1ned to circular cavities [12] and parallel plates [13] has also been studied. The

con1ning walls play an important role in modifying the thermodynamic 8uctuations

in the 8uid, leading to observable changes in its behavior. Even though the structures

formed at freezing are not maximally dense, understanding maximal packing arrange-

ments in con1ned regions is fundamental to comprehending freezing in such cavities.
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Fig. 1. Six two-dimensional binary structures for which 
¿ 0:2. These structures were originally reported

by Fejes TKoth [21].

It is also of interest to note that the Apollonian packing of disks provides another

special class of con1ned disk packings [14].

Several studies have investigated disordered, polydisperse systems in two- and three-

dimensional space [15–17]. Particularly in two dimensions, results show that for a ra-

dius ratio (of large to small) less than 1ve, the density of a binary disk mixture

is virtually independent of polydispersity and remains constant at a packing fraction,

� ≈ 0:84 [18]. This value for the packing fraction is signi1cantly lower than that

associated with ordered packings of comparable polydispersity. Similarly, it is well

known that congruent spheres are optimally packed in a face-centered cubic or hexag-

onal close-packed arrangement [19,20]. Clearly, this reveals that a high degree of order

must be imparted to a system so as to generate maximally dense structures.

In this paper, we consider binary packings of disks, i.e., two-dimensional disks of two

diJerent radii, RS and RL, where RS6RL. Ideally, it is desired to obtain the maximal

packing fraction, �max, for given values of 
=RS =RL and the mole fraction of disks of

size RS ; xS . Speci1cally, xS = NS =(NS + NL), where NS and NL are the populations of

smaller and larger disks, respectively, in the lattice of choice. The packing e0ciency

of monodisperse hard-disk arrangements can be improved by introducing polydispersity

and order. In particular, Fejes TKoth [21] has reported several two-dimensional binary

structures of high packing e0ciency for 
¿ 0:154701 : : : (see Fig. 1 and Table 1).

Our research was motivated by a desire to discover more dense binary disk arrange-

ments than those presented by Fejes TKoth [21]. This amounts to 1nding the maximal
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Table 1

Relevant parameters for the binary structures displayed in Fig. 1

Structure 
 xS �

Top left panel 0.637247 1/2 0.910951

Top center panel 0.533296 2/3 0.914180

Top right panel 0.414214 1/2 0.920151

Bottom left panel 0.349198 6/7 0.926192

Bottom center panel 0.280776 2/3 0.929952

Bottom right panel 0.216845 4/5 0.933122

Fig. 2. Three identical disks in a triangular close-packed arrangement. The cavity within this close-packed

triad of disks is termed a tricusp.

packing arrangements of the small disks within the cavities of the TCP lattice of the

large disks. Thus, the problem becomes one of determining the optimal arrangement

of equi-sized disks within a tricusp: the non-convex cavity between three close-packed

large disks (see Fig. 2). The binary structures are generated by making use of our

particle-growth Monte Carlo algorithm. These optimal structures have packing frac-

tions between that of the single-species TCP lattice value �tl = �=
√
12 ≈ 0:906899 : : :

and the maximal allowable value of �tl + �tl(1−�tl) ≈ 0:991332 : : : : Ultimately, we

seek the best estimate to the function �max(
; xS) over the range 0¡
6 0:154701 : : :

and 0¡xS6 1.

In Section 2, we describe the particle-growth Monte Carlo algorithm for generation

of maximal packing arrangements. In Section 3, we tabulate and illustrate our 1ndings.

Upper bounds for the packing fraction associated with varying values of 
 are also

discussed in that section. We compare packing structures and geometric properties for

the tricusp and 8at-sided equilateral triangle in Section 4. In the concluding section, we

discuss jamming categories for the arrangements. In addition, some remarks have been

directed to the occurrence of ordered arrangements in quasicrystals and our conclusions

have been summarized. A derivation of the asymptotic upper bound on the packing

fraction is presented in Appendix A.
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2. Numerical procedure

Monte Carlo simulations are proven methods for obtaining representative con1gu-

rations of molecules in equilibrium [22]. However, we note that for binary systems,

there is an inherent ine0ciency associated with these methods. In particular, selection

of move sizes for the particles is important. Reasonable displacements for the small

particles may not be so reasonable for the large particles. As large displacements will

provide higher probability for overlap of the large disks which in turn lead to rejec-

tions of these trial moves, we are constrained to use small displacements. However,

the choice of small displacements to allow for rearrangements of all disks will force

the system to evolve slowly [6,22].
Focusing on displacing only the small particles circumvents the above issue. In eJect,

this modi1ed approach for the generation of geometric packing structures involves

performing Monte Carlo (MC) simulations of disks within the container of choice, a

tricusp. The disks are grown in size during the simulation. The algorithm for this MC

simulation is as follows:

• Initial setup: The container perimeter is speci1ed. The disks are initiated as very

small particles. Position coordinates are assigned to all disks using a random se-

quential addition (RSA) method [6]. The disks are randomly distributed subject to

the condition that:
◦ There is no overlap between any of the particles in the system.

◦ All particles must occupy the interior of simulation box/container.

• Proceed with MC simulation. During each MC cycle, potential displacements of two

types occur:
◦ First, attempt moving each disk (in sequence) such that its displacement is less

than or equal to the speci1ed maximum step size. The direction of displacement

is entirely random. If a particular disk cannot be moved over the random dis-

placement, skip the disk and attempt moving the next disk.

The simulation is performed in three stages during which diJerent step sizes are

implemented. All three step sizes are proportional to the initial diameter of the

disks, DS;0. During the initial stage, the step size is assigned a value of 10−2DS;0.

The step size is reduced to a tenth of its value in the previous stage for the latter

stages. In other words, the intermediate stage step size is 10−3DS;0 and the step

size in the 1nal stage is 10−4DS;0.

◦ Second, attempt growth of disks. The growth increment is speci1ed as a 1xed

fraction of the present disk diameter. In our simulation, we have used a growth

increment of 0.025%. To keep sizes uniform, either grow all or none of the

particles during each cycle. Ensure all particles have room for growth for the

speci1ed growth increment by displacing nearest neighbors, if necessary:

If two particles are su0ciently close that an incremental change in size will result

in overlap, randomly displace both particles in opposite directions along the line

of centers until there is enough room for growth.

If a particle is su0ciently close to the container boundary that an incremental size

change will result in the particle crossing the boundary, randomly displace only

that particle towards the interior of the container.
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Table 2

Comparison of maximum separation distances for optimal packings of disks within a 8at-sided equilateral

triangle

NS dNS d∗

NS

3 0.999894 1.000000

4 0.577323 0.577350

5 0.499836 0.500000

6 0.499921 0.500000

7 0.366025 0.366025

8 0.343016 0.343070

9 0.333288 0.333333

10 0.333258 0.333333

11 0.275080 0.275255

12 0.267534 0.267949

13 0.251715 0.251813

14 0.249857 0.250000

15 0.249885 0.250000

NS is the number of disks arranged in the equilateral triangle, dNS is the maximum separation distance

of packings obtained by the particle-growth MC algorithm, and d∗

NS
is the maximum separation distance

reported by Melissen [23].

• Repeat previous step until the hard-particle system approaches its jammed state. The

jammed state is reached when the average gap between neighboring disks is less

than 10−5RS where RS is the 1nal disk radius.

The particle-growth Monte Carlo algorithm can be extended to any simulation space

of choice. In Table 2, we compare results generated by the above algorithm to reported

results from Melissen [23]. In both cases, the maximum separation distance dNS of

optimal packings of two-dimensional disks within a 8at-sided equilateral triangle are

presented. dNS is de1ned as the ratio of the disk diameter to the side length of the

smallest equilateral triangle that contains all particle centers. The choice of measure,

dNS , is consistent with previously published conventions for disk packings within a

8at-sided equilateral triangle. The reader should note that the bounding triangle we use

in our MC routine contains the entirety of the disks, not just their centers as in the

Melissen calculations. Conversion between these conventions is not a trivial matter and

can amplify discrepancy between pairs of entries in Table 2. However, it is obvious

that results generated from our algorithm have good agreement with the published

data. Small diJerences in dNS between both sets of data can be reduced by executing

our simulation at even lower growth rates and with a tighter jamming criterion than

speci1ed above.

3. Results

3.1. Maximal packings in the tricusp

The basic rationale in constructing the maximal structures lies in the knowledge

that these packings can be formed within an original arrangement of the equi-sized
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Fig. 3. Structures for NS=1–6 of an in1nite series of packing arrangements in which small disks are optimally

located within the cavity of three large disks arranged in the TCP lattice. These maximal structures were

generated via the particle-growth MC algorithm.

larger disks in the TCP lattice. Increasing numbers of smaller disks are then inserted

in optimal arrangements within the tricusps formed by the larger disks. We make use

of the algorithm presented in Section 2 for the generation of these maximal structures.

We perform Monte Carlo simulations of NS small disks within the tricusp of large

disks. It should be noted that the eJective value of NL is 1/2 when considering the NS
small disks arranged in a single tricusp because each of the three large disks is part of

six tricusps in the TCP lattice. We present the 1rst 19 members of an in1nite sequence,

with larger and larger numbers of smaller and smaller disks 1lling the interstices of

the triangular large-disk lattice. Structures generated via this method are displayed in

Figs. 3–6. Relevant parameters for these structures are reported in Table 3.

The packing fraction for this in1nite sequence approaches the limiting value [6]

�limit = �tl + (1 − �tl)�tl ≈ 0:991332 : : : : (1)

It should be noted that the packing fraction does not monotonically increase with

decreasing radius ratio (increasing NS) for this in1nite sequence. In fact, local maxima

in the packing fraction exist at NS=1; 3; 6; 10; 18; : : : for structures of this type. Initially,

this observation may seem counter-intuitive, but results suggest that the local maxima

are associated with a relatively high degree of symmetry (see Table 4).

Several of the arrangements, e.g. those corresponding to NS = 2; 5; 6; and 7 can

have varying orientation. This can introduce a lack of periodicity in an extended bi-

nary crystal. Speci1cally, the 1ve small disks in the bottom center panel of Fig. 3

can be oriented in three diJerent ways within the large-disk tricusp. In view of the

fact that the small disks can be independently arranged in each of the tricusps, these
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Fig. 4. As in Fig. 3, except NS = 7–12.

Fig. 5. As in Fig. 3, except NS = 13–17.

structures may be viewed as local arrangements in a degenerate family of packings

that possess local orientational disorder. Also, in two-dimensional particle packings,

disks that are not necessarily in contact with three or more other disks are referred

to as rattlers. In particular, the number of rattlers that occur in the maximally dense
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Fig. 6. As in Fig. 3, except NS = 18 and 19.

Table 3

Relevant geometric parameters for the structures displayed in Figs. 3–6

NS 
 xS �

1 0.154701 2/3 0.950308

2 0.101020 4/5 0.943919

3 0.101020 6/7 0.962458

4 0.082035 8/9 0.955726

5 0.074624 10/11 0.957403

6 0.072819 12/13 0.964607

7 0.065372 14/15 0.961159

8 0.061339 16/17 0.961494

9 0.058868 18/19 0.963709

10 0.057188 20/21 0.966219

11 0.054269 22/23 0.965659

12 0.052078 24/25 0.965931

13 0.050135 26/27 0.966167

14 0.048341 28/29 0.966240

15 0.046995 30/31 0.966988

16 0.045895 32/33 0.968028

17 0.044549 34/35 0.968094

18 0.043863 36/37 0.969714

19 0.042218 38/39 0.968324

Reported data includes number of small disks within the tricusp NS , radius ratio 
, mole fraction of small

disks xS = 2NS =(2NS + 1), and the unit cell packing fraction �.

packings for NS = 7; 10; 15; and 17 are 1; 3; 3; and 1, respectively. Table 4 shows a

classi1cation of the jammed disk subsets displayed in Figs. 3–6 in various symmetry

categories.

The eJect of the choice of step size on the numerical accuracy of the packing

fraction of the maximally dense structures should not be underestimated. In Table 5,

we report the percent error in the packing fraction for diJerent values of the step

size for the maximally dense structure of NS = 6. For this case, an exact value of the

packing fraction (�=0:964607 : : :) can be obtained by algebraic techniques. Clearly, the



O.U. Uche et al. / Physica A 342 (2004) 428–446 437

Table 4

Classi1cation of the symmetry of jammed disk subsets displayed in Figs. 3–6

Full 3-fold rotational and re8ection symmetry NS = 1; 3; 4; 10

3-fold rotational symmetry (but no re8ection) NS = 6; 9; 12; 13; 18

Re8ection (but no rotational symmetry) NS = 2; 5; 7; 8

No symmetry NS = 11; 14; 15; 16; 17; 19

Note that in assigning these symmetries, rattler disks have been placed at their average positions over

their respective displacement domains.

Table 5

The eJect of step size on the packing fraction for the maximally dense structure of NS = 6

Step size/DS;0 � Percent error in �

1.01 0.964267 0.035248

0.5 0.964393 0.022167

0.1 0.964376 0.023938

0.05 0.964484 0.012749

0.01 0.964543 0.006642

0:01 → 0:001 → 0:0001 0.964603 0.000400

Table 6

Detection frequency of the maximal structures displayed in Figs. 4–6

NS � Detection frequency

8 0.961494 0.540000

9 0.963709 0.360000

10 0.966219 0.600000

11 0.965659 0.560000

12 0.965931 0.265306

13 0.966167 0.215686

14 0.966240 0.333333

15 0.966988 0.160000

16 0.968028 0.100000

17 0.968094 0.140000

18 0.969714 0.211538

19 0.968324 0.080000

sequentially reduced step size discussed in Section 2 yields the most accurate packing

fraction.

Fifty or more realizations were generated for each value of NS using random initial

conditions. Table 6 presents the detection frequency of the maximally dense structures

for NS =8; 9; : : : ; 19. The decreasing frequency of occurrence of the maximal structures

as NS increases is apparent. There is a range in � over all jammed structures for a

1xed NS . For the most part, we 1nd that the range in � is reduced as NS is increased.

For example, the least dense jammed con1guration for NS=6 yields a packing fraction
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Fig. 7. One large disk and two small disks in mutual contact. The intersection of the shaded triangle with

the three disks yields the local packing fraction.

that is 98.8% of its maximal packing fraction. In contrast, the least dense jammed

packing has a packing fraction that is 99.4% of the maximal value for NS = 18.

3.2. Upper bound on the packing fraction

In binary systems, numerical computations suggest that the packing fraction is

bounded above by the case of one large disk and two small disks, mutually touch-

ing one another as shown in Fig. 7 [21]. This simple bound s(
) can be expressed in

the form:

s(
) ∼= �
2 + 2(1 − 
2)arcsin(
=1 + 
)

2
(1 + 2
)1=2
: (2)

As this is the best local packing arrangement, it follows that the global packing fraction

is equal to or less than this best local packing fraction. The proof of this upper bound

appears in Florian [24]. Eq. (2) is easily extended to multicomponent polydisperse

packings in which case 
 is the ratio of the smallest disk radius to the largest disk

radius. It should be noted that Eq. (2) predicts that s(
) → 1 as 
 → 0. In reality, as


 → 0, a limiting value for the packing fraction, �limit = 0:991332 : : : is approached as

noted above in Eq. (1).

We can obtain the upper bound on the packing fraction as a continuous function

of NS :

�U (NS) = �tl + (1 − �tl)

(

4�

31=2
NS

{(1 + 8NS)1=2 + 2(3)1=2 − 3}2
)

: (3)
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Fig. 8. Relationship between packing fraction � and radius ratio 
 for periodic lattices built from structures

in Figs. 3–6. Eq. (2) is plotted as a function of 
 for the upper bound curve.

As 
 → 0, the number of disks NS that can be 1tted within the tricusp becomes very

large. However, the centers of these small disks are prevented from approaching the

tricusp boundary any closer than the radius RS . Consequently, an upper bound on the

packing fraction �U for binary structures of this type as NS → ∞ is given by

�U = �tl{1 + (1 − �tl)[1 − 0:328169N
−1=2
S + O(N−1

S )]} : (4)

The above two equations are based on the assumption that the small disks are arranged

in the TCP lattice within the tricusp. Details concerning the derivation of Eqs. (3) and

(4) are provided in Appendix A.

Fig. 8 compares s(
) to the packing fractions for the structures depicted in

Figs. 3–6. An important point that can immediately be observed from the plot is that

the packing fractions of these maximal structures do not coincide with the upper bound.

This suggests the possibility that polydisperse systems (three or more diJerent particle

sizes) are likely to approach the upper bound more closely. As NS → ∞ (
 → 0), it

should be noted that Eq. (3) becomes a more accurate estimate for the upper bound

on � than the upper bound derived by Florian [24]. Table 7 shows a comparison of

the packing fraction for maximal structures for NS = 1; 3; 6; 10; 15 and the correspond-

ing upper bound from Eq. (3). We can expect packing structures generated within the

tricusp to approach the limiting packing fraction (�limit = 0:991332 : : :) for NS → ∞
slowly, as indicated by the reciprocal square root term in Eq. (4).
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Table 7

Comparison of packing fraction for maximal structures generated within a curve-sided tricusp for NS =

1; 3; 6; 10; 15

NS � �U (NS)

1 0.950308 0.963195

3 0.962458 0.974761

6 0.964607 0.979626

10 0.966219 0.982291

15 0.966988 0.983969

4. Comparison to packings in the �at-sided equilateral triangle

In this section, we compare the packing structures and geometric properties of disks

optimally packed entirely within two similar containers: the 8at-sided equilateral trian-

gle and the tricusp of large disks. The tricusp can be viewed as an equilateral triangle

with curved sides.

In some cases, similar optimal packings appear for both the 8at-sided equilateral

triangle and the tricusp with small positional diJerences imposed by the curved bound-

aries in the latter case. For an example, see the six-disk arrangements displayed in

Fig. 9. Note that upon going from the 8at-sided triangle to the tricusp, the symmetry

of the arrangement has been reduced. However, for other cases, the optimal structures

diJer markedly from each other. The 1ve-disk arrangements shown in Fig. 10 display

this behavior. Essentially, the curved sides of the tricusp (in the right panel) force the

relocation of the shaded disk and convert it to a rattler.

In addition, we compare packing fractions of maximal structures for both simulation

regions. The packing fraction � is the area occupied by the particles relative to the total

area of the encompassing equilateral triangle or tricusp, respectively. Table 8 displays

the relevant data. �flat is the packing fraction for the packing arrangements associated

with the 8at-sided equilateral triangle and �curved is the packing fraction for those

structures within the tricusp. An inspection of Table 8 reveals that �flat is consistently

higher than �curved. One would expect such behavior as the equilateral triangle possesses

some unique characteristics. In particular, the 8at sides of the equilateral triangle mimic

the straight edges of disks in a tiered TCP arrangement. Also, the vertex angle of the

equilateral triangle is identical to the angle between disks in a triangular close-packed

arrangement. The curved edges of the tricusp do not possess the above properties, and

hence lead to less e0cient packings.

A point of note is that the 8at-sided equilateral triangle shows the same kind of

non-monotonic increase in area fraction � that we observed for the curved-sided struc-

tures in Section 3.1. However, the local maxima generally occur at diJerent values of

NS . For the 8at-sided equilateral triangle, they occur at NS =1; 3; 6; 10; 12; 15 : : :, while

they exist at NS = 1; 3; 6; 10; 18 : : : for the curve-sided tricusp. The disparity shows

the eJect of dissimilar maximal structures induced at high NS by the curved sides of

the tricusp. We expect both cases involve in1nite sequences of maxima, with mostly

unequal NS values.
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Fig. 9. Maximal packings of six disks in two diJerent geometries. Left panel: equilateral triangle with 8at

sides. Right panel: equilateral triangle with curved sides.

Fig. 10. Maximal packings of 1ve disks in two diJerent geometries. Left panel: equilateral triangle with 8at

sides. Right panel: equilateral triangle with curved sides. Note the large displacement of the shaded disk.

Table 8

Comparison of packing fractions for optimal structures generated within an equilateral triangle and within a

curve-sided tricusp

NS �flat �curved

3 0.728613 0.596456

4 0.604457 0.524441

5 0.650813 0.542464

6 0.781068 0.619840

7 0.686609 0.582805

8 0.671760 0.586406

9 0.728768 0.607638

10 0.809743 0.637159

11 0.692406 0.631144

12 0.726659 0.634057

13 0.724440 0.636601

14 0.772095 0.637389

15 0.827358 0.643424
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Fig. 11. Depiction of a quasicrystal. The radius ratio 
 for the quasicrystal is
√
2 − 1.

5. Discussion and conclusions

It is of interest to classify the optimal binary packings that we have found into their

jamming categories. An individual particle is locally jammed if it has at least d + 1

contacting neighbors not in the same semicircle or hemisphere, where d is the system

dimension [6,25]. Clearly, this requirement is satis1ed for the majority of con1gura-

tions displayed in Figs. 3–6. Packings can be classi1ed according to the following

jamming categories: local, collective, and strict jamming [25,26]. A locally jammed

packing is de1ned to be one in which all particles are locally jammed. A collec-

tively jammed packing is a locally jammed packing in which no subset of particles

can simultaneously be displaced so that the system unjams. A strictly jammed pack-

ing is collectively jammed and remains 1xed despite attempted globally uniform area

(volume)-maintaining deformations of the system boundary.

By virtue of the TCP lattice being a strictly jammed packing [25], all structures (TCP

lattice of large disks and the small disk subset) in Figs. 3–6 are strictly jammed. For

the subset of small disks within each tricusp, packings without rattlers are invariably

locally jammed and are often collectively and strictly jammed. It should be noted that

the likelihood of the incidence (though not necessarily the fraction) of rattlers may

increase as 
 is reduced. The curved edges of the tricusp, as opposed to the straight

edges of a triangle, contribute to the asymmetric structures. The presence of these

isolated rattlers does not aJect the jammed network as they can be removed without

aJecting the remainder of the network.

It is possible to create a non-periodic structure using disks of the same radius ratio

(
√
2 − 1) as in the top right panel of Fig. 1 arranged in side-sharing modular units

that are the 1lled squares, supplemented with close-packed triangles of large disks.

Figs. 11 and 12 show the structure and its random tiling of squares and equilateral trian-

gles. Such non-periodic structures are termed quasicrystals [27]; they possess long-range

bond orientational order but lack spatial periodicity. Unlike crystals, quasicrystals do

not have a simple unit cell that repeats in1nitely in all directions but they do have
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Fig. 12. Random square tiling composed of squares and triangles. The tiling is the underlying framework of

the structure in Fig. 11.

a 1nite number of local patterns that repeat irregularly. Multi-component systems of

metals form quasicrystals, and examples include alloys of Al;Mn;Fe, and Cr [28].

Many well-known two-dimensional quasicrystals resemble Penrose tilings, which use

two diJerent rhombi as basic building blocks to cover an in1nite plane in complex,

interlocking patterns [29,30]. Although we have no proof, it seems unlikely that other

binary quasicrystals composed of internally jammed squares and triangles could exist

for 
¡
√
2 − 1.

In conclusion, we have presented a particle-growth MC method for the generation of

geometric disk packings in any container of choice. Our algorithm has been tested for

packings within the 8at-sided equilateral triangle and has yielded excellent agreement

with published results [23]. In addition, the particle-growth MC algorithm has been

used to generate the 1rst 19 members of an in1nite sequence of disk packings within

the tricusp. We have compared the geometric properties of hard disks packed within

the above two analogous geometric boundaries.

An important 1nding is the non-monotonic increase in the area fraction of op-

timal disks arranged within the interior of a 8at-sided equilateral triangle and the

tricusp of large disks. For the 8at-sided triangle, the local maxima occur at NS =

1; 3; 6; 10; 12; 15 : : :, whereas they appear at NS = 1; 3; 6; 10; 18 : : : for the curved-sided

tricusp. For the latter case, we conjecture that this observation is due to the greater

success of the appropriate number of disks to arrange themselves with a relatively

high degree of symmetry within the curved walls. In addition, we derive an asymptotic

upper bound on the packing fraction. We observe a slow approach to the upper bound

suggesting that one would have to go to very high values of NS to approach closely

the limiting value of the packing fraction for structures formed within the tricusp.

Appendix A. An asymptotic upper bound to the packing fraction of disk packings

In this section, we present a derivation of an asymptotic upper bound to the packing

fraction �U of two-dimensional disks in an equilateral triangle or tricusp. It is the
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Fig. 13. Equilateral triangle representations. Left panel: depiction of relevant parameters. Right panel: packing

of a triangular number of disks for n = 4 and N = 10.

assumption of the TCP arrangement in the following derivation that results in an upper

bound to the packing fraction. As shown in the left panel of Fig. 13, the distance x to

the edge from the centroid in the equilateral triangle, and the triangle area in terms of

x; A(x), are given by

x =
l

2(3)1=2
; (A.1)

A(x) = 33=2x2 ; (A.2)

where l is the side length of the triangle. In order to maintain a perfect TCP arrange-

ment, a triangular number of disks N is speci1ed by

N = 1
2
n(n+ 1); n= 1; 2; 3; : : : : (A.3)

For the inner triangle displayed in the right panel of Fig. 13, the edge length for an

arbitrary triangular number of disks is

l(n) = 2(n− 1)RS : (A.4)

As before, RS is the disk radius. Combining Eqs. (A.1) and (A.2), we obtain

x(n) =
(n− 1)RS

31=2
: (A.5)

By observing the right panel of Fig. 13, we note that the distance from the centroid

to the edge of the outer triangle x̃(n) is given by

x̃(n) = x(n) + RS

=

(

n− 1

31=2
+ 1

)

RS : (A.6)

The packing fraction of an arrangement of a triangular number of disks within the

outer equilateral triangle is

�U (n) =
1
2
n(n+ 1)�R2

S

33=2[x̃(n)]2
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=
1
2
n(n+ 1)�R2

S

(n+ 31=2 − 1)2(31=2R2
S)

=
�

2(3)1=2
n(n+ 1)

(n+ 31=2 − 1)2
: (A.7)

A continuous function �U (N ) can be obtained by eliminating n from Eq. (A.7) in favor

of N . This will provide an upper bound for both packing fractions of the equilateral

triangle and tricusp. Thus, one obtains

�U (N ) =
4�

31=2
N

[(1 + 8N )1=2 + 2(3)1=2 − 3]2
: (A.8)

For large n, �U (n) has the following behavior:

�U (n) =
�

2(3)1=2
1 + n−1

1 + 2(31=2 − 1)n−1 + 2(2 − 31=2)n−2

=
�

2(3)1=2
{1 + [3 − 2(3)1=2]n−1 + O(n−2)} : (A.9)

From Eq. (A.3), we note that

n−1 =
2

(1 + 8N )1=2 − 1

= (2N )−1=2 + O(N−1) : (A.10)

Combining Eqs. (A.9) and (A.10), we can obtain an expression for �U as N → ∞

�U =
�

2(3)1=2
{1 − 0:328169N−1=2 + O(N−1)} : (A.11)

Eqs. (3) and (4) can be obtained by, respectively, substituting Eqs. (A.8) and (A.11)

in the following equation:

�U = �tl + (1 − �tl)�
U : (A.12)
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