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Triply periodic minimal surfaces are objects of great interest to physical scien-
tists, biologists and mathematicians. It has recently been shown that triply periodic
two-phase bicontinuous composites with interfaces that are the Schwartz primitive
(P) and diamond (D) minimal surfaces are not only geometrically extremal but
extremal for simultaneous transport of heat and electricity. More importantly, here
we further establish the multifunctionality of such two-phase systems by showing
that they are also extremal when a competition is set up between the effective bulk
modulus and the electrical (or thermal) conductivity of the composite. The implica-
tions of our findings for materials science and biology, which provides the ultimate
multifunctional materials, are discussed.
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1. Introduction

A minimal surface, such as a soap film, is one that is locally area minimizing. Surface
tension minimizes the energy of the film, which is proportional to its surface area.
Minimal surfaces necessarily have zero mean curvature, i.e. the sum of the principal
curvatures at each point on the surface is zero. Particularly fascinating are minimal
surfaces that are triply periodic because they arise in a variety of systems, including
block copolymers (Olmstead & Milner 1998), nanocomposites (Yunfeng et al . 2001),
micellar materials (Ziherl & Kamien 2000), lipid bilayers (Gelbart et al . 1994), and
other biological formations (National Research Council 1996). These two-phase com-
posites are bicontinuous in the sense that the surface (two-phase interface) divides
space into two disjoint but intertwining phases that are simultaneously continuous.
This topological feature of bicontinuity is rare in two dimensions and is therefore
virtually unique to three dimensions (Torquato 2002).

It has recently come to light that triply periodic two-phase bicontinuous compos-
ites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal
surfaces (see figure 1) are not only geometrically extremal but extremal for simulta-
neous transport of heat and electricity (Torquato et al . 2002, 2003). More specifically,
these are the optimal structures when a weighted sum of the effective thermal and
electrical conductivities is maximized for the case in which phase 1 is a good thermal
conductor but a poor electrical conductor and phase 2 is a poor thermal conduc-
tor but a good electrical conductor. The demand that this sum is maximized sets
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(a) (b)

Figure 1. Unit cells of two different minimal surfaces with a resolution of 64 × 64 × 64.
(a) Schwartz simple cubic surface. (b) Schwartz diamond surface.

up a competition between the two effective transport properties, and this demand
is met by the Schwartz P and D structures. By mathematical analogy, the opti-
mality of these bicontinuous composites applies to any pair of the following scalar
effective properties: electrical conductivity, thermal conductivity, dielectric constant,
magnetic permeability and diffusion coefficient.

The topological property of bicontinuity of these structures suggests that they
would be mechanically stiff even if one of the phases was a compliant solid or a
liquid, provided that the other phase is a relatively stiff material. The demonstration
that the Schwartz P and D structures also have desirable mechanical properties
is in some sense more important than showing that they have extremal transport
properties, since one can find single-phase materials that are good electrical and
thermal conductors. Indeed, here we further establish the multifunctionality of such
two-phase systems by demonstrating that they are extremal when a competition
is set up between the bulk modulus and the electrical (or thermal) conductivity
of the composite. The ultimate multifunctional materials are provided by nature;
virtually all biological material systems are composites that typically are endowed
with a superior set of properties. Biological systems must be able to perform a
variety of functions well, i.e. roughly speaking, biological materials are ‘optimized’
for multifunctional purposes. The intriguing implications of our findings for materials
science and biology are discussed after we prove the aforementioned claims employing
cross-property bounds.

2. Cross-property bounds

Consider a two-phase composite material in which phase i has electrical conductiv-
ity σi, bulk modulus Ki, shear modulus Gi, and volume fraction φi, where i = 1
or 2. We denote by σe and Ke the effective conductivity and effective bulk modulus
of the composite, respectively. For simplicity, we will assume that φ1 = φ2 = 1

2
and

we examine ‘ill-ordered’ cases of a two-phase composite material in which phase 1 is
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more conducting but less stiff than phase 2, i.e.

σ1

σ2

> 1,
K1

K2

< 1,
G1

G2

< 1. (2.1)

As we will explain below, this situation is motivated by examples that arise in biol-
ogy and materials science. We now ask what are the two-phase composite struc-
tures that maximize a weighted sum of the dimensionless effective bulk modulus
Ke/K1 and effective electrical conductivity σe/σ2? Thus, we set up a competition
between a mechanical property and a transport property. It is hypothesized that
the optimal solutions are the same triply periodic minimal surfaces that maximize
a weighted sum of the thermal and electrical conductivities (Torquato et al . 2002,
2003).

To prove our assertion, we apply cross-property bounds for two-phase composites
that rigorously link the effective bulk modulus to the effective electrical conductivity
given the phase elastic moduli and conductivities (Gibiansky & Torquato 1996). The
bulk modulus measures the elastic resistance to hydrostatic compression or expansion
of the material. In general, cross-property bounds provide a means of ascertaining
the possible range of values that different effective properties can possess, i.e. the
allowable region in multidimensional property space, and thus have important impli-
cations for the design of multifunctional composites (Torquato 2002). Why should
cross-property relations even exist in the case of composites? We know that such
correlations do not generally exist for single-phase materials. However, in the case
of composites, the underlying microstructure provides the link that enables one to
generally relate one effective property to a different effective property of the same
composite. The reason is that an effective property provides a certain average mea-
sure of the microstructure, and thus it is not surprising that cross-property relations
exist (Torquato 2002).

Using the translation method, Gibiansky & Torquato (1996) derived the sharpest
known cross-property bounds linking the effective conductivity σe to the effec-
tive bulk modulus Ke for three-dimensional two-phase composites of all possible
microstructures at a prescribed or arbitrary volume fraction. The translation bounds
are described by hyperbolas in the (σe, Ke)-plane with asymptotes that are paral-
lel to the axes σe = 0 and Ke = 0. Every hyperbola in the plane can be defined
by three points that it passes through. We denote by Hyp[(x1, y1), (x2, y2), (x3, y3)]
the segment of the hyperbola that joins the points (x1, y1), (x2, y2), and when
extended passes through the point (x3, y3). It may be parametrically described in
the (xe, ye)-plane as

xe = 〈x〉α −
α(1 − α)(x1 − x2)

2

x1(1 − α) + x2α − x3

, ye = 〈y〉α −
α(1 − α)(y1 − y2)

2

y1(1 − α) + y2α − y3

, (2.2)

where 〈x〉 = x1α+x2(1−α), 〈y〉 = y1α+ y2(1−α) and α ∈ [0, 1]. Before stating the
translation bounds, we first introduce some notation. Denote by Fa(y) the function

Fa(y) = a1φ1 + a2φ2 −
φ1φ2(a1 − a2)

2

a1φ2 + a2φ1 + y
. (2.3)
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Let σ1∗, σ2∗, σ1#, σ2#, K1∗, K2∗, σa, σh, Ka, Kh denote the expressions

σ1∗ = Fσ(2σ1), σ2∗ = Fσ(2σ2), σ1# = Fσ(−2σ1),

σ2# = Fσ(−2σ2), K1∗ = FK(4G1/3), K2∗ = FK(4G2/3),

σa = φ1σ1 + φ2σ2 = Fσ(∞), σh =

(

φ1

σ1

+
φ2

σ2

)

−1

= Fσ(0),

Ka = φ1K1 + φ2K2 = FK(∞), Kh =

(

φ1

K1

+
φ2

K2

)

−1

= FK(0).

Cross-property bounds on the set of the pairs (σe, Ke) for any two-phase composite
that is isotropic or possesses cubic symmetry at a fixed volume fraction φ1 = 1 − φ2

are defined by the segments of the following five hyperbolas in the (σe, Ke)-plane
(Gibiansky & Torquato 1996):

Hyp[(σ1∗, K1∗), (σ2∗, K2∗), (σ1, K1)], Hyp[(σ1∗, K1∗), (σ2∗, K2∗), (σ2, K2)], (2.4)

Hyp[(σ1∗, K1∗), (σ2∗, K2∗), (σ1#, Kh)], Hyp[(σ1∗, K1∗), (σ2∗, K2∗), (σ2#, Kh)],
(2.5)

Hyp[(σ1∗, K1∗), (σ2∗, K2∗), (σa, Ka)]. (2.6)

The outermost pair of these curves give us the desired bounds. In some cases, points
along the bounds are known to be realizable by certain two-phase microstructures.
In such instances, the bounds are optimal (best possible) given the volume fraction.

For the case of ill-ordered phases defined by relation (2.1), the cross-property lower
bound and upper bound are given by the second hyperbola in (2.5) and the hyperbola
in (2.6), respectively. The cross-property upper bound in particular provides the
locus of points that maximizes the weighted sum wKe/K1 +(1−w)σe/σ2 for a range
0 < w < 1. For the special case φ1 = φ2 = 1

2
, the point on the upper bound (σU

e , KU
e )

corresponding to α = 1
2

can be expressed exactly by

σU
e =

2σ1σ2 + (σ1 + σ2)
2

3(σ1 + σ2)
, KU

e =
2[3K1K2 + (K1 + K2)(G1 + G2)]

3(K1 + K2) + 4(G1 + G2)
. (2.7)

This point on the upper bound is optimal because it is realizable by a special bicon-
tinuous multiscale composite (Gibiansky & Torquato 1996): a polycrystal in which
each grain is composed of a laminate consisting of alternating slabs of phases 1 and 2
such that the slab thicknesses are much smaller than the size of the grain and the
grains are randomly oriented.

(a) Optimality of Schwartz P and D structures

It remains now to show that two-phase single-scale bicontinuous composites with
Schwartz P and D interfaces also correspond to the optimal upper bound point
(σU

e , KU
e ) defined by (2.7). To accomplish this, we use potential representations of the

minimal surfaces to generate discretizations of these bicontinuous two-phase compos-
ites. We then used a finite-element code to calculate numerically the corresponding
effective bulk moduli and conductivities for a wide range of phase conductivities and
moduli that meet the ‘ill-ordered’ condition (2.1). Indeed, independent of the phase
properties, we have found that the calculated pair of effective properties (within small
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Figure 2. Cross-property bounds for the effective conductivity σe and effective bulk modulus
Ke for ill-ordered phases in which σ1 = 100, σ2 = 1, K1 = 1, K2 = 10, G1 = 1 and G2 = 100.
The simulation datum on the upper bound corresponds to the bicontinuous P and D Schwartz
structures in which φ1 = φ2 = 1

2
.

numerical error) correspond to the optimal upper bound point (2.7). This result is
not unexpected because it was shown that the aforementioned bicontinuous multi-
scale composite and the Schwartz P and D surfaces realize an analogous point on
the upper bound linking the effective electrical and thermal conductivities (Torquato
et al . 2002, 2003). Figure 2 compares the numerical calculation with cross-property
bounds for the particular case σ1 = 100, σ2 = 1, K1 = 1, K2 = 10, G1 = 1 and
G2 = 100. Note that the shape of the upper bound in figure 2 in the extreme case of
a conducting liquid (σ1 = 1, G1 = 0, K1 �= 0) and a non-conducting solid (σ1 = 0,
G2 �= 0, K2 �= 0) remains qualitatively the same.

It is noteworthy that if one breaks the symmetry of the problem by moving off
the point (2.7) (corresponding to φ1 = φ2 = 1

2
and/or α = 1

2
), the optimal structure

(if it exists) will still be bicontinuous within a neighbourhood of the point (2.7) but
will not be a minimal surface. In future studies, it will be interesting to investigate
whether such structures are bicontinuous structures with interfaces of constant mean
curvature, which become minimal surfaces at the point φ1 = φ2 = 1

2
. Two-phase com-

posites with interfaces of constant mean curvature are also objects of great interest
(Anderson et al . 1990). Although four other points along the cross-property upper
bound are known to be realizable (Gibiansky & Torquato 1996), it is not known
whether all of the points along this curve are realizable.

3. Resistance to shear

An important practical question is to what extent can the Schwartz P and D bicon-
tinuous structures withstand shear stresses? Since these structures have cubic elastic
symmetry, they possess not only an effective bulk modulus Ke but two independent
effective shear moduli. Thus, these composites cannot be expected to have optimal
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shear moduli, but it would be useful to know whether they are reasonably resistant
to shear. To answer this question, we choose to study the two effective shear moduli
Ge and ∆Ge defined by

Ge ≡ 1
2
((C11)e − (C12)e), ∆Ge = Ge − (C44)e, (3.1)

where (C11)e, (C12)e and (C44)e are the components of the effective stiffness tensor
for cubic elastic symmetry (Torquato 2002). Note that ∆Ge is a measure of elastic
anisotropy, i.e. when the composite is elastically isotropic, ∆Ge = 0, and there is
only one effective shear modulus, namely, Ge. We have computed Ge and ∆Ge using
finite elements for all of the cases considered above and found that this pair of shear
moduli are different for the Schwartz P and D structures.

We also compared these simulation data with rigorous upper and lower bounds
given by

(2∆Ge + 5G1 − 5Ge)φ1

(G1 − Ge)(∆Ge − Ge + G1)
=

5

G2 − G1

+
6(K1 + 2G1)φ2

G1(3K1 + 4G1)
, (3.2)

(2∆Ge + 5G2 − 5Ge)φ2

(G2 − Ge)(∆Ge − Ge + G2)
=

5

G1 − G2

+
6(K2 + 2G2)φ1

G2(3K2 + 4G2)
, (3.3)

which apply when G2 � G1. In the (Ge, ∆Ge)-plane, relation (3.2) provides an upper
bound on Ge for fixed ∆Ge (a lower bound on ∆Ge for fixed Ge) and relation (3.3)
provides a lower bound on Ge for fixed ∆Ge (an upper bound on ∆Ge for fixed Ge).
It is a simple matter to derive these bounds, which are valid for a two-phase com-
posite with cubic elastic symmetry, from the general anisotropic bounds of Milton
& Kohn (1988). Note that when ∆Ge = 0, these bounds reduce to the well-known
Hashin–Shtrikman bounds for isotropic composites (Hashin & Shtrikman 1963). It
is seen from figure 3 that the simulation data lie roughly between the upper and
lower bounds for the case corresponding to figure 2. This is true even in the limit
G1/G2 → 0. Therefore, these bicontinuous composites are relatively resistant to shear
as well.

4. Conclusions and discussion

The multifunctional character of triply periodic Schwartz P and D bicontinuous
composites has been further revealed in this paper. Earlier it was shown that these
bicontinuous structures are extremal when a competition is set up between any two
pairs of the following effective properties: electrical conductivity, thermal conduc-
tivity, dielectric constant, magnetic permeability and diffusion coefficient (Torquato
et al . 2002, 2003). More importantly, here we establish that they are also extremal
when a competition is set up between the effective bulk modulus and any of the
aforementioned ‘transport’ properties; for concreteness, we focused here on the elec-
trical conductivity. Moreover, we have shown that Schwartz P and D structures are
relatively stiff in shear. We expect that when one phase is a fluid, such a bicontinu-
ous porous medium will have a reasonably large fluid permeability. How close such
structures are to being extremal when the fluid permeability competes against other
effective properties will be the subject of a future investigation.

We believe that our results have intriguing implications for the systematic design of
novel multifunctional materials. The current trend to develop multifunctional mate-
rials has been further fuelled by progress in our ability to synthesize new materials
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Figure 3. Bounds on the two effective shear moduli ∆Ge and Ge for ill-ordered phases in which
K1 = 1, K2 = 10, G1 = 1 and G2 = 100. The simulation data correspond to the bicontinuous P
and D Schwartz structures.

and to design and analyse materials via computer simulations. Desirable multifunc-
tional requirements include component structures that have novel mechanical, ther-
mal, electromagnetic, chemical and flow properties, and low weight. It is difficult to
find single homogeneous materials that possess these multifunctional characteristics.
Composite materials are ideally suited to achieve multifunctionality since the best
features of different materials can be combined to form a new material that has a
broad spectrum of desired properties. In this regard it is noteworthy that Schwartz P
and D bicontinuous composites or porous media can presently be fabricated on a wide
range of length-scales using self-assembly processing techniques (Olmstead & Milner
1998; Yunfeng et al . 2001) and therefore such multifunctional bicontinuous materials
should find a host of applications. One could imagine combining the very high elec-
trical conductivity of compliant conducting polymers with a non-conducting ceramic
phase to provide overall stiffness. Depending on the application, the ceramic phase
in this example could be replaced by a metallic phase with a high thermal conduc-
tivity in order to dissipate heat. When one phase is a liquid and the other phase is
a stiff solid, triply periodic Schwartz P and D bicontinuous porous media can serve
as mechanically stiff highly selective sieves for macromolecules and other particles
moving in the liquid of sizes of the order of the well-defined pore sizes.

Finally, it is interesting to comment on the formation of triply periodic Schwartz P
and D bicontinuous porous media that arise in biology; a case in point being cell
membranes (National Research Council 1996). It would be fascinating to ascertain
whether simple biological systems or subsystems are truly optimized in a rigorous
mathematical sense. Species themselves are not optimized in such a sense. One reason
for this is that species do not have to be globally optimized to survive and adapt
to changes in their environments. Species simply have to be fit enough, not optimal.
Moreover, to understand the evolution of species from an optimization point of view
would require knowledge that is impossible to ascertain precisely today. For example,
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which functions did the organism have to perform well and at what times? Under
what constraints did it evolve? The number of variables, conditions and constraints
can be quite large.

Even though life itself is not optimized in a strict mathematical sense, it is possible
that subsystems within an organism, such as cell membranes, are truly optimized.
We have shown that the bicontinuous porous media that arise in cell membranes
are extremal when a variety of different functions compete against one another.
Although this does not prove that this subsystem was optimized by evolutionary
processes, it is rather suggestive. Cell membranes have evolved to allow a variety of
different transport processes to occur (e.g. diffusional and electrical) and they must
also be stiff enough to act as a structure. It may prove fruitful to examine whether
the optimization of competing functionalities in biological subsystems can explain
their resulting structures.

This work was supported by an MRSEC grant at Princeton University (NSF DMR-0213706)
and by the Air Force Office of Scientific Research under grant no. F49620-03-1-0406. We thank
Wojciech T. Gózdz and Robert Holyst for supplying us with numerical representations of the
triply periodic minimal surfaces.
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