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A study is made of the surface-void, surface-surface, and surface-particle correlation 
functions that arise in expressions for transport properties associated with diffusion-controlled 
reactions and flow in porous media consisting of impenetrable spherical particles distributed 
randomly throughout void. The relationship between these three different correlation functions 
is noted for this model. We present an exact low-density expansion of the surface-particle 
correlation for such a distribution. All of the two-point correlation functions are computed, for 
the first time, from integral relations that we derived elsewhere, as a function of the distance 
between the two points for various sphere volume fractions up to 94% of the random 
close-packing value. 

I. INTRODUCTION 

In various transport processes that occur in disordered 
two-phase porous media the two-phase interface area plays a 
critical role in determining the bulk transport properties of 
the heterogeneous systems. Examples of such phenomena 
include diffusion-controlled chemical reactions in porous 
media and flow of fluids in such media. The key property in 
the former instance is the effective rate constant and in the 
latter case is the fluid permeability or Darcy's constant. Rig­
orous bounds have been derived on the effective rate con­
stant and on the permeability '·2 that depend upon, among 
other quantities, certain one- and two-point correlation 
functions that involve information about the interface. The 
one-point correlation function is simply the specific surface 
(the expected interface area per unit volume) s and has been 
recently evaluated as a function of porosity rP for various 
porous-media models. 3

-
5 The three different two-point func­

tions (defined below) have only been computed, for all rP, for 
the model of fully penetrable (i.e., randomly centered) 
spheres in a "matrix" or "void" phase. 1.2 

Our ability to accurately estimate interfacial-dependent 
transport properties of porous media rests upon a quantita­
tive understanding of two-point and higher order correlation 
functions that entail interfacial information. The purpose of 
this article is to study and evaluate the aforementioned two­
point correlation functions for the model of totally impen­
etrable spheres embedded in a void phase; a model which can 
be readily tested in the laboratory. Results are reported for 
various values of the sphere volume fractions 1] = 1 - rP up 
to 1] = 0.6 We shall also show the relationship between these 
three different sets of two-point functions for this model. 

II. DEFINITIONS AND REPRESENTATIONS OF TWO­
POINT CORRELATION FUNCTIONS INVOLVING THE 
INTERFACE 

Doi' has obtained bounds on the effective rate constant 
and permeability of porous media in terms of integrals that 
depend upon, among other statistical functions, the specific 
surface s and the two-point correlation functions, Fsv (f"f2) 

andFss (f "f2 ). These give, respectively, the correlation asso-

ciated with finding a point at position f, on the interface and 
another point at f2 in the void phase, and the correlation 
associated with finding a point at f 1 and another point at f 2 

both on the interface. We refer to these quantities as the 
surface-void and surface-surface correlation functions, re­
spectively. The phase outside the void phase is referred to as 
the included or particle phase. Weissberg and Prager2 have 
derived bounds on the permeability of porous media com­
posed of spheres embedded in void in terms of integrals that 
depend upon the interfacial-dependent quantities, s and a 
function closely related to Fsp (f l , f 2 ). The surface-particle 
function Fsp (r" f 2 ) gives the correlation associated with 
finding a point at f 1 on the interface and a sphere center in the 
volume element df2 about r2' Note that f2 describes the cen­
ter of a sphere and not a position anywhere in the particle 
phase. For statistically isotropic media, the two-point corre­
lation functions depend only upon the relative distances 
between the two points, i.e., r= If,-f2 i. For r--oo, the 
two-point correlation functions have the asymptotic forms 

(1) 

wherep = N /Vis the number density and Vis the volume of 
the macroscopic sample. 

Here we shall be interested in calculating and under­
standing the relationship between the functions Fsv, 
Fss ' and Fsp ' at fixed 1], for an isotropic bed of equisized to­
tally impenetrable spheres, rather than computing the inte­
grals over them that arise in the property bounds described 
above. By an isotropic system of totally impenetrable 
spheres, we mean one in which spheres of radius R are ran­
domly and isotropically distributed in space subject to the 
additional constraint that they each possess a mutually im­
penetrable core of radius R. Note that information about 
isotropy and impenetrability does not uniquely specify the 
ensemble. 

Torquat06 has recently derived series representations of 
a general n-point distribution function Hn which statistical­
ly characterizes a mixture of p spherical "solute" or "test" 
particles of radius b" ... ,bp ' respectively, and N equisized 
"solvent" particles of radius R, where N is sufficiently large 
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to justify a statistical treatment. In general, the solvent parti­
cles are distributed with arbitrary degree of penetrability. 
The n-point distribution function Hn (rm;rP - m;r" - P) gives 
the correlation associated with finding m points with posi­
tions rm={rl> ... ,rm} on certain surfaces within the system, 
p - m of the solute particles centered at positions rP - m 

={rm + I , ... ,rp} and that any n - p of the solvent particles 
have configuration r" - P = {r P + p ... ,r" }. In the special case 
that all the solute particles have zero radius (hi = 0, i 
= l, ... ,p) and are constrained to be in the void phase only, 

the H" reduce to the aforementioned two-point correlation 
functions.6

•
7 Specifically, in this limit 

and 

F
lv 

(r l ,r2) = H 2(r l ;r2;0), 

F .. (r l ,r2) = H 2(rl ,r2;0;0), 

(2) 

(3) 

F.p (r l ,r2) = H 2(r l ;0;r2), (4) 

where 0 denotes the null set. 
Employing the results of Ref. 6 (in the special limit de­

scribed above) for a homogeneous and isotropic distribution 
of totally impenetrable spheres, one may express the two­
point correlations in terms of the one- and two-particle dis­
tribution functions, PI andp2(r), respectively. The quantity 
p" (r")drn (where dr"=dr" ... ,dr") gives the probability of 
finding the center of a particle in volume element dr I about 
r l , the center of another particle in dr2 about r2, etc. For 
homogeneous and isotropic systems, PI =P and P2(r), 
r=*1 - r21, is related to the radial distribution function 
g(r) according to the relation: 

P2(r) =p2g(r). (5) 

Specifically, it has been found6 that 

Fsv(r) =s-pl)®m _p2g ®l)®m, 

and 

Fsp (r) 

=s-

• I , 

d b 
I 2 

+~, 
6 6 
I 2 

=pl)(r-R)[I-pg®m] +p2[I-m(r)]g®l) 

(6a) 

(6b) 

(7a) 

(7b) 

(8a) 

=pl)(r-R) [ I - A] +p[l- mer)] d'\' 
122 

(8b) 

where 

mer) = {~ 
r>R' 

(9) 

l)(r-R) is the Dirac delta function, rij = Iri -rjl, and 
r = r12• In the first lines ofEqs. (6)-(8), the symbol ® de­
notes a three-dimensional convolution integral, i.e., for any 

pair of functions G (r) and H (r), G ® H signifies 

f G(r)H( Ir - r'l )dr'. 

In the second lines of Eqs. (6) - ( 8 ), we have used standard 
graphical representation of the integrals8

;- is an m bond, --­
is a l) bond, and ~ is a g bond. 

The graphical representation of the integrals helps to 
elucidate their physical significance. If we let Fsi (r) be the 
two-point correlation function associated with finding a 
point on the two-phase interface and another point any­
where in the included or particle phase, then clearly 
FSi (r) + Fsv (r) must be equal to the one-point correlation 
function s (which for totally impenetrable spheres is 
41TR 2p ). The sum of the two graphs in Eq. (6b) is simply 
equal to Fsi (r); the first graph gives the contribution to Fsi 

when point I is on the surface of a sphere and point 2 is 
anywhere inside the same sphere and the second graph gives 
the contribution to Fsi when point 1 describes a position on 
the surface of a sphere and point 2 is anywhere inside another 
sphere. Hence, Eq. (6b) simply states that Fsv = s - F si ' 

Similarly, the first graph ofEq. (7b) is the contribution 
to F ss when both points 1 and 2 describe positions on the 
surface of the same sphere. The second graph in this equa­
tion gives the contribution to Fss when point 1 and point 2 
describe the positions on the surfaces of different spheres. 

The graph representingpl)(r - R) (1 - pg® m) in Eq. 
(8) accounts for the contribution to Fsp when point 1 is on 
the surface of the sphere centered at r2 • Notep( 1 - pg® m) 
is equal to the void-particle correlation function Fvp (r) for 
totally impenetrable spheres described in Refs. 6 and 9. 
Therefore, the entire first term of Eq. (8b) is 
l)(r - R)Fvp (r) which is nonzero only when r = R. When 
r = R, Fvp (r) is simply equal top. The entire second term of 
Eq. (8) is the contribution to Fsp that accounts for the in­
stance in which point 1 describes a position on the surface of 
a sphere and point 2 describes the center of some other 
sphere. The factor [I - m (r) ], equal to unity for r > Rand 
zero otherwise, arises here since point 1 must always lie out­
side of the sphere centered at r 2• 

Representation (8) for Fsp is new. Berryman lO actually 
was the first to write down integral representations of 
Fsv and F .. for the case of totally impenetrable spheres. Al­
though these expressions 10 for Fsv and F ss are equivalent to 
Eqs. (6) and (7), they differfrom Eqs. (6) and (7) in that 
they do not explicitly involve the step function m and the 
Dirac delta function l). The explicit appearance of m and l) in 
the integrands enables one to easily recognize that the inte­
grals are in fact convolution integrals. This observation has 
two advantages: ( 1) First, one can apply Fourier-transform 
techniques which enable one to readily calculate the inte­
grals for any void or sphere volume fraction and (2) the 
relationships between the Fsv' Fss ' and Fsp become immedi­
atelyapparent. The last graphs in Eqs. (6) and (7), respec­
tively, are the most difficult to evaluate. Berryman lO used 
geometrical arguments to evaluate these graphs through ze­
roth order in p. He noted that this approach is not easily 
extended to higher order terms. However, since Berryman 
was interested in evaluating integrals over Fsv and F ss' he 
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did not actually need to compute the correlation functions 
themselves. 

Before evaluating the integrals in Eqs. (6 )-( 8), we first 
establish the relationship between the most complex graphs 
of the two-point correlation functions, which we denote by 
Fsv, F ss' and Fsp and are defined by 

Fsv (r) = p2g ® 8 ® m, (10) 

Fss(r) =p2g ®8®8, (11) 

Fsp(r) =p2[I-m(r)]g®8. (12) 

Clearly, Fsv and Fss can each be expressed in terms of Fsp , 
i.e., 

- [Fsp] F (r)= --
sv 1- m ®m (13) 

and 

- [Fsp] Fss (r) = --- ® 8. 
I-m 

(14) 

Torquat06 has related the quantity Fsp/ (I - m), for the 
general case of particles distributed with arbitrary degree of 
penetrability, to a conditional probability density function 
R (I) introduced by Weissberg and Prager. 2 R (I)(r,n) dris the 
probability that, if r I is on the interface and n is the unit 
normal to the surface at r I> there will be a sphere center in dr 
about r2 = r + rl' For the specific case of totally impenetra­
ble spheres, R (I) (r,n)dn = [I - mer) ]pg( Ir - Rnl), and 
hence one has6 

pR 2 f R (I)(r,n)dn = Fsp (r). (15) 

III. EVALUATION OF THE TWO-POINT CORRELATION 
FUNCTIONS F.y , F.a , and F.p 

Here we compute the two-point correlation functions 
Fsv' Fss ' and Fsp as a function of the sphere volume fraction 
1] up to 1] = 0.6; a value which corresponds to approximately 
94% of the random close-packing limit. II Having estab­
lished that all of these morphological quantities can be ex­
pressed in terms of convolution integrals, we can exploit the 
useful property that the Fourier transform of a convolution 
!ntegral is simply the product of the Fourier transforms of 
the individual functions. By taking the inverse Fourier trans­
form of the transformed convolution integrals, one can then 
obtain the correlation functions as a function of the real 
space variable r. For a functionf(r) which depends upon the 
magnitUde of r, the Fourier transform and inverse Fourier 
transform, in three dimensions, are defined, respectively, by 

f(k) = - dr if(r) sin kr - 41r Loo 
k 0 

(16) 

and 

I Loo -fer) = --:::2 dk kf(k)sin kr. 
21T r 0 

(17) 

Here k is the magnitude of the wave number vector. 
ThefirstgraphsofEqs. (6) and (7) can readily be eval­

uated analytically using either Fourier transform techniques 
or by transforming to a bipolar coordinate system: 12 

(j\~U (I-~) r<2R 
2R ' 

120 r>2R 

(18) 

. {~ 0<r<2R 
0' '0 = 2r 
120 r>2R 

(19) 

where s = 41rR 2p is the specific surface. These graphs were 
first calculated by Berryman. 10 

It remains now to evaluate the nontrivial contributions 
to the correlation functions, i.e., Fsv, Fss ' and Fsp. In light of 
the discussion given above, we have 

Fsv(r) = n =s1]+L 
2"rr 

2 

x lOO dk kh(k)8(k)rh(k)sin kr, 

_ ~ p2 
Fss(r) = , ,=S2+ __ 

6 6 2"rr 
I 2 

x loo dk kh(k)8(k)8(k)sin kr, 

and \ 
Fsp(r) =p[l-m(r)] 0' 

where 

I 2 

= [I-m(r)] {sp+L roodkkh(k) 
2"rr Jo 

. 8(k)sin kr} , 

her) = g(r) - I 

(20) 

(21) 

(22) 

(23) 

is the total correlation function and 1] = 41TR 3p /3. Here 

- 41T 
8(k) = -R sin kR (24) 

k 
and 

m(k) = 41TR 2 [Sin kR _ cos kR] . 
k (kRf kR 

(25) 

Note that the first terms in Eqs. (20)-(22) are the long­
range values of Fsv' Fss ' and Fsp , respectively. Given h (k) 
for the ensemble, together with Eqs. (20)-(25), we can 
compute Fsv' Fss ' and Fsp. We shall calculate these quanti­
ties for an equilibrium ensemble of totally impenetrable 
spheres. The total correlation function for such a model can 
be obtained by solving the Ornstein-Zernicke equation: 

h(k) = e(k) 
1- peek) , 

(26) 

where e (k) is the Fourier transform of the direct correlation 
function c (r) . Wertheim I3 solved the Ornstein-Zernicke 
equation for a system of totally impenetrable spheres exactly 
in the Percus-Yevick approximation and thus obtained c(r) 
in this approximation. Verlet and Weis l4 have proposed a 
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semiempirical modification of the Percus-Yevick total cor­
relation function which provides a good fit to machine calcu­
lations. In Fig. 1 the Verlet-Weis radial distribution func­
tion is given as a function of radial distance for TJ = 0.1, 0.3, 
and 0.5. We shall employ the Verlet-Weis her) to compute 
the integrals ofEqs. (20)-(22). The inverse Fourier trans­
forms in these expressions are numerically computed, for 
arbitrary density, using standard techniques. 15 

Before presenting such numerical results, we note that 
the graph ofEq. (22) is relatively simple to evaluate exactly, 
through second order in p or TJ, by transforming to bipolar 

I 

coordinates.9•
12 Specifically, we find Fsp is, through third 

order in TJ, given by 

Fsp(r) = [1-m(r)]H(r;p), (27) 

where 

H(r;p) =ps{A(r) +pB(r) +0(p2)}, 

O<x< 1 

A(r) = [..!..-~+~], 1<x<3 
2 4x 4 {

O' 

1, x>3, 

(28) 

(29) 

1T"R 3 
[ _ 4! 1 + 405 + 90x _ 70x2 + 5x3 + x4

], l<x<3 
120 

B(r) = 1T"R 3 [6~5 + 875 _ 550x + 70x2 + 5x3 
_ x4

], 3<x<5 
(30) 

120 

and 

r 
X=-. 

R 

0, 

Here we have utilized the density expansion of the total cor­
relation function, for totally impenetrable spheres, through 
first order in TJ:12 

{

I 0<x<2 

h(r) ~ [~~ 3x + ~x' l~. 2«<4 

0, x>4. 

(31) 

In Figs. 2~ we plot the quantities Fsv (r)/sTJ, 
Fss (r)/s2, and Fsp (r)/sp, as a function of the distance r for 
TJ = 0.1,0.3, and 0.5, respectively, as calculated from Eqs. 
(20)-(22) and the Verlet-Weiss her). Tables I-III display 
these three quantities, respectively, at various values of r, for 
sphere volume fractions of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. 

x>5, 

I 
Note that in the figures and tables, the two-point correlation 
functions defined by Eqs. (10)-( 12) are scaled by their re­
spective long-range values. These scaled two-point correla­
tion functions oscillate about their long-range values of unity 
(an indication of some short-range ordering) with ampli­
tude that becomes negligible on the scale of our figures after 
several radii. The variation of each function is most pro­
nounced for r less than about 3R. From the physical inter­
pretations of the graphs given in the previous section, it is 
clear that Fsv (r) and Fss (r) are equal to zero at r = 0 and 
Fsp (r) = 0 for all r<R. Fsv (r)/sTJ and Fss (r)/s2 rapidly go 
to one for r> 3R. The scaled surface-particle function, on 
the other hand, goes to one less rapidly than either Fsv (r) / sTJ 
andFss (r)/s2, and, in addition, possesses the distinctive fea­
ture of a density-independent maximum at r = 3R which is 
discontinuous in the first derivative. 

This interesting characteristic can be explained by 
studying the graph 

6.0......----------r-------------------, 

5.0 

4.0 

g(r) 3.0 

2.0 

1.0 

QO~----~-----~-----~------~-----~---~ 
0.0 1.0 IT 2.0 3.0 

J. Chern. Phys., Vol. 85, No.8, 15 October 1986 

FIG. 1. The Verlet-Weis (Ref. 14) radial 
distribution function g(r) as a function of 
r, for an impenetrable-sphere system at a 
sphere volume fraction 'IJ = 0.1, 0.3, and 
0.5. 
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1.2,.---------------------------. 

0.8 

0.4 

'7=0.1 

FIG. 2. The scaled two-point correla­
tion fUnctions F,v (r)/s7), F" (r)/~, 
and F,p (r) I sp vs r, for a distribution of 
impenetrable spheres of radius R at 
7} = 41TR 'p13 = 0.1. Here s = 41TR 2p 
is the specific surface andp is the num­
ber density. 

O'O--------~-----~------~------L------~------~ 
0.0 2.0 r 

R 

= pR 2 f g( If12 - Ro J3 1 )dnJ3 (32) 

more closely. Here r l2 = r l - f2' D13 = (r l - ( 3)/lf l - f31, 
and dnJ3is the element of solid angle on the surface of the 
sphere centered at f 3• Equation (32) states the convolution 

4.0 6.0 

integral, for fixed r12, is proportional to the angular average 
of the radial distribution function g(r23 ) over the allowable 
surface of a sphere of radius R centered at r I' The integration 
region is depicted in Fig. 5. Clearly, for r l2 < 3R, the sphere 
centered at r3 is prohibited from occupying all positions on 
the surface of the sphere centered at r I because of the volume 
excluded to it due to the presence of a sphere at f2' We have 
that for 0<;8 <COS-I [(rf2 - 3R 2)/2Rr12 ], where 8 is the 
included angle opposite the side of the triangle (described in 
Fig. 5) oflength r23, g(r23) = O. 

1.2r----------------------------, 

")=0.3 

0.8 

FIG. 3. As for Fig. 2 with 7} = 0.3. 

0.4 

QO~ ______ 4_ ______ _L _____ ~ _______ ~ ___ ~ ___ -J 

0.0 2.0 r 
R 

4.0 6.0 
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1.2~-------------------------' 

0.8 

0.4 

FSp 

sp 

') =0.5 

FIG. 4. As for Fig. 2 with 71 = 0.5. 

0.0 ~ ___ l.....-___ .l....-___ ~ ___ '--___ .l....-__ ~ 

0.0 2.0 r 
R 

Let us consider the functional behavior ofFsp (rd for 
r12 > R for the specific case TJ = 0.5. For r12 slightly greater 
than R, the radial distribution function is zero for most val­
ues of e (cf. Fig. 1). As r12 is made larger, the average of 
g(r23 ) over the surface increases (because the exclusion re­
gion decreases in size) and, thus, Fsp increases until r12 

reaches a value of approximately 1.5R. For 1.5R <r12 <2R, 
Fsp decreases slightly in value (cf. Fig. 4) sinceg(r23 ) drops 
off rapidly for 2R < r23 < 3R; the range of r23 that is heavily 
weighted in the integration for such r12• Because g(r23 ) in­
creases for 3R < r23 < 4R, the average of g(r23 ) over the sur­
face increases once again, thus explaining the reason why Fsp 
also increases for 2R < r12 < 3R. For r12 = 3R, r23 > 2R, and 
hence g( r23 ) is, for the first time, always greater than zero for 

TABLE I. The quantity F,v (r)/s71 at various values ofrat 71 = 0.1,0.2,0.3, 
0.4, 0.5, and 0.6. 

F,v (r) 

s· 71 

r/R 71 = 0.1 0.2 0.3 0.4 0.5 0.6 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 
0.3 0.028 0.036 0.048 0.067 0.095 0.137 
0.6 0.103 0.131 0.167 0.216 0.278 0.356 
0.9 0.215 0.264 0.324 0.395 0.474 0.555 
1.2 0.351 0.418 0.494 0.572 0.648 0.710 
1.5 0.498 0.577 0.657 0.730 0.788 0.824 
1.8 0.644 0.726 0.799 0.856 0.891 0.906 
2.1 0.775 0.850 0.908 0.944 0.959 0.962 
2.4 0.879 0.939 0.977 0.993 0.994 0.996 
2.7 0.951 0.993 1.011 1.013 1.010 1.014 
3.0 0.994 1.017 1.021 1.016 1.013 1.015 
3.3 1.012 1.021 1.015 1.009 1.007 1.004 
3.6 1.013 1.012 1.003 0.998 0.996 0.991 
3.9 1.006 1.000 0.993 0.991 0.990 0.987 
4.2 1.000 0.995 0.992 0.994 0.996 1.000 
4.5 0.999 0.996 0.997 1.000 1.004 1.008 

4.0 6.0 

all e. For r12 slightly greater than 3R, the average of g(r23 ) 

over the surface must be less than the average of g(r23 ) over 
the surface for r 12 = 3R. Hence, although Fsp is continuous 
at r 12 = 3R, its first derivative must be discontinuous. More­
over, this must also correspond to the maximum of the sur­
face-particle correlation function Fsp. The general argu­
ments put forth above for r 12 near 3R apply as well at other 
sphere volume fractions and, consequently, Fsp possesses a 
density-independent maximum at r = 3R which is discon­
tinuous in the first derivative. Indeed, the low-density ex­
pansion ofFsp , Eq. (28), clearly exhibits this property. 

Very recently, we learned that Seaton and Glandt16 car­
ried out a Monte Carlo simulation to compute Fsv and Fss 
for impenetrable spheres at reduced densities of TJ = 0.1, 0.2, 

TABLE II. The quantity F" (r)/s2 at various values of rat 71 = 0.1, 0.2, 0.3, 
0.4,0.5, and 0.6. 

F" (r) 

r 
r/R 71 = 0.1 0.2 0.3 0.4 0.5 0.6 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 
0.3 0.100 0.129 0.171 0.231 0.314 0.432 
0.6 0.204 0.254 0.317 0.394 0.485 0.582 
0.9 0.312 0.375 0.446 0.522 0.596 0.654 
1.2 0.423 0.493 0.564 0.630 0.682 0.713 
1.5 0.539 0.611 0.677 0.731 0.767 0.788 
1.8 0.660 0.731 0.791 0.835 0.865 0.888 
2.1 0.784 0.852 0.905 0.943 0.971 0.998 
2.4 0.875 0.930 0.966 0.985 0.995 0.998 
2.7 0.936 0.974 0.992 0.996 0.994 0.986 
3.0 0.975 0.997 1.003 1.000 0.995 0.988 
3.3 0.998 1.009 1.008 1.004 1.001 1.001 
3.6 1.009 1.012 1.008 1.006 1.007 1.013 
3.9 1.009 1.007 1.004 1.003 1.005 1.010 
4.2 1.003 1.000 0.997 0.996 0.996 0.994 
4.5 1.000 0.997 0.997 0.997 0.997 0.992 

J. Chern. Phys., Vol. 85, No.8, 15 October 1986 

Downloaded 15 Oct 2010 to 128.112.70.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



4628 S. Torquato: Diffusion in porous media 

TABLE III. The quantity F,p (r)/sp at various values of rat 7J = 0.1, 0.2, 
0.3,0.4,0.5, and 0.6. 

F,p(r) 

s'p 

r/R 7J = 0.1 0.2 0.3 0.4 0.5 0.6 

1.0 0.000 0.000 0.000 0.000 0.000 0.000 
1.2 0.222 0.288 0.381 0.511 0.699 0.920 
1.5 0.457 0.559 0.678 0.805 0.926 1.008 
1.8 0.627 0.728 0.824 0.899 0.933 0.895 
2.1 0.760 0.845 0.908 0.936 0.918 0.868 
2.4 0.871 0.936 0.971 0.972 0.949 0.938 
2.7 0.970 1.018 1.036 1.034 1.035 1.071 
3.0 1.058 1.094 1.108 1.129 1.167 1.249 
3.3 1.031 1.032 1.014 0.993 0.984 0.960 
3.6 1.011 0.999 0.980 0.969 0.960 0.925 
3.9 1.001 0.988 0.977 0.975 0.969 0.956 
4.2 0.997 0.988 0.987 0.991 0.993 1.010 
4.5 0.996 0.994 0.999 1.007 1.017 1.048 

0.3, and 0.4. Their results are in good agreement with the 
corresponding results given here. They did not calculate F sp ' 

however. 
In this study, we have focused our attention on precise 

methods to characterize the microstructure of porous media 
rather than on bounds on transport properties which utilize 
this information. Elsewhere6 we have computed the Doi I 
upper bound on the permeability (which utilizes 
Fsv and F ss ) for beds of impenetrable spheres using the high-
1y accurate results of the present work. The Doi bound so 
calculated was compared to Berryman's results who com­
puted the Doi bound (which involves integrals over two­
point correlation functions) using a Monte Carlo integra­
tion routine. The Monte Carlo technique was found to 
significantly overestimate Doi's upper bound, thus implying 
that the Doi bound is much more accurate than Berryman 
originally concluded. This result has important implications 
since it offers hope that bounds on the permeability that in­
corporate the next level of microstructural information (i. e., 
three-point correlation functions) will lead to accurate esti­
mates of it. An example of such a higher-order bound is the 
one due to Weissberg and Prager.2 

IV. CONCLUSIONS 

The two-point correlation functions Fsv (r), F ss (r), and 
Fsp (r) have been shown to be related to one another. The 
density expansion of the nontrivial contribution to the latter, 
denoted by Fsp , has been presented exactly through third 
order in the sphere volume fraction 1/ for a system of totally 
impenetrable spheres distributed throughout void. Finally, 
we have computed all of the two-point correlation functions 
for this model, as a function of r, for 1/ = 0.1, 0.2, 0.3, 0.4, 
0.5, and 0.6. Presently, we are in the process of calculating 
the Weissberg-Prager2 bounds on the permeability using the 
results of this study and of Ref. 9. 

FIG. 5. Geometry for the integral of Eq. (32). The center of paricle 3 is 
constrained to be on the surface of a sphere of radius R centered at 1 such 
that the center of particle 3 is always a minimum distance of2R away from a 
sphere centered at 2. The heavy solid and broken lines indicate the allowable 
and unallowable surfaces, respectively. The shaded area represents the re­
gion available to particle 3. 
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