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We extend the previous approach of one of the authors on exact strong-contrast expansions for the
effective conductivityo, of d-dimensional two-phase composites to case of macroscopically
isotropic composites consisting bf phases. The series consists of a principal reference part and a
fluctuation part(a perturbation about a homogeneous reference or comparison matetiah
contains multipoint correlation functions that characterize the microstructure of the composite. The
fluctuation term may be estimated exactly or approximately in particular cases. We show that
appropriate choices of the reference phase conductivity, such that the fluctuation term vanishes,
results in simple expressions fer, that coincide with the well-known effective-medium and
Maxwell approximations for two-phase composites. We propose a simple three-point approximation
for the fluctuation part, which agrees well with a number of analytical and numerical results, even
when the contrast between the phases is infinite near percolation thresholds. Analytical expressions
for the relevant three-point microstructural parameters for certain mixed coated and multicoated
spheres assemblag@stensions of the Hashin—Shtrikman coated-spheres assemataggven. It

is shown that the effective conductivity of the multicoated spheres model can be determined exactly.
© 2003 American Institute of Physic§DOI: 10.1063/1.1619573

I. INTRODUCTION that render the integrals absolutely convergent in the infinite-
o ] ) _volume limit. Thus, no renormalization analysis is required
The prediction of the effective properties of compositepecayse the procedure used to solve the integral equation
materials has a rich histoty’ and is still an active area of o tematically leads to absolutely convergent integrals. An-
research. In general, the effective properties of a compositgiher yseful feature of the expansions is that they can pro-

depend on an infinite set of cflcr)irrelation functions that statisy;je accurate estimates for all volume fractions when trun-
tically characterize the mediumin the case of the effective .14 at finite order, even when the phase conductivities

conductivity o, of composite materials, our concern in the yigar significantly.
present work, a number of different approximation schemes

X 5 In this paper, we extend the strong-contrast expansion
have been devisetf~’ Upper and lower bounds on the ef-

) o : ) e approach of Torquafato the case of macroscopically isotro-
fective conductivity have been derived using variationaly; .omnosites consisting i isotropic phases. The series
principles.™ For those composites in which the variations o, qjons, which perturb about a homogeneous reference
in the phase conductivities are small, formal solutions to th:i?waterial, involve a principal reference term and a fluctuation

bourlldary-tvaltie pr?blsrr:. have b@g{,‘ gevelopttra]d n t?e forr;n erm that perturbs about the reference medium. Based on a
Wweak contrast perturbation Serres.” bue (o the nature o specified level of correlation information about the micro-

the integral operator, one must contend with conditionally,

tint Is. which b q CUSi structure of the composite, we devise accurate approxima-
convergent Integra’s, which can be made convergen u36|ng Hdns for the effective conductivity by choosing an appropri-
ad hoc normalization procedur®. Alternatively, Browrt

. _ ate equation for the conductivity of the reference
cons_tr_ucted a stron_g-con_t rast expansion c.’f the e_ffecnve_ Cpq'comparisom material, a free parameter in the theory. The
ductivity of three-dimensional two-phase isotropic media Inapproximation is tested against available benchmark analyti-

owers of rational functions of the phase conductivities. . . ) .
P P cal and numerical results for various models of dispersions.

The strong-contrast expansion approach has b een furth%e find that the approximation generally provides very good
developed for the effective conductivity a-dimensional agreement with these benchmark results

macroscopically anisotropic composites consisting of two . .
picaily P P 9 In Sec. Il, we derive strong-contrast expansion for the

|sotrop|c phe}seg by f;tlrg? ducing an |'ntegral equation for theef“fective conductivity of macroscopically isotropic multi-
cavity intensity field*'"*®The expansions are not formal but

o ) ...~ component composites. Approximation schemes based on
rather thenth-order tensor coefficients are given explicitly in P P PP

. ) . the expansion are constructed in Sec. lll, including a three-
terms of integrals over products of certain tensor fields and a P 9

determinant involving-point statistical correlation functions point approximation, i.e., one that contains microstructural
a-p parameters that depends on three-point corelation functions.

Section IV investigates the restrictions upon the three-point
aAuthor to whom correspondence should be addressed; electronic maiP@rameters. Secthn \ .COIIGCIS WeII—known thrge-pplnt
torquato@princeton.edu bounds for comparison with our three-point approximation.
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Our three-point approximation is applied to a number ofphase having conductivity,, which is subjected to an ap-
coated spheres and dispersion models and is compared wittied electric fieldEy(x) at infinity. Introducing the polariza-

simulation results and bounds in Sec. VI. tion field defined by
P(x)=[o(X) = 0] E(X) 8
Il STRONG-CONTRAST EXPANSIONS enables us to reexpress the flipdefined by Ohm’s law4),
as follows:
We derive strong-contrast expansions of the scalar effec- I(X) = aoE(x) + P(x). 9)

tive conductivity of a macroscopically isotropic multiphase

composite. The derivation is a direct and straightforward exThe vectorP(x) is the induced flux polarization field relative

tension of the one given by Torquétior a macroscopically to the reference medium.

anisotropic two-phase composite. The reader is referred to Using the infinite-space Green’s function of the Laplace

this reference for greater details of the derivation. equation for the reference medium corresponding to the
Consider a large macroscopically isotropic compositeproblem, Eqs(4)—(7), we find that the electric field satisfies

specimen in arbitrary space dimensibnomprised oN iso-  the integral relatiof

tropic phases having conductivities, and volume fractions

¢, (a=1,..N). The microstructure is perfectly general but E(x)=Eo(x)+f dx'GO(r)-P(x"), (10)

possesses a characteristic microscopic length scale that is

much smaller than that of the specimen. Thus, the specimenhere

is virtually statistically homogeneous. Ultimately, we shall

O (ry=—pO (0)
take the infinite-volume limit and hence consider statistically G(r) DT a(r) +HT(n), (1)
homogeneous media. The local scalar conductivity at posi- _
. ; . 1 1 dnn—I
tion x is expressible as DO=—1, HO>r)=— ’ (12)
dO'O QU’O rd
N
o(X)= >, 0,79(x), (1) r=x—x', n=r/|r|, &r) is the delta Dirac function| is the
a=1 second order identity tensof)(d) is the total solid angle
where contained in al-dimensional sphere given by
dr2
1, x in phasea, _ 2m
7 (x) = @ D= rrgmy (13

0, otherwise
and I'(x) is the gamma function. In particulaf)(2) =2,
rQ(3)z4¢r. In relation(11), the constant second order tensor
D arises because of the exclusion of the spherical cavity,
and it is understood that integrals involving the second order
tensorH(® are to be carried out by excluding at=x an
(T'(X))= ¢y, (3 infinitesimal sphere in the limit that the sphere radius shrinks
f8_zero. Moreover, the integral f(°)(r) over the surface of

a sphere of radiuR>0 is identically zero, i.e.,

is the indicator function for phase (a¢=1,...N). For statis-
tically homogeneous media, the ensemble average of the i
dicator function is equal to the phase volume fractipp,
ie.,

where angular brackets denote an ensemble average. The
cal conductivityo(x) is the coefficient of proportionality in

the linear constitutive relation
f HO(r)dQ=0. (14)
J(X)=o(X)E(X), (4) r=R
whereJ(x) denotes the local electritherma) current or flux Substitution of Eq.(11) into expression(10) yields an

at positionx, andE(x) denotes the local field intensity. Under integral equation for the cavity intensity fief(x)
steady-state conditions with no source terms, conservation of

energy requires that(x) be solenoidal F(x)=Eq(x)+ f dx'HO(x—x")-P(x"), (15)
V-J(x)=0, 5 .
(x) ©) where we define
while the intensity fieldE(x) is taken to be irrotational
_ dx’ f(x,x")=Ilim f dx’f(x,x"). 16
VXE(x)=0, (6) XX’ Im e (x,x") (16)

which implies the existence of a potential fiefdx), i.e., The cavity intensity field=(x) is related toE(x) through the

E(x)=—-VT(x). (7) expression

ThusE(x) and T(x) represent the electric fielghegative of F(x)={1+DO[o(x)— o]} - E(X). (17
temperature gradienand electric potentialtemperaturgin
the electricaltherma) problem, respectively.

Now, following Torquatd® let us embed this
d-dimensional composite specimen in an infinite reference  P(x)=L(X)F(x), (18

Combination of the expressioii8) and (17) gives a re-
lation between the polarization and cavity intensity fields
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where Multiplying this relation by the scalak (x) defined by Eq.
N (19), yields
L(x)=0od o0 4> buoZ!™(x) P=LE,+LHOOP 25
T8 () +(d—1)ag 0" &y Dao ' =LEo : (25)
(19) A solution for the polarizatior® in term of the applied field
b — 0a— 00 Ey, can be obtained by successive substitutions using Eg.
O g, H(d—1)op’ (25), with the result
and we have used Eqgl) and (2). P=LEo+LHOLEy+LHOLHOLE +...=SE), (26)

The effective conductivityo, for the macroscopically \yhere the second-order tensor opera&ds given by
isotropic composite can be defined through an expression

relating the average polarization to the average Lorentz field, S=L(I-LH)™ (27
ie., Ensemble averaging EqR6) gives
(P(x))=Le (F(x)), (20) (Py=(S)Eo. (28)
where The operatorS) involves products of the tensat(©),
which decays to zero like™® for larger, and henceS) at
L=L L.=oud e 0o _ (21) best involves conditionally convergent integrals. In other
e e T T gt (d—1)ay words, (S) is dependent upon the shape of the composite

The constitutive relatiori20) is localized, i.e., it is indepen- SPecimen. In order to obtain a lodshape-independente-
dent of the shape of the composite specimen in the infinitel@tion between average polarizatid?) and average Lorentz
volume limit. This relation is completely equivalent to the f€ld (F) as prescribed by Eq22), we must eliminate the

averaged Ohm's law that defines the effective conductivity 2PPlied fieldEo in favor of the_?ppropriate average field.
Inverting Eq.(28) yields Eq=(S) ™ *(P). Averaging Eq.(24)

(J(x)) = ge(E(x)). (22)  and eliminating the applied fiel, yields
We want to obtain an expression for the effective con-  (F)=Q(P), (29
ductivity o from relation(22) using the solution of the in- where
tegral Eq.(15), which is recast as
Q=(S) 1+ HO. (30)
F(1)=Ey(1)+ f d2H©(1,2)-P(2), (23 Comparing expression€0) and (29) yields the desired

result for the effective tensdr,:
yvhere we bave adopted the shqrthand notation (_)f represent- Lg1=Q= H<°>+<S>‘1= H(°)+(L(I —LH(O))‘1>‘1.
ing x andx’ by 1 and 2, respectively. In schematic operator (31)

form, this integral equation can be tersely rewritten as The first few terms of the expansion E@1) are explicitly

F=Eo+HOP. (24 given by

|
(1) ((L(l)L(2)>—<L(1)><L(2)>
(L(1)) (L(HXL(2))

—”dzds(<L(l)L(2>L<3>> (L(DL))(L(2)L(3)
LONL@)  (LONLEHNLE)

Lgl(l)zf d2Q(1,2 = )H(‘”(l,Z)

)H<°>(1,2).H<°>(2,3)—... (32

The general term contains thepoint correlation functions o+ (d—1)0
(L(1)...L(n)). The explicit expression for any term in the — ——

2
(; (r{)abaO) _Eal d)abao

. . . Oe™ 0p
series can be given as in Ref. 4.
Let us introduce the property-independent dipole tensor = A(oq,04,...,0n,Microstructurg. (34
Here A(oq,04,...,0n,Microstructure) is a scalar quantity
dnn—I that depends on the reference conductivity, phase con-
t(r)=ooH(r)= ard (33 ductivities o4,...,0y, and the microstructure via-point

correlation functions. The left side of E(B4) is referred to

as the principal reference term of the strong-contrast expan-
Substituting Eqs(19) and (33) into Eq.(32) and taking into  sion, while the right side, given kyA is the fluctuation term
account that is traceless, we take the trace of both sides ofrelative to the reference medium of conductivity,.
Eq. (32). We then multiply them withoo(2 ,,b,.0)? to 0b-  Through the lowest three-point term in the seridsis ex-
tain the relation for our macroscopically isotropic media  plicitly given by
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A(ao,(rl,...,a,\,,microstructur93=—d{ > baobﬁobyoffdZdS(Z(“)(l)tij(1,2)1(5)(2)tij(2,3)1(7)(3))
B,y

_ baObBObyOszO
a,B,v,6 EK¢KbK0

- (35

f f d2d3(Z(*(1)t;;(1,2 7P (2) (7 (2)1;;(2,377(3))

Here conventional summation on repeating Latin indicegeferred to as TPALfor the effective conductivity of two-
(from 1 to d) is assumed, and the Greek indices under thephase composites that can be regarded to perturb about the

sum run from 1 toN. Hashin—Shtrikman structures

oo 1+(d—1)¢p,by—(d—1) b2

Te _ ( dobo—( ¢1£2 21 (TPAL).
Il. APPROXIMATION SCHEMES o1 1= oby—(d—1)p15b5

(42

where{, is a three-point microstructural parameter defined
by Eqgs.(48) and(49). Here the reference phase is taken to be

A. Connections to previous estimates

The effective medium approximatidEMA) ogpya (also
known as the self-consistent schemes the solution of the

i phase 1.
equation We will now derive a different three-point approxima-
N O TEMA tion for multiphase composites based on the results Egs.
bq — =0. (36)  (36)—(41). Let us assume that we have an explicit approxi-
a1 “out(d=1)oeya

mation A,pprox for the fluctuation termA for a specific com-
Equivalently, we can rewrite this via the property function posite. Guided by the discussion of Sec. Il A, our strategy is
P, to chooseo to be the solution of the equatiaA ;0= 0,
and from Eq.(34) deduce the respective approximatiop

e=Tema=Po((d=1)oewn), @7 _ P,[(d—1)o0]. Let us assume thatluppo— Ay, Where

where A, is the seriesA truncated after ther-point correlation
N -1 term. From Eq.(34), we deduce the respectivepoint ap-
b, s : -
P(o,)=| > -0, . (38)  proximation for the effective conductivity
7 a1 o,to,
. o . . o0e=P,((d=1)og), An(og)=0. (43

This approximation is exact for a certain hierarchical com-
posite consisting of spherical graitsAs oy— ggya (While Clearly, atn—, we should get the exact value of the
o= 0gma), the left-hand side of Eq34) approaches 0, and effective conductivity for an arbitrary microstructure. For
hence for the EMA microstructure we have any microstructure, we expect thap should lie within the

interval [ o-min,0max] fOr o in order to satisfy the Hashin—

A(oe,01,....0n, EMA microstructurg=0. (39 Shtrikman bound&which can be expressed as

For two-phase microstructures that are optimal when the B - - _
volume fraction is specified, such as the Hashin—Shtrikman Po((d=1)oma)=0e=P,((d—1)omin), (44)
coated-spheres assembl&gee have where

ge=P,[(d=1)on], (40) Oma=MaXoq,....on},  Omn=Mifoy,...,.on}. (45
where oy is the property of the connected matrix phase in  For example, let us takelppro= Az Since three-point
the optimal geometry. Thus E(B4) also yields microstructural information is now available for a variety of

A(oy ,01,05,0ptimal two-phase microstructyre 0. different microstructures, we are especially interested in the

(41) three-point approximatiofiTPA2):

Formula(40) is sometimes called the Maxwell approxima- 0e=P_((d—1)oy) (TPA2), (46)
tion (MA) (also known as the Maxwell-Garnett or

Clausius—Mossotti approximatipn where o is the solution of equation

As(09)=0. (47)

We call this TPA2 to distinguish it from TPAL given by Eq.

(42). Both three-point approximations are exact through third
The fluctuation term4 depends on the microstructure of order in the difference in the phase conductivities.

the composite and generally can only be evaluated by some In the special two-phase case, three-point correlation

numerical scheme. Torquafoused the strong-contrast ex- function information arises via the microstructural param-

pansion to develop a three-point approximatibenceforth  etersZ,, (a=1,2) #?*?which for d=2

B. Multipoint approximations
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4 dr oods T
= — | — (a)
la 7T¢1¢2JZ p J; S Jo d¢9cos(2¢9){s3 (r,st)

Sy(r)Sy(s)
- - 7 4
5| (48
and ford=3
9 >dr (=ds (1
é90‘:2¢>1¢2 fo T jo s fﬁld(cosﬁ)
) a)
X Pz(cosa)[sg")(r,s,t)— w . (49

whereP, is the Legendre polynomial of order 2 afds the
angle opposite the side of the triangle of lengtland

S (X1, %) =(Z@(Xp)- - T (X)) (50)

It is also knowd?*?! that {;=0, {,=0, and {;+{,=1.
Through the microstructural parameteisand ,, relation
(47) can be given simply as

017 0p 027 0¢

Zla1+(d—1)ao +§202+(d— 1)o, =0.

(51)

We can further simplify Eq(47) for N=2. According to

D. C. Pham and S. Torquato 6595

C. Alternative approaches
We note thal. . of Eg. (31) can also be expanded as
(Le'=HO) I =(S)=(L(I-LH")™%)

=<L>|+21<L(LH<°>)”>, (56)

where we have used an obvious short-hand notation in the
second line of Eq(56). If we take o such that the last sum

in Eq. (56) vanishes, then we deduce
(Lo ' =HO) =) - L t=HO (L)1, (57)

In the same manner as that of the previous section, we obtain
the expression

0=P,((d=1)0y), (58
where oy is the solution of the equation
;l( 00,071,...,0N,Microstructure=0, (59

A= d" 3 b, obe--be of---sz..dn
n=2 ap n

X(TV(D)t;(1,2Z292(2)... .t (n—1n)Z'*(n)).
(60)

. . . At the three-point approximation level, Eq$58)—(60)
the ergo_dlc hypothesis, we could substitute the ensemble AY:ads to the same result Eq#6) and (53) of the previous
erages in Eq(35) by volume averages over the volume of

; . subsection.
the macroscopic sampl, which we can take for conve- .
. ) e Moreover we see that E§31) can also be given as
nience to be spherical. Thus, for a statistically homogeneous

and isotropic medium of spherical volunve we have

f (Z{“)(x)tij(x,y)z(ﬁ)(y))dy

=JVJVI(“)(x)t”(x,y)I(/”(y)dxdy=0. (52)
Then Eq.(47) can be written as
azm baobgob,0ASY=0, (53)
where
ALY= fvafvd1d2d31(“)(1)tij(1,2)1(5)(2)
Xt;(2,977(3). (54)

Note the symmetry oAz” in the indicesa andy, but not in
B. The sum on the left side of E¢3) is of quadratic form in
the variabled,, b, (@,y=1,...N), the sign of which de-
pends on those diz, (B=1,...N). Hence, aioy= oy, the
sum is positive, while atrg= o4y, it IS negative, with the

solution oy of Eq. (53) lying between these extreme values.

Consequently, the TPA2 from Eqggl6) and (53) should al-
ways fall inside the Hashin—Shtrikman bounds Egl). For
N=2, the microstructural parametefs is related toA,” via

1
AL = d b1¢20,, a=1.2.

(59

Le(1 = LH®) T 2=(L(1 - LH©®) 1),

which can be expanded as

(61)

Le I+k21 ((LHO)k) =<L>I+k21 (LILHO)ky. (62)

Taking nth approximation of Eq(62) gives
n—1 T n-1

L |+k21 ((LH©)ky :<L>|+k21<L(LH<°>)k>. (63)

()

If we take oy as to make the last sum of the right-hand of Eq.
(63) vanish[c.f. Egs.(59) and (60)], then at the three-point
approximation, Eq(63) leads to the same result Eqg6)
and (53).

IV. THREE-POINT MICROSTRUCTURAL PARAMETERS

As in the two-phase case, there exist some relations be-
tween the microstructural parametekg”. From Eq.(54),
we see that they are symmetric in the indieeand y. Con-
sider a spherical representative elemeénof the composite
with phasea occupying regions/, («=1,...N). For sim-
plicity and without loss of generality we take the volume of
V to be unity, and hence the volume ¥, is equal to the
volume fraction¢,. Let us introduce the harmonic poten-
tials

()= fve(x—wdy, V2(0=1, xeV: (64
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e(x)= JMG(x—y)dy. ViU X)=8ap,  Xe g Al a2 4 " i, (79
(65 Generally, aN-phase material with microstructural param-
whereG(r) (r=|x—y|) is the respective Green function  etersA2” (e, 7,8=1,...N) can also be considered to_be a
1 1 two-phase material occupying regiohﬁzuaerlva, Vi
- Z'”( ) d=2 =Uger, Ve with respective microstructural parameters
G(r)= 1 1 . V2G=4(r). Az (a,y,B=11). Here F,I{al,...,a[(}, r,
- -~ d=3 ={agi1,.-ant, and{aq,...,a,ari1,-..,an} IS @Ny per-
(d—2)Q yd-2 mutation of{1,...N}, andk is any number between 1 and
(66) N—1. By combining the relations Eq&5), (68), (69), and
We have (75), one can verify that
S
G’ijzﬁé(x_y)_tij ' (“gl P (aezu d)a)
(67) 1
_dnin—dy XY ——digy=A+A]"
N Qrd r’
where the Latin indices after a comma designate differentia- = >, AgT+ > Az, (76)
tion with respective to position. If we denote By,ael B.y.acly
1 where¢, and ¢,, are the volume fractions of regions | and Il,
¢ii(X) =i~ 5 0i0up, Xedp, (68)  respectively.
then we have
V. THREE-POINT BOUNDS
AZ= | ofioldx= dx dy dzZ'®(x)
Ve VIVIV Here we summarize previous three-point bounds that we
><tij(x,y)Z(B)(y)t”-(y,z)Z(”(z). (69  Will subsequently apply. Thel-dimensional three-point Be-
ran bound¥* for two-phase composites derived by Torgdato
Note that are given by
N
BU= g =60, 7
= Zl qoj‘j , (70) o Te=0 ( 7)
“ where
d he e find that
an nce we find tha V=g by + 00y
1 5ﬁ
| euetian= el (7 ) brdalo1— ) .
Vr o192+ 0201+ (d=1)(0181+0205) "
d
- o=01¢1+ 026,
f @ ijef dx= 2 f 0% %, dx B P1po( 01— 03)°
N o1t o+ (d=1) (L1 /or+ Lplop) ™t
1
:0121 [‘Pu@l]"'aaa«/aﬁy dx (79
Milton?? obtained a sharper lower bound for the case3
N ando,=o0;
=2 A ages 2 i by (72)

Comparing Eqs(71) and(72), we obtain relations between

the microstructural parameters
N

azl A%P=0, VB,y=1,.N. (73
In the two-component case E(.3) yields

A'=AZ=—A1? A'=AZ=— A% (74)

Keeping in mind Eq(55) and;+ ¢,=1, we have

- 1+(1+2¢2)bo—2(p1lo— $2)b5,
o=
1+ ¢1bo— (21 {0+ $2)b3,

(80)
Oy~ 01

1= oot 20q"
For three-dimensionaN-phase composites, Phan-Thien
and Milton'® derive the following bounds:

O'(SU)>O' >O'(3L) (81)

where
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oV =(g)=60-T-(T'+ 60-Al{c)) 1-T- 8al3(c),

(82
1/0'(3L)=<0'71>—250'71~F~(F+ So 1 (A
+A)2(o YY) LT S0 Y3 (oY), (83
with (N—1)-rank vectors and matrices
do={o, _UN}a 11 50—1:{‘7 —oy }a 11
{Faﬁ}aﬁ 1 A= {Aaﬁy}aﬁy 11 (84)
bo(l=¢,), a=8
A= {Aaﬁ‘yaﬁy 1 Faﬁ_|_¢a¢ﬂy a#,B’
(85
|
ff drds| o ZQ, 000

D. C. Pham and S. Torquato 6597
| (A=2¢p)1 g, a=p
By _¢arﬁy_ d)ﬁray! aq&IB
Here(f(o)) for any functionf of o is given by
N
(f(0)= 2 $af(0a). (86)

The PhanThien—Milton microstructural parametys;,, can
be related to ouA?” via the expression

— B) _ - a) _ - ) _
fv fv fvdxdydz@ (0= 656 (XY (TD(Y) — bo) G (.2 (T7(2) — b,)

N
1
:Agy_ d)a;l Ag”’ §(¢a5aﬁaay_ ¢a¢ﬂ5,87_ ¢ﬁ¢78ay_ ¢a¢y5ﬁa+ 2¢a¢ﬁ¢7)'

Three-point bounds fod-dimensionalN-phase compos-
ites derived by Phat® are given by

P,((d=1)og")=0=P,((d=1)ap™)), (88)
wheres$Y) and ") are the solutions of the equations

QY ((d=1)og)=0,

QY ((d—1)o) =0, (89

QEV((d=1)rg)= D) (Tu— ) AETX X, (90)
@By

QE,SL)((d_l)O'O): % (0'7 -0y )Aﬁyxﬁx (91
a,p,y

Xg=([o+(d= D)oo ) =[op+(d=1)ag] L (92

In the two-phase case, relatio(@9) are solved explicitly as

11 22
O']_Al +0'2A2
(3U) — _
o =——F—=(101Ft {505, 93
0 Ail+A§2 gl 1 §2 2 ( )
All+AZ2
(3L) _ 1 2 _ -1
oy === ({1 o1+ o) (94)
0 A11/0'1+A§2/0'2 ! ! 2 2

If we imagine a fictitious composite witly; and ¢, be-
ing the volume fractions of the phases, the”) and o)
in Egs.(93) and(94) are, respectively, the “arithmetic” and
“harmonic” averages. Moreover, the solutier, of Eq. (51)

is the “effective medium approximation” value, hence

o$V=00=0", and consequently the three-point ap-

(87

proximationP ;(o) from Egs.(46) and(51) should fall in-
side the three-point bounds Ed88), (93), and(94) for our
real composite. In the two-phase case, the bounds (Bs.
(93), and(94) as well as the bounds Eq®81)—(83) coincide
with the bounds Eq4.77)—(79).

The bounds Eqg81)—(83), and(88) and(89) have been
compared in Ref. 24 for the class Nfphase N=3) quasi-
symmetric(symmetric cell materials using a symbolic alge-
bra program and numerical simulation. It appears that the
bounds yield the same results fdfphase spherical cell ma-
terials. ForN-phase platelet cell materials, the bounds Eqgs.
(81)—(83) appear tighter. However, the bounds E@S) and
(89) are simpler in functional form as well as computational
aspects. In the case Nfphase spherical cell composites, Eq.
(89) are also solved explicitly and yield$Y = (o), oV
=(o 1)1, Unsuccessful attempts have been made to trans-
form Egs.(81)—(83), which involve multiplications and in-
versions of N—1)-rank matrices and vectors, into some
simple form similar to that of Eqg88) and (89).

VI. APPLICATIONS OF THE THREE-POINT
APPROXIMATION

In this section, we apply our three-point approximation
(TPA2) to certain multicoated spheres assemblages and dis-
persions of identical spheres. In each of these instances, the
relevant three-point microstructural parameters are known.

A. Analytical two-phase models

There are only very few nontrivial models, in which the
three-point microstructural p::lrrclmeteﬁté7 have been deter-
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mined analytically. Here we discuss three such instances. For
the two-phase EMA microstructuté??we have

(1= b1, L= ¢ (99

With Eq. (95), we see that relatiotb1) for o has the iden-

tical form as Eq(36) for oy, in the two-phase case. Hence (a)
our TPA2 Eqgs(46) and(51) coincides with the exact value

Eq. (37) for two-phase EMA microstructure, i.e.,

orea=P,((d—1)0g) =0ema=P,((d—1)ogua). (96)

Thus, in the two-phase case, our TPA2 E@E) and (51)
may be interpreted as a three-point generalization of EMA,
while the classical EMA expression E(B7) is the corre-
sponding two-point version.

Next, consider the Hashin—Shtrikman two-phase coated
spheres model, which consists of composite spheres that are
composed of a spherical core, of conductivity, and radius
a, surrounded by a concentric shell of conductivity and
outer radiusb. The ratio @/b)® is fixed and equal to the
inclusion volume fractionp,. The composite spheres fill all
space, implying that there is a distribution in their sizes rang-
ing to the infinitely small[see Fig. 1a)]. For this coated
spheres modeAﬁV have been determined explicifiywhich
for generald-dimensional composites can be given as

A= A= - A= 10,

(b)

ARl=AZ= —AL%=0. ©7 (©)

Hence, from Eq(55) one finds
61=1, {»=0. (98)

Consequently, from Eqg93) and (94), one obtainso§>Y
=o$Y=¢,, and the bounds Ed88) coincide to yield the
exact effective conductivity

oe=P,((d=1)oy). (99

S

. . L . . . FIG. 1. Schematic illustrations of three different coated-spheres mdédgls:
This relation coincides with the Maxwell approximation and Hashin—Shtrikman two-phase coated-spheres assemblagdwo-phase

Hashin—Shtrikman upper boun@vhen o,<o;) or lower  mixed-coated-spheres assemblage;@hchultiphase doubly coated spheres
bound(wheno,> ). The result Eq(99) was also obtained ~assemblage.

by direct solution of the respective conductivity problém,

which in turn leads to E¢(98). Relation(99) is also realiz-

able by certain laminatésand thus are also optimal. With d—1

Eg. (98), the solution of Eq.51) should becy=0,, and A'=A%=—Al%= ) D1y,

from Eq. (46) we get the same formula E9). Thus, for

two-phase coated spher@s well as other optimal mode)s -1 (100
our three-point approximation also coincides with the exact ~ A3'=A3*= —A%ZZT D1brdin,
result.
A generalization of the Hashin—Shtrikman coated-and from Eq.(55)
spheres model is the mixed-coated-spheres nfédelis mi-
P P L= ¢, 2= dra. (101

crostructure consists of a mixture of the two types of coated
spheres corresponding to the Hasin—Shtrikman upper and As an example, consider the case/o;=20. The
lower bounds at a fixed volume fraction. Thus, an additionaHashin—Shtrikmar(HS) bounds Eq.(44), three-point(TP)
parameter is the proportion of coated spheres in which phadeounds Eqs(78) and(80), and the three-point approximation

a is the included phase and phagé#a) is the matrix, (TPA2) Egs.(46) and(51) are compared in the plange,/o;
which we denotes by, ;. Clearly, ¢1o+ do1= 1+ d,=1.  versus¢, [see Fig. 2a)]. In Fig. Ab), the three-point ap-
For this geometryFig. 1(b)], the microstructural parameters proximation is plotted versug,, in the range 6 ¢,;<1,

have been determined analyticaifyThe d-dimensional gen-  the extreme cases corresponding to the Hashin—Shtrikman’s
eralizations are given by upper and lower bounds, respectively.
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(b) b,

FIG. 2. (a) Comparison of the three-point approximati¢fiPA2) (solid
curve for a two-phase mixed-coated-spheres model dgf o, =20, ¢,
=0.6 to the HS bound&lotted curvesand the TP bound&lashed curves
(b) The TPA2 for the mixed-coated-spheres model for a range.gfwith

o,lo1=20.

B. Periodic and random dispersions of spheres
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20 T T y T y T y T T
| [-- EMA Face-Centered-Cubic Array |
157 .- 1pAl| , * !
| | =_TPA2 'l |
- :
L, 10F ! '
© i
i |
- !
!
= -
‘ -
0 s | 1 | |
0 0.2 0.4 0.6 0.8 1
(@ 9,
60 y T y T y T T T T
50__ Hexagonal Array v %I\t/[:A i
L o 2/0 = — TPAI |

» 30

c/o

(b)

FIG. 3. Comparison of simulation dat®efs. 32 and 3Bfor the effective
conductivity of equisized ordered superconducting particles to relations
(37), (40), (42), and(46) for the EMA, MA, TPA1, and TPA2, respectively:

(a) face-centered-cubic spher@ef. 32 and(b) hexagonal array of aligned
circular cylinders(see Ref. 3B

Interestingly, our approximation predicts a nontrivial

Here we apply our approximation to various periodic microstructure—dependent percolation threshold. For the su-

and random dispersions of spheres. The three-point micrg2érconducting and perfectly insulating cases, it predicts a
structural parametets, for these models are available in the Percolation threshold af>.=1/d and {,c=(d—1)/d, re-
literature®?’-3" We consider the infinite-phase contrast SPectively. The corresponding threshold in terms of volume
cases: superconducting inclusions in a normal conductdfaction ¢, is easily found from the functiogz(¢,) tabu-
(O-Z/O-l: oo) and perfectly insu'ating inclusions in a normal lated in the aforementioned literature. One cannot eXpeCt a

conductor ¢-,/0,=0). These are the most stringent test of three-point approximation to yield accurate estimates of the

our approximation. Relatiofb1) in these instances yields

( 1
o1/(1-d{) if =y

(TO_< ’

\oo if §2>a

(0-2/0-1200)1
( d , d-1
1-g=1%2)o if fo=—5—

(TO:<

0 i d-1
= —
L I §2 d

(02l01=0).

(102

(103

percolation threshold, which requires higher-order micro-
structural (clustering information. It is interesting to note,
however, that for some two-dimensionahther than three-
dimensional cas¢sEqgs. (102 and (103 yield reasonable
estimates ofp,. . For example, for a two-dimensional square
array, Eq.(102 predicts ¢,.~0.775, which is to be com-
pared to the exact resuf,.= 7/4~0.785.

The predictions of our TPA2 for the effective conductiv-
ity are compared to simulation data for certain periodic
dispersion®2® [see Figs. & and 3b)] and random
dispersion¥ 3" [see Figs. @), 4(b), and § over large
ranges of volume fractiong,. We include in the figures
relations(37), (40), and(42) for the EMA, MA, and TPA1,
respectively. We see that both the TPALl and TPA2 are rela-
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10 y i T T T T T T T J T T T T T
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sl ! L] . 0.3 0,/0,=0 = TPAl| T
” 02/01= oo J — TPA2
! - EMA |
_ 6 ! . 0.6
L | )
e’ ] ® data o’
4 - MA y 041
- TPAl
— TPA2 3
o -- EMA
2 7 0.2
[
0 l | | | 0 \
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
@) o, 0,
FIG. 5. Comparison of simulation dataee Ref. 3y for the effective con-
ductivity of equisized random dispersions of overlapping insulating spheres
8 T T T T T T ® | to relations(37), (40), (42), and(46) for the EMA, MA, TPA1, and TPA2,
® data | Random Hard Cylinders / respectively.
- MA 02/0‘1= oo 4

= TPAlL

volume proportions and coating orders of the phases in all
N-compound spheres are the same. The microstructural pa-
rameters of thidN-phase model have also been determined
exactly?® which in d-dimensional space can be expressed as

0.8

FIG. 4. Comparison of simulation dataee Refs. 34—36or the effective
conductivity of equisized random superconducting particles to relations
(37), (40), (42), and(46) for the EMA, MA, TPA1, and TPA2, respectively:

(a) random dispersions of hard sphefese Ref. 35 and(b) random dis-
persions of hard circular cylindefsee Refs. 34 and 36

tively good predictors ofr, up to high volume fractiong,

(a,B8,7=1,..N)

1 -1
5 %%m(ﬁ% b5 2 ¢K> ,

AB“V:

By<a
d-1 -1

Azﬁ:—Tm%(gam) . B<a;

(104

> &

KSa

d-1 -1
Agaz ¢a2 d’&( ) ) a>2,
d o<a
APY=0 if B>a or y>a or a=B=y=1.

For example, for the three-phase doubly-coated spheres

of the included phase close to the percolation thresholdin three dimensions, Eq4104) becomes

where higher-order information is clearly required to be
more accurate. For superconducting cases in three dimen-
sions, the TPA1 is slightly more accurate than the TPA2 for
the ordered array but the reverse is true for the disordered
array. For superconducting cases in two dimensions, the
TPAL and TPA2 are comparable, except at high volume frac-
tions where the TPA2 is more accurate. In the case of per-
fectly insulating overlapping spheres, the TPA1 and TPA2
are again comparable, but the TPA2 is superior at high

Al=p2e=p3e=p3a=( =123
AF=AG'= —AP=Ld1do( b1t dp) T,
AT=3¢s(d1t ¢2).  AF= 3414,
AS=—3¢ada,  AT=Sd1dada( it o)

AF'=3d2pa( 1+ o)L AT=3d5ba(dit b))

(105

sphere volume fractions. The TPA2 is most accurate fowhile Eq.(87) yields

simple periodic systems, followed by random dispersions of
hard cylinders and spheres, and least accurate for overlap-

ping cylinders and spheres.

C. Multicoated spheres

Another generalization of the Hashin—Shtrikman two-
phase coated-spheres assemblage ifNtphase multicoated
spheres modéf Here spheres of phase 1 are coated with
spherical shells of phase 2, which in turn are coated with
spherical shells of phase 3,[see Fig. {c)]. The relative

Ar11= 31— 345 +263) — h1(AF+AZY,
Agzo=3( o= 35+ 23) + AP~ o AZ*+ AT,
A11= 3245 ho— drdb2) — d1(AF+ AT,
Ag11= 320 dho— h1b2) + A5 = da(AFT AT,
Ap1o= 5251~ 1) + AT~ ba( AP+ A,
A122= 5(2b5¢1— b1eha) — pa(AF+AF).

(106)
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20 y T T T T T g T (83), and TPA2 Eqs(46) and(53) are plotted in Fig. @). It
" Doubly-Coated Spheres - HS bounds| | is interesting to find that the TP bounds E¢&1)—(83) with
18 — exact 7 relations(105 and(106) concide to yield the exact effective
0,:0,:0;=10:20:1 == TPA2 1 conductivity of the doubly coated spheres model.
16r ] In Table I, we takeo,=100, 03=200(01<0,
S e, | <o3), ¢$,=0.1-0.9, d’_l:%(l_(f’z):_d’s:g(l_d’z), and
<o | Tt collect the exact effective conductivity values of the doubly
o S B coated spheres model at different coating orders: 1-3-2,
- e 1 1-2-3, 2-1-3, 2-3-1, 3-2-1, and 3-1-2. The HS uppeBU)
o- and lower HS(HSL) bounds are also given for comparison.
L Some of these results are plotted in Figb)6together with
8 the respective TPA2 resultd6) and(53). It is interesting to
5 012 ) 0{4 . 0‘6 : 0{8 observe that the model with highest conductivity is 1-3-2

@) ) 0, ) (but not 1-2-3, and the model with lowest conductivity is
3-1-2(not 3-2-1), in which the matrix phases are not the ones
with extremal conductivities. Note also that most of the exact
and approximation values are close to the Hashin—Shtrikman

20 T T ' ' ] upper or lower bounds, except those for the model 2-1-3,
sk Doubly-Coated Spheres . Ill_g_gogr(lﬁt | which falls between the bounds. _ .
6,:0,:6,=1:10:20 — 132TPA2| | The fact that TP bounds Eq81)—~(83) with relations
161 . % i gexact (105 and(106) yield exact effectlv_e c_ondu_ct|V|t|es for dou-
i A 312 bly coated spheres that do not coincide with the TPA2 value
v 14+ == 3-1-2 indicates that our TPA2 Eq#46) and(53) is not as accurate
ot for generalN-phase composites as for two-phase ones. The
12} TPA2 does not always yield the best possible approximation
- and it may even violate certain three-point bounds using the
10f same available geometric informatidalthough it always
i falls within the two-point Hashin—Shtrikman bounds as con-
8 ) . . | _ . ‘ . firmed). Therefore, in the generdl-phase case, this approxi-
0 0.2 0.4 0.6 0.8 mation should be used in conjunction with bounds. One can
(b) o, use computer simulation to verify that TP bounds E§4)—

i i o (83) with relations(87) and(104) converge to yield the exact
FIG. 6. Comparison of exact effective conductivity values to the HS bounds

Eq. (44) and the TPA2 Eq(46) for a three-phase doubly coated spheres effective conductivity of generalN-phase multicoated
model: (@ o,=1003, 0,=2003, ¢,=0.1-0.9, ¢,=a(1— 1), b3 spheres. _ .
=%(1—¢1), conventional coating order 1-2¢Bhase 1 in phase 2 in phase We can also generalize the model further: consider a
3) and (b) 0,=100,, 03=200;, $,=0.1-0.9, ¢1=(1—&,), ¢; random mixture of multicoated spheres of different kinds,
= %(1— ¢,), for coating orders: 1-3-2phase 1 embedded in phase 3, and €ach of which has different coating order. The only restric-
then in phase 2 2-1-3, and 3-1-2. tion is that the volume proportions of the constituent materi-

als in all of the compound spheres are the same. For such

generalized models, the three-point microstructural param-

For numerical illustrations, we taker;=1003, o> etersAﬁf7 can also be determined explicitly, however the TP

=2003, ¢,=0.1-0.9, ¢,=2(1— 1), ¢3==%(1—;), bounds Eqs(81)—(83) generally should not converge, as evi-
conventional coating order 1-2{Bhase 1, then phase 2, then denced by the two-phase mixed-coated-spheres model
phase 3 The HS bounds Eq44), TP bounds Eqs(81)— considered.

TABLE |. Exact effective conductivities for doubly coated spheres models at various embedding orders, and
HSU and HSL bounds. Here we take=100;, 03=200; (01<0,<03), ¢,=0.1-0.9, ¢;= %(1—¢2),

b3=a(1— ).

b, HSU 1-3-2 1-2-3 2-1-3 2-3-1 3-2-1 3-1-2 HSL
0.1 14.377 14.348 14.248 13.616 8.014 7.988 7.919 7.895
0.2 13.853 13.804 13.673 12.601 8.318 8.266 8.136 8.092
0.3 13.339 13.277 13.146 11.809 8.614 8.538 8.356 8.296
0.4 12.835 12.765 12.649 11.197 8.897 8.802 8.580 8.510
0.5 12.340 12.270 12.174 10.735 9.163 9.053 8.807 8.732
0.6 11.855 11.789 11.715 10.399 9.404 9.288 9.038 8.963
0.7 11.378 11.322 11.270 10.170 9.615 9.504 9.273 9.205
0.8 10.911 10.869 10.837 10.034 9.789 9.697 9.511 9.458
0.9 10.451 10.428 10.414 9.981 9.920 9.864 9.754 9.723
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