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Strong-contrast expansions and approximations for the effective
conductivity of isotropic multiphase composites

D. C. Pham and S. Torquatoa)

Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton,
New Jersey 08544

~Received 27 May 2003; accepted 27 August 2003!

We extend the previous approach of one of the authors on exact strong-contrast expansions for the
effective conductivityse of d-dimensional two-phase composites to case of macroscopically
isotropic composites consisting ofN phases. The series consists of a principal reference part and a
fluctuation part~a perturbation about a homogeneous reference or comparison material!, which
contains multipoint correlation functions that characterize the microstructure of the composite. The
fluctuation term may be estimated exactly or approximately in particular cases. We show that
appropriate choices of the reference phase conductivity, such that the fluctuation term vanishes,
results in simple expressions forse that coincide with the well-known effective-medium and
Maxwell approximations for two-phase composites. We propose a simple three-point approximation
for the fluctuation part, which agrees well with a number of analytical and numerical results, even
when the contrast between the phases is infinite near percolation thresholds. Analytical expressions
for the relevant three-point microstructural parameters for certain mixed coated and multicoated
spheres assemblages~extensions of the Hashin–Shtrikman coated-spheres assemblage! are given. It
is shown that the effective conductivity of the multicoated spheres model can be determined exactly.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1619573#
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I. INTRODUCTION

The prediction of the effective properties of compos
materials has a rich history1–3 and is still an active area o
research. In general, the effective properties of a compo
depend on an infinite set of correlation functions that sta
tically characterize the medium.4 In the case of the effective
conductivity se of composite materials, our concern in th
present work, a number of different approximation schem
have been devised.1,5–7 Upper and lower bounds on the e
fective conductivity have been derived using variation
principles.8–13 For those composites in which the variatio
in the phase conductivities are small, formal solutions to
boundary-value problem have been developed in the form
weak contrast perturbation series.14,10 Due to the nature of
the integral operator, one must contend with conditiona
convergent integrals, which can be made convergent usin
ad hoc normalization procedure.15 Alternatively, Brown16

constructed a strong-contrast expansion of the effective c
ductivity of three-dimensional two-phase isotropic media
powers of rational functions of the phase conductivities.

The strong-contrast expansion approach has been fu
developed for the effective conductivity ofd-dimensional
macroscopically anisotropic composites consisting of t
isotropic phases by introducing an integral equation for
cavity intensity field.4,17,18The expansions are not formal b
rather thenth-order tensor coefficients are given explicitly
terms of integrals over products of certain tensor fields an
determinant involvingn-point statistical correlation function

a!Author to whom correspondence should be addressed; electronic
torquato@princeton.edu
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that render the integrals absolutely convergent in the infin
volume limit. Thus, no renormalization analysis is requir
because the procedure used to solve the integral equa
systematically leads to absolutely convergent integrals.
other useful feature of the expansions is that they can p
vide accurate estimates for all volume fractions when tr
cated at finite order, even when the phase conductivi
differ significantly.

In this paper, we extend the strong-contrast expans
approach of Torquato4 to the case of macroscopically isotro
pic composites consisting ofN isotropic phases. The serie
expansions, which perturb about a homogeneous refere
material, involve a principal reference term and a fluctuat
term that perturbs about the reference medium. Based o
specified level of correlation information about the micr
structure of the composite, we devise accurate approxi
tions for the effective conductivity by choosing an approp
ate equation for the conductivity of the referen
~comparison! material, a free parameter in the theory. T
approximation is tested against available benchmark ana
cal and numerical results for various models of dispersio
We find that the approximation generally provides very go
agreement with these benchmark results.

In Sec. II, we derive strong-contrast expansion for t
effective conductivity of macroscopically isotropic mult
component composites. Approximation schemes based
the expansion are constructed in Sec. III, including a thr
point approximation, i.e., one that contains microstructu
parameters that depends on three-point corelation functi
Section IV investigates the restrictions upon the three-po
parameters. Section V collects well-known three-po
bounds for comparison with our three-point approximatio
il:
1 © 2003 American Institute of Physics
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Our three-point approximation is applied to a number
coated spheres and dispersion models and is compared
simulation results and bounds in Sec. VI.

II. STRONG-CONTRAST EXPANSIONS

We derive strong-contrast expansions of the scalar ef
tive conductivity of a macroscopically isotropic multipha
composite. The derivation is a direct and straightforward
tension of the one given by Torquato4 for a macroscopically
anisotropic two-phase composite. The reader is referre
this reference for greater details of the derivation.

Consider a large macroscopically isotropic compos
specimen in arbitrary space dimensiond comprised ofN iso-
tropic phases having conductivitiessa and volume fractions
fa (a51,...,N). The microstructure is perfectly general b
possesses a characteristic microscopic length scale th
much smaller than that of the specimen. Thus, the speci
is virtually statistically homogeneous. Ultimately, we sh
take the infinite-volume limit and hence consider statistica
homogeneous media. The local scalar conductivity at p
tion x is expressible as

s~x!5 (
a51

N

saI~a!~x!, ~1!

where

I~a!~x!5H 1, x in phasea,

0, otherwise
~2!

is the indicator function for phasea (a51,...,N). For statis-
tically homogeneous media, the ensemble average of th
dicator function is equal to the phase volume fractionfa ,
i.e.,

^I~a!~x!&5fa , ~3!

where angular brackets denote an ensemble average. Th
cal conductivitys~x! is the coefficient of proportionality in
the linear constitutive relation

J~x!5s~x!E~x!, ~4!

whereJ~x! denotes the local electric~thermal! current or flux
at positionx, andE~x! denotes the local field intensity. Unde
steady-state conditions with no source terms, conservatio
energy requires thatJ~x! be solenoidal

“"J~x!50, ~5!

while the intensity fieldE~x! is taken to be irrotational

“ÃE~x!50, ~6!

which implies the existence of a potential fieldT(x), i.e.,

E~x!52“T~x!. ~7!

ThusE~x! andT(x) represent the electric field~negative of
temperature gradient! and electric potential~temperature! in
the electrical~thermal! problem, respectively.

Now, following Torquato,4 let us embed this
d-dimensional composite specimen in an infinite refere
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
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phase having conductivitys0 , which is subjected to an ap
plied electric fieldE0(x) at infinity. Introducing the polariza-
tion field defined by

P~x!5@s~x!2s0#E~x! ~8!

enables us to reexpress the fluxJ, defined by Ohm’s law~4!,
as follows:

J~x!5s0E~x!1P~x!. ~9!

The vectorP~x! is the induced flux polarization field relativ
to the reference medium.

Using the infinite-space Green’s function of the Lapla
equation for the reference medium corresponding to
problem, Eqs.~4!–~7!, we find that the electric field satisfie
the integral relation4

E~x!5E0~x!1E dx8G~0!~r !•P~x8!, ~10!

where

G~0!~r !52D~0!d~r !1H~0!~r !, ~11!

D~0!5
1

ds0
I , H~0!~r !5

1

Vs0

dnn2I

r d
, ~12!

r5x2x8, n5r /ur u, d~r ! is the delta Dirac function,I is the
second order identity tensor,V(d) is the total solid angle
contained in ad-dimensional sphere given by

V~d!5
2pd/2

G~d/2!
, ~13!

and G(x) is the gamma function. In particular,V~2!52p,
V~3!54p. In relation~11!, the constant second order tens
D(0) arises because of the exclusion of the spherical cav
and it is understood that integrals involving the second or
tensorH(0) are to be carried out by excluding atx85x an
infinitesimal sphere in the limit that the sphere radius shrin
to zero. Moreover, the integral ofH(0)(r ) over the surface of
a sphere of radiusR.0 is identically zero, i.e.,

E
r 5R

H~0!~r !dV50. ~14!

Substitution of Eq.~11! into expression~10! yields an
integral equation for the cavity intensity fieldF~x!

F~x!5E0~x!1E
e
dx8H~0!~x2x8!•P~x8!, ~15!

where we define

E
e
dx8 f ~x,x8!5 lim

e→0
E

ux2x8u.e
dx8 f ~x,x8!. ~16!

The cavity intensity fieldF~x! is related toE~x! through the
expression

F~x!5$I1D~0!@s~x!2s0#%•E~x!. ~17!

Combination of the expressions~8! and ~17! gives a re-
lation between the polarization and cavity intensity fields

P~x!5L~x!F~x!, ~18!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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where

L~x!5s0d
s~x!2s0

s~x!1~d21!s0
5s0 d (

a51

N

ba0I~a!~x!,

~19!

ba05
sa2s0

sa1~d21!s0
,

and we have used Eqs.~1! and ~2!.
The effective conductivityse for the macroscopically

isotropic composite can be defined through an expres
relating the average polarization to the average Lorentz fi
i.e.,

^P~x!&5Le•^F~x!&, ~20!

where

Le5LeI , Le5s0d
se2s0

se1~d21!s0
. ~21!

The constitutive relation~20! is localized, i.e., it is indepen
dent of the shape of the composite specimen in the infin
volume limit. This relation is completely equivalent to th
averaged Ohm’s law that defines the effective conductivi

^J~x!&5se^E~x!&. ~22!

We want to obtain an expression for the effective co
ductivity se from relation~22! using the solution of the in-
tegral Eq.~15!, which is recast as

F~1!5E0~1!1E
e
d2H~0!~1,2!•P~2!, ~23!

where we have adopted the shorthand notation of repres
ing x andx8 by 1 and 2, respectively. In schematic opera
form, this integral equation can be tersely rewritten as

F5E01H~0!P. ~24!
e

so

o
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Multiplying this relation by the scalarL(x) defined by Eq.
~19!, yields

P5LE01LH~0!P. ~25!

A solution for the polarizationP in term of the applied field
E0 can be obtained by successive substitutions using
~25!, with the result

P5LE01LH~0!LE01LH~0!LH~0!LE01...5SE0 , ~26!

where the second-order tensor operatorS is given by

S5L~ I2LH~0!!21. ~27!

Ensemble averaging Eq.~26! gives

^P&5^S&E0 . ~28!

The operator̂ S& involves products of the tensorH(0),
which decays to zero liker 2d for large r, and hencêS& at
best involves conditionally convergent integrals. In oth
words, ^S& is dependent upon the shape of the compo
specimen. In order to obtain a local~shape-independent! re-
lation between average polarization^P& and average Lorentz
field ^F& as prescribed by Eq.~22!, we must eliminate the
applied fieldE0 in favor of the appropriate average field
Inverting Eq.~28! yields E05^S&21^P&. Averaging Eq.~24!
and eliminating the applied fieldE0 yields

^F&5Q^P&, ~29!

where

Q5^S&211H~0!. ~30!

Comparing expressions~20! and ~29! yields the desired
result for the effective tensorLe :

Le
215Q5H~0!1^S&215H~0!1^L~ I2LH~0!!21&21.

~31!

The first few terms of the expansion Eq.~31! are explicitly
given by
Le
21~1!5E d2Q~1,2!5

I ~1!

^L~1!&
2E d2S ^L~1!L~2!&2^L~1!&^L~2!&

^L~1!&^L~2!& DH~0!~1,2!

2E E d2d3S ^L~1!L~2!L~3!&

^L~1!&^L~2!&
2

^L~1!L~2!&^L~2!L~3!&

^L~1!&^L~2!&^L~3!& DH~0!~1,2!•H~0!~2,3!2... ~32!
y

an-
The general term contains then-point correlation functions
^L(1)...L(n)&. The explicit expression for any term in th
series can be given as in Ref. 4.

Let us introduce the property-independent dipole ten

t~r !5s0H~0!~r !5
dnn2I

Vr d
. ~33!

Substituting Eqs.~19! and~33! into Eq. ~32! and taking into
account thatt is traceless, we take the trace of both sides
Eq. ~32!. We then multiply them withs0((afaba0)2 to ob-
tain the relation for our macroscopically isotropic media
r

f

se1~d21!s0

se2s0
S (

a
faba0D 2

2(
a

faba0

5A~s0 ,s1 ,...,sN ,microstructure!. ~34!

Here A(s0 ,s1 ,...,sN ,microstructure) is a scalar quantit
that depends on the reference conductivitys0 , phase con-
ductivities s1 ,...,sN , and the microstructure vian-point
correlation functions. The left side of Eq.~34! is referred to
as the principal reference term of the strong-contrast exp
sion, while the right side, given byA is the fluctuation term
relative to the reference medium of conductivitys0 .
Through the lowest three-point term in the series,A is ex-
plicitly given by
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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A~s0 ,s1 ,...,sN ,microstructure!52dF (
a,b,g

ba0bb0bg0E E d2d3^I~a!~1!t i j ~1,2!I~b!~2!t i j ~2,3!I~g!~3!&

2 (
a,b,g,d

ba0bb0bg0bd0

(kfkbk0
E E d2d3^I~a!~1!t i j ~1,2!I~b!~2!&^I~g!~2!t i j ~2,3!I~d!~3!&G

2... . ~35!
e
th

n

m

th
a
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Here conventional summation on repeating Latin indic
~from 1 to d! is assumed, and the Greek indices under
sum run from 1 toN.

III. APPROXIMATION SCHEMES

A. Connections to previous estimates

The effective medium approximation~EMA! sEMA ~also
known as the self-consistent scheme!5,7 is the solution of the
equation

(
a51

N

fa

sa2sEMA

sa1~d21!sEMA
50. ~36!

Equivalently, we can rewrite this via the property functio
Ps

se5sEMA5Ps~~d21!sEMA!, ~37!

where

Ps~s* !5F (
a51

N
fa

sa1s*
G21

2s* . ~38!

This approximation is exact for a certain hierarchical co
posite consisting of spherical grains.19 As s0→sEMA ~while
se5sEMA), the left-hand side of Eq.~34! approaches 0, and
hence for the EMA microstructure we have

A~se ,s1 ,...,sN ,EMA microstructure!50. ~39!

For two-phase microstructures that are optimal when
volume fraction is specified, such as the Hashin–Shtrikm
coated-spheres assemblage,8 we have

se5Ps@~d21!sM#, ~40!

wheresM is the property of the connected matrix phase
the optimal geometry. Thus Eq.~34! also yields

A~sM ,s1 ,s2 ,optimal two-phase microstructure!50.
~41!

Formula ~40! is sometimes called the Maxwell approxim
tion ~MA ! ~also known as the Maxwell–Garnett o
Clausius–Mossotti approximation!.

B. Multipoint approximations

The fluctuation termA depends on the microstructure
the composite and generally can only be evaluated by s
numerical scheme. Torquato17 used the strong-contrast ex
pansion to develop a three-point approximation~henceforth
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
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referred to as TPA1! for the effective conductivity of two-
phase composites that can be regarded to perturb abou
Hashin–Shtrikman structures4

se

s1
5

11~d21!f2b212~d21!f1z2b21
2

12f2b212~d21!f1z2b21
2 ~TPA1!,

~42!

whereza is a three-point microstructural parameter defin
by Eqs.~48! and~49!. Here the reference phase is taken to
phase 1.

We will now derive a different three-point approxima
tion for multiphase composites based on the results E
~36!–~41!. Let us assume that we have an explicit appro
mationAapprox for the fluctuation termA for a specific com-
posite. Guided by the discussion of Sec. III A, our strategy
to chooses0 to be the solution of the equationAapprox50,
and from Eq.~34! deduce the respective approximationse

5Ps@(d21)s0#. Let us assume thatAapprox5An , where
An is the seriesA truncated after then-point correlation
term. From Eq.~34!, we deduce the respectiven-point ap-
proximation for the effective conductivity

se5Ps~~d21!s0!, An~s0!50. ~43!

Clearly, atn→`, we should get the exact value of th
effective conductivity for an arbitrary microstructure. F
any microstructure, we expect thats0 should lie within the
interval @smin ,smax# for se in order to satisfy the Hashin–
Shtrikman bounds,8 which can be expressed as

Ps~~d21!smax!>se>Ps~~d21!smin!, ~44!

where

smax5max$s1 ,...,sN%, smin5min$s1 ,...,sN%. ~45!

For example, let us takeAapprox5A3 . Since three-point
microstructural information is now available for a variety
different microstructures, we are especially interested in
three-point approximation~TPA2!:

se5Ps~~d21!s0! ~TPA2!, ~46!

wheres0 is the solution of equation

A3~s0!50. ~47!

We call this TPA2 to distinguish it from TPA1 given by Eq
~42!. Both three-point approximations are exact through th
order in the difference in the phase conductivities.

In the special two-phase case, three-point correlat
function information arises via the microstructural para
etersza (a51,2),4,20,21which for d52
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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za5
4

pf1f2
E

0

` dr

r E
0

` ds

s E
0

p

du cos~2u!FS3
~a!~r ,s,t !

2
S2

~a!~r !S2
~a!~s!

S1
~a! G , ~48!

and ford53

za5
9

2f1f2
E

0

` dr

r E
0

` ds

s E
21

1

d~cosu!

3P2~cosu!FS3
~a!~r ,s,t !2

S2
~a!~r !S2

~a!~s!

S1
~a! G , ~49!

whereP2 is the Legendre polynomial of order 2 andu is the
angle opposite the side of the triangle of lengtht, and

Sn
~a!~x1 ,¯,xn!5^I~a!~x1!¯I~a!~xn!&. ~50!

It is also known4,20,21 that z1>0, z2>0, and z11z251.
Through the microstructural parametersz1 and z2 , relation
~47! can be given simply as

z1

s12s0

s11~d21!s0
1z2

s22s0

s21~d21!s0
50. ~51!

We can further simplify Eq.~47! for N>2. According to
the ergodic hypothesis, we could substitute the ensemble
erages in Eq.~35! by volume averages over the volume
the macroscopic sampleV, which we can take for conve
nience to be spherical. Thus, for a statistically homogene
and isotropic medium of spherical volumeV, we have

E ^I~a!~x!t i j ~x,y!I~b!~y!&dy

5E
V
E

V
I~a!~x!t i j ~x,y!I~b!~y!dx dy50. ~52!

Then Eq.~47! can be written as

(
a,b,g

ba0bb0bg0Ab
ag50, ~53!

where

Ab
ag5E

V
E

V
E

V
d1d2d3I~a!~1!t i j ~1,2!I~b!~2!

3t i j ~2,3!I~g!~3!. ~54!

Note the symmetry ofAb
ag in the indicesa andg, but not in

b. The sum on the left side of Eq.~53! is of quadratic form in
the variablesba0 , bg0 (a,g51,...,N), the sign of which de-
pends on those ofbb0 (b51,...,N). Hence, ats05smin , the
sum is positive, while ats05smax, it is negative, with the
solutions0 of Eq. ~53! lying between these extreme value
Consequently, the TPA2 from Eqs.~46! and ~53! should al-
ways fall inside the Hashin–Shtrikman bounds Eq.~44!. For
N52, the microstructural parametersza is related toAa

aa via

Aa
aa5

d21

d
f1f2za , a51,2. ~55!
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
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C. Alternative approaches

We note thatLe of Eq. ~31! can also be expanded as

~Le
212H~0!!215^S&5^L~ I2LH~0!!21&

5^L&I1 (
n51

`

^L~LH~0!!n&, ~56!

where we have used an obvious short-hand notation in
second line of Eq.~56!. If we takes0 such that the last sum
in Eq. ~56! vanishes, then we deduce

~Le
212H~0!!215^L&I→Le

215H~0!1^L&21I . ~57!

In the same manner as that of the previous section, we ob
the expression

se5Ps~~d21!s0!, ~58!

wheres0 is the solution of the equation

Â~s0 ,s1 ,...,sN ,microstructure!50, ~59!

Â5 (
n52

`

dn (
a1 ,...,an

ba10ba20 ...ban0E ¯E d2...dn

3^I~a1!~1!t i j ~1,2!I~a2!~2!...t l i ~n21,n!I~an!~n!&.

~60!

At the three-point approximation level, Eqs.~58!–~60!
leads to the same result Eqs.~46! and ~53! of the previous
subsection.

Moreover we see that Eq.~31! can also be given as

Le~ I2LeH
~0!!215^L~ I2LH~0!!21&, ~61!

which can be expanded as

LeF I1 (
k51

`

^~LeH
~0!!k&G5^L&I1 (

k51

`

^L~LH~0!!k&. ~62!

Taking nth approximation of Eq.~62! gives

LeF I1 (
k51

n21

^~LeH
~0!!k&G5^L&I1 (

k51

n21

^L~LH~0!!k&. ~63!

If we takes0 as to make the last sum of the right-hand of E
~63! vanish@c.f. Eqs.~59! and ~60!#, then at the three-poin
approximation, Eq.~63! leads to the same result Eqs.~46!
and ~53!.

IV. THREE-POINT MICROSTRUCTURAL PARAMETERS

As in the two-phase case, there exist some relations
tween the microstructural parametersAb

ag . From Eq.~54!,
we see that they are symmetric in the indicesa andg. Con-
sider a spherical representative elementV of the composite
with phasea occupying regionsVa (a51,...,N). For sim-
plicity and without loss of generality we take the volume
V to be unity, and hence the volume ofVa is equal to the
volume fractionfa . Let us introduce the harmonic poten
tials

w~x!5E
V
G~x2y!dy, “

2w~x!51, xPV; ~64!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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wa~x!5E
fa

G~x2y!dy, “

2wa~x!5dab , xPfb ;

~65!

whereG(r ) (r 5ux2yu) is the respective Green function

G~r !55 2
1

2p
lnS 1

r D , d52

2
1

~d22!V

1

r d22
, d>3

, ¹2G5d~r !.

~66!

We have

G,i j 5
d i j

d
d~x2y!2t i j ,

~67!

t i j 5
dninj2d i j

Vr d
, ni5

xi2yi

r
,

where the Latin indices after a comma designate differen
tion with respective to position. If we denote

w i j
a~x!5w ,i j

a 2
1

d
d i j dab , xPfb , ~68!

then we have

Ab
ag5E

Vb

w i j
a w i j

g dx5E
V
E

V
E

V
dx dy dzI~a!~x!

3t i j ~x,y!I~b!~y!t i j ~y,z!I~g!~z!. ~69!

Note that

w ,i j 5
d i j

d
5 (

a51

N

w ,i j
a , ~70!

and hence we find that

E
Vg

w ,i j w ,i j
b dx5E

Vg

1

d
w ,i i

b dx5
dbg

d
fg , ~71!

and

E
Vg

w ,i j w ,i j
b dx5 (

a51

N E
Vg

w ,i j
a w ,i j

b dx

5 (
a51

N E
Vg

Fw i j
a w i j

b 1
1

d
dagdbgGdx

5 (
a51

N

Ag
ab1

dbg

d
fg . ~72!

Comparing Eqs.~71! and ~72!, we obtain relations betwee
the microstructural parameters

(
a51

N

Ag
ab50, ;b,g51,...,N. ~73!

In the two-component case Eq.~73! yields

A1
115A1

2252A1
12, A2

115A2
2252A2

12. ~74!

Keeping in mind Eq.~55! andz11z251, we have
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
a-

A1
111A2

225
d21

d
f1f2 . ~75!

Generally, aN-phase material with microstructural param
etersAb

ag (a,g,b51,...,N) can also be considered to be
two-phase material occupying regionsV̄I5øaPG I

Va , V̄II

5øaPG II
Va with respective microstructural paramete

Āb
ag (a,g,b5I,II). Here G I5$a1 ,...,ak%, G II

5$ak11 ,...,aN%, and $a1 ,...,ak ,ak11 ,...,aN% is any per-
mutation of $1,...,N%, and k is any number between 1 an
N21. By combining the relations Eqs.~65!, ~68!, ~69!, and
~75!, one can verify that

d21

d S (
aPG I

faD S (
aPG II

faD
5

d21

d
f̄ If̄ II5ĀI

I I1ĀII
II II

5 (
b,g,aPG I

Ab
ag1 (

b,g,aPG II

Ab
ag , ~76!

wheref̄ I andf̄ II are the volume fractions of regions I and I
respectively.

V. THREE-POINT BOUNDS

Here we summarize previous three-point bounds that
will subsequently apply. Thed-dimensional three-point Be
ran bounds14 for two-phase composites derived by Torquat4

are given by

s~3U !>se>s~3L !, ~77!

where

s~3U !5s1f11s2f2

2
f1f2~s12s2!2

s1f21s2f11~d21!~s1z11s2z2!
, ~78!

s~3L !5s1f11s2f2

2
f1f2~s12s2!2

s1f21s2f11~d21!~z1 /s11z2 /s2!21
.

~79!

Milton22 obtained a sharper lower bound for the cased53
ands2>s1

s~3L !/s15
11~112f2!b2122~f1z22f2!b21

2

11f1b212~2f1z21f2!b21
2

,

~80!

b215
s22s1

s212s1
.

For three-dimensionalN-phase composites, Phan-Thie
and Milton10 derive the following bounds:

s~3U !>se>s~3L !, ~81!

where
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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s~3U !5^s&2ds•G•~G1ds•A/^s&!21
•G•ds/3^s&,

~82!

1/s~3L !5^s21&22ds21
•G•~G1ds21

•~D

1A!/2^s21&!21
•G•ds21/3^s21&, ~83!

with (N21)-rank vectors and matrices

ds5$sa2sN%a51
N21, ds215$sa

212sN
21%a51

N21,

G5$Gab%a,b51
N21 , A5$Aabg%a,b,g51

N21 , ~84!

D5$Dabg%a,b,g51
N21 , Gab5H fa~12fa!, a5b

2fafb , aÞb
;

-

e
p-

Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
Dabg5H ~122fb!Gbg , a5b

2faGbg2fbGag , aÞb
.

Here ^ f (s)& for any functionf of s is given by

^ f ~s!&5 (
a51

N

fa f ~sa!. ~86!

The PhanThien–Milton microstructural parametersAabg can
be related to ourAa

bg via the expression

~85!

Aabg5
1

16p2 E E dr ds

rs S ]2

]r]sD
2

^Va8 ~0!Vb8~r !Vg8~s!&

5E
V
E

V
E

V
dx dy dz~I~b!~x!2fb!G,i j ~x,y!~I~a!~y!2fa!G,i j ~y,z!~I~g!~z!2fg!

5Aa
bg2fa (

d51

N

Ad
bg1

1

3
~fadabdag2fafbdbg2fbfgdag2fafgdba12fafbfg!. ~87!
-
the
-
qs.

al
q.

ns-

e

on
dis-
, the
n.

e
-

Three-point bounds ford-dimensionalN-phase compos
ites derived by Pham13,23 are given by

Ps~~d21!s0
~3U !!>se>Ps~~d21!s0

~3L !!, ~88!

wheres0
(3U) ands0

(3L) are the solutions of the equations

Qs
~3U !~~d21!s0

~3U !!50,
~89!

Qs
~3L !~~d21!s0

~3L !!50,

Qs
~3U !~~d21!s0!5 (

a,b,g
~sa2s0!Aa

bgXbXg , ~90!

Qs
~3L !~~d21!s0!5 (

a,b,g
~sa

212s0
21!Aa

bgXbXg , ~91!

Xb5^@s1~d21!s0#21&2@sb1~d21!s0#21. ~92!

In the two-phase case, relations~89! are solved explicitly as

s0
~3U !5

s1A1
111s2A2

22

A1
111A2

22
5z1s11z2s2 , ~93!

s0
~3L !5

A1
111A2

22

A1
11/s11A2

22/s2

5~z1 /s11z2 /s2!21. ~94!

If we imagine a fictitious composite withz1 andz2 be-
ing the volume fractions of the phases, thens0

(3U) ands0
(3L)

in Eqs.~93! and ~94! are, respectively, the ‘‘arithmetic’’ and
‘‘harmonic’’ averages. Moreover, the solutions0 of Eq. ~51!
is the ‘‘effective medium approximation’’ value, henc
s0

(3U)>s0>s0
(3L) , and consequently the three-point a
proximationPs(s0) from Eqs.~46! and ~51! should fall in-
side the three-point bounds Eqs.~88!, ~93!, and~94! for our
real composite. In the two-phase case, the bounds Eqs.~88!,
~93!, and~94! as well as the bounds Eqs.~81!–~83! coincide
with the bounds Eqs.~77!–~79!.

The bounds Eqs.~81!–~83!, and~88! and~89! have been
compared in Ref. 24 for the class ofN-phase (N>3) quasi-
symmetric~symmetric cell! materials using a symbolic alge
bra program and numerical simulation. It appears that
bounds yield the same results forN-phase spherical cell ma
terials. ForN-phase platelet cell materials, the bounds E
~81!–~83! appear tighter. However, the bounds Eqs.~88! and
~89! are simpler in functional form as well as computation
aspects. In the case ofN-phase spherical cell composites, E
~89! are also solved explicitly and yields0

(3U)5^s&, s0
(3L)

5^s21&21. Unsuccessful attempts have been made to tra
form Eqs.~81!–~83!, which involve multiplications and in-
versions of (N21)-rank matrices and vectors, into som
simple form similar to that of Eqs.~88! and ~89!.

VI. APPLICATIONS OF THE THREE-POINT
APPROXIMATION

In this section, we apply our three-point approximati
~TPA2! to certain multicoated spheres assemblages and
persions of identical spheres. In each of these instances
relevant three-point microstructural parameters are know

A. Analytical two-phase models

There are only very few nontrivial models, in which th
three-point microstructural parametersAa

bg have been deter
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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mined analytically. Here we discuss three such instances.
the two-phase EMA microstructure,19,22 we have

z15f1 , z25f2 . ~95!

With Eq. ~95!, we see that relation~51! for s0 has the iden-
tical form as Eq.~36! for sEMA in the two-phase case. Henc
our TPA2 Eqs.~46! and ~51! coincides with the exact valu
Eq. ~37! for two-phase EMA microstructure, i.e.,

sTPA5Ps~~d21!s0!5sEMA5Ps~~d21!sEMA!. ~96!

Thus, in the two-phase case, our TPA2 Eqs.~46! and ~51!
may be interpreted as a three-point generalization of EM
while the classical EMA expression Eq.~37! is the corre-
sponding two-point version.

Next, consider the Hashin–Shtrikman two-phase coa
spheres model, which consists of composite spheres tha
composed of a spherical core, of conductivitys2 , and radius
a, surrounded by a concentric shell of conductivitys1 and
outer radiusb. The ratio (a/b)3 is fixed and equal to the
inclusion volume fractionf2 . The composite spheres fill a
space, implying that there is a distribution in their sizes ra
ing to the infinitely small@see Fig. 1~a!#. For this coated
spheres model,Aa

bg have been determined explicitly,25 which
for generald-dimensional composites can be given as

A1
115A1

2252A1
125

d21

d
f1f2 ,

~97!
A2

115A2
2252A2

1250.

Hence, from Eq.~55! one finds

z151, z250. ~98!

Consequently, from Eqs.~93! and ~94!, one obtainss0
(3U)

5s0
(3L)5s1 , and the bounds Eq.~88! coincide to yield the

exact effective conductivity

se5Ps~~d21!s1!. ~99!

This relation coincides with the Maxwell approximation a
Hashin–Shtrikman upper bound~when s2,s1) or lower
bound~whens2.s1). The result Eq.~99! was also obtained
by direct solution of the respective conductivity problem8

which in turn leads to Eq.~98!. Relation~99! is also realiz-
able by certain laminates4 and thus are also optimal. Wit
Eq. ~98!, the solution of Eq.~51! should bes05s1 , and
from Eq. ~46! we get the same formula Eq.~99!. Thus, for
two-phase coated spheres~as well as other optimal models!,
our three-point approximation also coincides with the ex
result.

A generalization of the Hashin–Shtrikman coate
spheres model is the mixed-coated-spheres model.26 This mi-
crostructure consists of a mixture of the two types of coa
spheres corresponding to the Hasin–Shtrikman upper
lower bounds at a fixed volume fraction. Thus, an additio
parameter is the proportion of coated spheres in which ph
a is the included phase and phaseb~Þa! is the matrix,
which we denotes byfab . Clearly,f121f215f11f251.
For this geometry@Fig. 1~b!#, the microstructural parameter
have been determined analytically.26 Thed-dimensional gen-
eralizations are given by
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
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A1
115A1

2252A1
125

d21

d
f1f2f21,

~100!

A2
115A2

2252A2
125

d21

d
f1f2f12,

and from Eq.~55!

z15f21, z25f12. ~101!

As an example, consider the cases2 /s1520. The
Hashin–Shtrikman~HS! bounds Eq.~44!, three-point~TP!
bounds Eqs.~78! and~80!, and the three-point approximatio
~TPA2! Eqs.~46! and~51! are compared in the planese /s1

versusf2 @see Fig. 2~a!#. In Fig. 2~b!, the three-point ap-
proximation is plotted versusf21 in the range 0<f21<1,
the extreme cases corresponding to the Hashin–Shtrikm
upper and lower bounds, respectively.

FIG. 1. Schematic illustrations of three different coated-spheres models~a!
Hashin–Shtrikman two-phase coated-spheres assemblage;~b! two-phase
mixed-coated-spheres assemblage; and~c! multiphase doubly coated sphere
assemblage.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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B. Periodic and random dispersions of spheres

Here we apply our approximation to various period
and random dispersions of spheres. The three-point mi
structural parametersza for these models are available in th
literature.4,27–37 We consider the infinite-phase contra
cases: superconducting inclusions in a normal condu
(s2 /s15`) and perfectly insulating inclusions in a norm
conductor (s2 /s150). These are the most stringent test
our approximation. Relation~51! in these instances yields

s05H s1 /~12dz2! if z2<
1

d

` if z2>
1

d

,

~102!~s2 /s15`!,

s05H S 12
d

d21
z2Ds1 if z2<

d21

d

0 if z2>
d21

d

,

~s2 /s150!. ~103!

FIG. 2. ~a! Comparison of the three-point approximation~TPA2! ~solid
curve! for a two-phase mixed-coated-spheres model fors2 /s1520, f21

50.6 to the HS bounds~dotted curves! and the TP bounds~dashed curves!.
~b! The TPA2 for the mixed-coated-spheres model for a range off21 with
s2 /s1520.
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
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Interestingly, our approximation predicts a nontrivi
microstructure-dependent percolation threshold. For the
perconducting and perfectly insulating cases, it predict
percolation threshold atz2c51/d and z2c5(d21)/d, re-
spectively. The corresponding threshold in terms of volu
fraction f2c is easily found from the functionz2(f2) tabu-
lated in the aforementioned literature. One cannot expe
three-point approximation to yield accurate estimates of
percolation threshold, which requires higher-order mic
structural~clustering! information. It is interesting to note
however, that for some two-dimensional~rather than three-
dimensional cases!, Eqs. ~102! and ~103! yield reasonable
estimates off2c . For example, for a two-dimensional squa
array, Eq.~102! predictsf2c'0.775, which is to be com-
pared to the exact resultf2c5p/4'0.785.

The predictions of our TPA2 for the effective conducti
ity are compared to simulation data for certain period
dispersions32,33 @see Figs. 3~a! and 3~b!# and random
dispersions34–37 @see Figs. 4~a!, 4~b!, and 5# over large
ranges of volume fractionsf2 . We include in the figures
relations~37!, ~40!, and~42! for the EMA, MA, and TPA1,
respectively. We see that both the TPA1 and TPA2 are r

FIG. 3. Comparison of simulation data~Refs. 32 and 33! for the effective
conductivity of equisized ordered superconducting particles to relati
~37!, ~40!, ~42!, and~46! for the EMA, MA, TPA1, and TPA2, respectively
~a! face-centered-cubic spheres~Ref. 32! and~b! hexagonal array of aligned
circular cylinders~see Ref. 33!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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tively good predictors ofse up to high volume fractionsf2

of the included phase close to the percolation thresh
where higher-order information is clearly required to
more accurate. For superconducting cases in three dim
sions, the TPA1 is slightly more accurate than the TPA2
the ordered array but the reverse is true for the disorde
array. For superconducting cases in two dimensions,
TPA1 and TPA2 are comparable, except at high volume fr
tions where the TPA2 is more accurate. In the case of
fectly insulating overlapping spheres, the TPA1 and TP
are again comparable, but the TPA2 is superior at h
sphere volume fractions. The TPA2 is most accurate
simple periodic systems, followed by random dispersions
hard cylinders and spheres, and least accurate for ove
ping cylinders and spheres.

C. Multicoated spheres

Another generalization of the Hashin–Shtrikman tw
phase coated-spheres assemblage is theN-phase multicoated
spheres model.26 Here spheres of phase 1 are coated w
spherical shells of phase 2, which in turn are coated w
spherical shells of phase 3,...@see Fig. 1~c!#. The relative

FIG. 4. Comparison of simulation data~see Refs. 34–36! for the effective
conductivity of equisized random superconducting particles to relat
~37!, ~40!, ~42!, and~46! for the EMA, MA, TPA1, and TPA2, respectively
~a! random dispersions of hard spheres~see Ref. 35!, and ~b! random dis-
persions of hard circular cylinders~see Refs. 34 and 36!.
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
d,

n-
r
d
e

c-
r-
2
h
r
f
p-

-

h
h

volume proportions and coating orders of the phases in
N-compound spheres are the same. The microstructural
rameters of thisN-phase model have also been determin
exactly,26 which in d-dimensional space can be expressed
(a,b,g51,...,N)

Aa
bg5

d21

d
fafbfgS (

d,a
fd• (

k<a
fkD 21

,

b,g,a;

Aa
ab52

d21

d
fafbS (

d<a
fdD 21

, b,a;

~104!

Aa
aa5

d21

d
fa (

d,a
fd•S (

k<a
fkD 21

, a>2;

Aa
bg50 if b.a or g.a or a5b5g51.

For example, for the three-phase doubly-coated sph
in three dimensions, Eq.~104! becomes

A1
115A1

2a5A1
3a5A2

3a50, a51,2,3

A2
225A2

1152A2
125 2

3f1f2~f11f2!21,

A3
335 2

3f3~f11f2!, A3
1352 2

3f1f3 , ~105!

A3
2352 2

3f2f3 , A3
125 2

3f1f2f3~f11f2!21,

A3
115 2

3f1
2f3~f11f2!21, A3

225 2
3f2

2f3~f11f2!21,

while Eq. ~87! yields

A1115
1
3~f123f1

212f1
3!2f1~A2

111A3
11!,

A2225
1
3~f223f2

212f2
3!1A2

222f2~A2
221A3

22!,

A1125
1
3~2f1

2f22f1f2!2f1~A2
121A3

12!,
~106!

A2115
1
3~2f1

2f22f1f2!1A2
112f2~A2

111A3
11!,

A2125
1
3~2f2

2f12f1f2!1A2
122f2~A2

121A3
12!,

A1225
1
3~2f2

2f12f1f2!2f1~A2
221A3

22!.

s

FIG. 5. Comparison of simulation data~see Ref. 37! for the effective con-
ductivity of equisized random dispersions of overlapping insulating sphe
to relations~37!, ~40!, ~42!, and~46! for the EMA, MA, TPA1, and TPA2,
respectively.
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For numerical illustrations, we takes1510s3 , s2

520s3 , f150.1→0.9, f25 4
5(12f1), f35 1

5(12f1),
conventional coating order 1-2-3~phase 1, then phase 2, the
phase 3!. The HS bounds Eq.~44!, TP bounds Eqs.~81!–

FIG. 6. Comparison of exact effective conductivity values to the HS bou
Eq. ~44! and the TPA2 Eq.~46! for a three-phase doubly coated spher

model: ~a! s1510s3 , s2520s3 , f150.1→0.9, f25
4
5(12f1), f3

5
1
5(12f1), conventional coating order 1-2-3~phase 1 in phase 2 in phas

3! and ~b! s2510s1 , s3520s1 , f250.1→0.9, f15
1
5(12f2), f3

5
4
5(12f2), for coating orders: 1-3-2~phase 1 embedded in phase 3, a

then in phase 2!, 2-1-3, and 3-1-2.
Downloaded 16 Dec 2003 to 128.112.80.53. Redistribution subject to A
~83!, and TPA2 Eqs.~46! and~53! are plotted in Fig. 6~a!. It
is interesting to find that the TP bounds Eqs.~81!–~83! with
relations~105! and~106! concide to yield the exact effectiv
conductivity of the doubly coated spheres model.

In Table I, we take s2510s1 , s3520s1 (s1,s2

,s3), f250.1→0.9, f15 1
5(12f2), f35 4

5(12f2), and
collect the exact effective conductivity values of the doub
coated spheres model at different coating orders: 1-3
1-2-3, 2-1-3, 2-3-1, 3-2-1, and 3-1-2. The HS upper~HSU!
and lower HS~HSL! bounds are also given for compariso
Some of these results are plotted in Fig. 6~b! together with
the respective TPA2 results~46! and~53!. It is interesting to
observe that the model with highest conductivity is 1-3
~but not 1-2-3!, and the model with lowest conductivity i
3-1-2~not 3-2-1!, in which the matrix phases are not the on
with extremal conductivities. Note also that most of the ex
and approximation values are close to the Hashin–Shtrikm
upper or lower bounds, except those for the model 2-1
which falls between the bounds.

The fact that TP bounds Eqs.~81!–~83! with relations
~105! and ~106! yield exact effective conductivities for dou
bly coated spheres that do not coincide with the TPA2 va
indicates that our TPA2 Eqs.~46! and~53! is not as accurate
for generalN-phase composites as for two-phase ones. T
TPA2 does not always yield the best possible approxima
and it may even violate certain three-point bounds using
same available geometric information~although it always
falls within the two-point Hashin–Shtrikman bounds as co
firmed!. Therefore, in the generalN-phase case, this approx
mation should be used in conjunction with bounds. One
use computer simulation to verify that TP bounds Eqs.~81!–
~83! with relations~87! and~104! converge to yield the exac
effective conductivity of generalN-phase multicoated
spheres.

We can also generalize the model further: conside
random mixture of multicoated spheres of different kind
each of which has different coating order. The only restr
tion is that the volume proportions of the constituent mate
als in all of the compound spheres are the same. For s
generalized models, the three-point microstructural para
etersAa

bg can also be determined explicitly, however the T
bounds Eqs.~81!–~83! generally should not converge, as ev
denced by the two-phase mixed-coated-spheres m
considered.

s

s, and

5
2
6
0
2
3
5
8
3

TABLE I. Exact effective conductivities for doubly coated spheres models at various embedding order

HSU and HSL bounds. Here we takes2510s1 , s3520s1 (s1,s2,s3), f250.1→0.9, f15
1
5(12f2),

f35
4
5(12f2).

f2 HSU 1-3-2 1-2-3 2-1-3 2-3-1 3-2-1 3-1-2 HSL

0.1 14.377 14.348 14.248 13.616 8.014 7.988 7.919 7.89
0.2 13.853 13.804 13.673 12.601 8.318 8.266 8.136 8.09
0.3 13.339 13.277 13.146 11.809 8.614 8.538 8.356 8.29
0.4 12.835 12.765 12.649 11.197 8.897 8.802 8.580 8.51
0.5 12.340 12.270 12.174 10.735 9.163 9.053 8.807 8.73
0.6 11.855 11.789 11.715 10.399 9.404 9.288 9.038 8.96
0.7 11.378 11.322 11.270 10.170 9.615 9.504 9.273 9.20
0.8 10.911 10.869 10.837 10.034 9.789 9.697 9.511 9.45
0.9 10.451 10.428 10.414 9.981 9.920 9.864 9.754 9.72
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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VII. CONCLUSIONS

In this article, exact strong-contrast expansions for
effective conductivityse of d-dimensional macroscopicall
isotropic composites consisting ofN phases are presente
The series consists of a principal reference part and a fl
tuation part, which contains multipoint correlation functio
that characterize the microstructure of the composite.
fluctuation term may be estimated exactly or approximat
in particular cases using available information about
given microstructure. We demonstrate that appropr
choices of the reference phase conductivity, such that
fluctuation term vanishes, results in simple expressions
se that agree with the well-known two-phase estimates.
propose a simple three-point approximation for the fluct
tion part, which agrees well with a number of analytical a
numerical results, including those for the EMA and H
coated-spheres microstructures, and various periodic
random dispersions of spheres and aligned cylinders. E
when the contrast between the phases is infinite, the app
mation can yield accurate predictions, sometimes up to
percolation thresholds. In cases where clustering effects
significant, higher-order percolation information may
needed for the effective conductivity to be described ac
rately. We have also given the analytical expressions of
three-point correlation parameters for certain mixed-coa
and multicoated spheres assemblages. It is shown tha
effective conductivity of the multicoated spheres model c
be determined explicitly from known three-point bounds a
exact values of the respective three-point parameters.
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