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Abstract

Buildup of internal self-stresses in hyperstatic adaptive structures resists actuation. A recent

paper by Guest and Hutchinson (2003) shows that periodic in*nite truss structures cannot be

both statically and kinematically determinate structures; therefore, a rigid in*nite lattice bar

framework must be hyperstatic. This paper shows that it is possible to design adaptive periodic

in*nite truss structures that can achieve any state of uniform strain without energy cost by

actuating only a subset of the bars in a coordinated fashion. We show that actuation of only 3

bars in two dimensions or 6 bars in three dimensions per unit cell is required. A mathematical

apparatus is developed and an example of such a bitriangular lattice structure is given, along

with accompanying illustrations. Supporting animations can be found at the authors’ website.

? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical performance of pin-jointed bar frameworks, referred to simply as

trusses in this paper, is a useful guide to the performance of the same framework

but with welded joints (Pellegrino and Calladine, 1986). Materials with lattice-like

structures *nd numerous applications due to their excellent mechanical properties, and

can be e@ectively modeled as in*nite periodic trusses. New advances in manufacturing
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techniques have enabled engineers to create lattice materials with lattice parameters

on the order of 0:5 mm; also, truss structures with strut diameters of only 50 �m

have been manufactured (see Deshpande et al., 2001 and references therein). One

novel application of such materials is in adaptive structures, where certain bars act as

actuators and are used to precisely control the global shape of the structure (Hutchinson

et al., 2002).

In*nite bar frameworks o@er many open mathematical questions. Much is known

about the rigidity of *nite bar frameworks in Euclidean space, particularly in the plane.

In*nite systems are di)cult to deal with mathematically, but are relevant to the study

of large lattice truss structures, and therefore deserve special attention. We believe that

repetitive bar frameworks on a Hat torus (i.e., with periodic boundary conditions), in

a suitably de*ned limit of an in*nite torus, can be used as a basis for simpli*ed but

rigorous models of lattice materials. In this work we study actuation in such periodic

frameworks.

In a recent paper, Guest and Hutchinson (2003) discuss the prospect of designing

an in*nite lattice truss structure that is both statically and kinematically determinate. In

the aforementioned paper, the authors conclude that it is impossible to design such a

structure based on some counting arguments. We will revisit this problem from a dif-

ferent mathematical perspective to further illucidate this important fact. The importance

of this investigation comes from the fact that statically and kinematically determinate

structures, called (generically) isostatic structures in this report, can be used as “ideal”

adaptive structures, since the length of any bar can be changed (actuated) independently

of other bars. By combining actuation in a number of strategically placed bars, one can

achieve useful deformations of the global structure, while still preserving mechanical

stability (i.e., rigidity or sti@ness). See Hutchinson et al. (2002) for details.

The negative result of the above paper should not, however, be taken as an indi-

cation that it is impossible to design a lattice truss that can be used to build “ideal”

large adaptive structures. Indeed, in this paper we propose a method to design in*nite

lattice (i.e., periodic or repetitive) truss (i.e., pin-jointed bar framework) structures in

which any global deformation can be achieved without energy cost by repetitively (pe-

riodically) actuating d(d+ 1)=2 (3 in two, or 6 in three dimensions) bars per unit cell.

By a global deformation, we mean a state of uniform strain, which is modelled as a

deformation of the underlying lattice vectors of the repetitive structure.

The full derivation of this relatively simple theoretical result is given here. Some

of the mathematical apparatus is presented in higher generality than needed in order

to enable extensions in the future, and also to point to some results interesting from

a mathematical perspective along the way. Some of these are not needed in order to

understand this report and can simply be skipped (Sections 2.1.1, 5 and 5.1).

Our expectation is that the basic idea of using periodic actuation of d(d+ 1)=2 per

unit cell can be used to design real adaptive lattice trusses. Such adaptive structures

would be able to achieve any global deformation in which the strain gradient is small

(that is, the strain does not change appreciably over the lengthscale of a unit cell) with

very small energy cost (internal resistance).

Further discussion and animations of all the *gures given in this paper can be found

at our website (Donev, 2002).
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2. Mechanical equilibrium

Consider a large d-dimensional pin-jointed bar framework in Euclidean space (and

unspeci*ed boundaries) which has a repetitive structure, i.e., it is created by period-

ically repeating a basic building block. We model such a framework as an idealized

in*nite periodic network with a (reference) unit cell speci*ed via the lattice vectors

(generators) {�1; : : : ; �d}. Denote the positions of the N joints (nodes) within a unit

cell with r, with node i being at ri. Let the number of bars per unit cell be M and

the lattice vectors be columns in a d-by-d lattice matrix �. The choice of unit cell

and lattice vectors is not unique; however, there is a primitive unit cell with Np nodes

and Mp arcs per unit cell and lattice �p which is repeated several times along each

coordinate dimension to obtain the reference unit cell. If we form a diagonal matrix

Nc from the number of repetitions of the primitive cell along each dimension, then

�= �pNc, N = NcNp and M = NcMp, where Nc is the total number of primitive cells

contained within the unit cell, Nc = |Nc|. We use | | to denote a matrix determinant.

So far we described an in*nite network in Eucledian space with no boundary condi-

tions. In this work we impose periodic boundary conditions, that is to say, we focus on

deformations of the network which are periodic with periodicity determined by the lat-

tice �. Mathematically, we wrap the network around a (Hat) topological torus de*ned

with the choice of unit cell. The reader should keep in mind the important distinction

between the in*nite structure which is obtained by periodically repeating the unit cell

in Eucledian space (this is a “universal cover” of the torus in topological jargon), in

which deformations need not be periodic, and the *nite network on a torus, which

is used to model periodic deformations of the in*nite network. The remainder of this

paper discusses the network on a torus, unless otherwise indicated.

Initially we focus on small (in*nitesimal) deformations of the network from its

original con*guration (e.g., M�), however, the results are also relevant to large de-

formations, as discussed in Section 4.2. One can either consider a *ctional evolution

(time) parameter t on which all quantities depend and consider directions of deforma-

tion (i.e., in*nitesimal deformations) of the network (for example d�=dt), or consider

small but *nite displacements (e.g., M�) up to *rst order. We chose the latter simply

because the notation is simpler and the presentation clearer, and because we wish to

avoid references to dynamics of the system.

2.1. Macroscopic strain

The macroscopic strain ” in a periodic network is related to the deformation of the

lattice M� by the relation

” = (M�)�−1: (1)

To see this, note that the deformation of the lattice causes a displacement of the lattice

point P (this is a vector of integer lattice coordinates) positioned at rP = �P of

MrP = (M�)P= [(M�)(�−1)]rP;
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which gives the strain (tensor)

” =�r(Mr) = (M�)�−1:

Of course, the strain needs to be symmetric, ”T = ”. It turns out that this condition

eliminates rotations of the lattice, since rotations of the lattice produce skewsymmetric

strains. Because rotations of the lattice belong to the category of trivial motions, which

we will try to eliminate from the onset in order to simplify later counting, we will use

the strain ” as a variable instead of the deformed lattice (I + ”)�. This is only strictly

valid for in*nitesimal lattice deformations; *nite lattice deformations in this model are

to be considered as an integral of in*nitesimal deformations with symmetric strain.

In order to simplify matrix algebra later on, we will need to represent the strain as a

vector ”̂ with d(d+1)=2 coordinates containing only the lower or only the upper triangle

of the strain components. How we order the triangle into the vector is immaterial and

a matter of convention (e.g., ordering by diagonals starting from the main diagonal or

ordering by columns). This ordering establishes a correspondence s ≡ (p; q) between

component ”̂s and component ”p;q=”q;p=”̂s. The usual convention (in three dimensions)

is to use the column vector of strains

”̂ =



























”1;1

”2;2

”3;3

2”2;3

2”1;3

2”1;2



























;

which contains additional factors of 2 that we omit (see also Section 2.5).

2.1.1. Invariance of the macroscopic strain

The unit cell of a periodic system is not uniquely de*ned. For example, one may

take a larger unit cell as the reference cell, i.e., take the lattice to be a sublattice of

the original lattice:

�′ = �Nc;

where Nc is a diagonal matrix with positive integer entries. Now consider a lattice

deformation with periodicity determined by � in the primed notation, where M�′ =

(M�)Nc. The macroscopic strain is

”
′ = (M�)�−1 = (M�)(NcN

−1
c )�−1 = ”;

i.e., the strain is independent of the exact choice of the unit cell. This is a very

important invariance property which makes our results more physical. We will give an

expression for the macroscopic stress in the network later, which also possesses this

kind of invariance.
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2.2. Elastic energy

We denote by {i; j} the bar (arc) connecting joints (nodes) i and j and append the

subscript ij to all quantities associated with this bar. The elastic energy stored in the

structure is a sum over the energies stored in each bar:

E(r; ”; �) =
∑

{i; j}

Eij[�ij ; lij(ri ; rj ; ”)]:

Here we assume a central-force network in which the energy stored in a bar only

depends on the length of the bar

lij = ‖rij‖ = ‖ri − rj + �nij‖

and on the activation bar parameter �ij (such as temperature, applied voltage, etc.).

The quantity nij appears because of the periodic nature of the structure and is a

vector giving the number of unit cells that the bar {i; j} “crosses” over. If we think of

the periodic network as a graph G embedded in a Hat torus de*ned by the lattice �, the

integer data n is now to be considered part of the combinatorial part of the network,

which we will denote with G=(G; n), and speci*es how the network wraps around the

torus, i.e., is part of the network connectivity information. The embedding (geometry)

part of the problem speci*cation on the other hand is characterized by the con4guration

p= (r;�). Therefore, a periodic network is speci*ed with N= (G; p) = [(G; n); (r;�)].

This is to be compared to the usual speci*cation of a network embedded in Euclidean

space, N = (G; r), which lacks the periodicity information.

We can rewrite the length of bar {i; j} as

lij = ‖rij + (Mri − Mrj) + ”�nij‖ = ‖rij + TijMr+ Sij ”̂‖;

where Tij is a [d×Nd] matrix (with simple structure) and Sij is a [d× (d(d+ 1)=2)]

matrix, in order to emphasize the linearity of the expression inside the norm. We will

denote by

uij =
rij

lij

the unit vector along the current position of the bar {i; j}.

It is easy to see that uniform translations are also trivial (i.e., length-preserving)

motions of the periodic network. To eliminate these from consideration, we will freeze

(pin) joint 1 (i.e., Mr1 = 0 will not be included in Mr), leaving the number of degrees

of freedom at

Nf = d(N − 1) +
d(d+ 1)

2
: (2)

Therefore, we will take the Nf-dimensional vector

Mp= (Mr; ”̂) = (Mr2; : : : ;Mrn; ”̂)

as the characterization of the deformation. Any nonzero in*nitesimal Mp that does not

change the bar lengths is a mechanism of the periodic structure. Notice that there are

no trivial mechanisms in this new notation.
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2.3. Force equilibrium

We will use the notation ∇p and ∇r instead of the more appropriate ∇Mp and ∇Mr

to avoid symbol havoc.

At equilibrium we have energy stationarity, i.e., there are no energy-bene*cial

deformations to *rst order, so that

∇pE = (∇pl)(∇lE) = Rf = 0:

This is just a mechanical equilibrium condition. Here f=∇lE={9Eij(�ij ; lij)=9lij} are

the elastic forces (tension or compression) in the bars, and R=∇pl is the rigidity ma-

trix of the periodic network. Note that in rigidity theory literature RT is usually called

the rigidity matrix (in engineering literature, R is sometimes called the compatibility

matrix, while RT is called the equilibrium matrix). It is closely related to the usual

rigidity matrix, but with d(d+ 1)=2 rows appended corresponding to equilibrium with

respect to the macroscopic strains, i.e., to equilibrium of the macroscopic stresses.

Our *rst task is to derive the form of this rigidity matrix (since we have a new

non-standard piece appended to it). The column of R corresponding to the bar {i; j}
is

Rij = ∇p(lij) =









Aij

−

Lij









:

The *rst piece of this is the corresponding column of the usual rigidity matrix:

Aij = ∇r(lij) =

i →

j →



























...

uij

...

−uij

...



























;

and the second piece is due to the periodicity of the network:

Lij = ∇”̂(lij) = {∇”̂[”(”̂)�n]}uij ;

which in matrix form is

Lij =











(S1�nij)
Tuij

...

(Sd(d+1)=2�nij)
Tuij











: (3)

Here Ss = ∇”̂s
[”(”̂)] has nonzero entries only at positions (p; q) and (q; p) (recall that

s ≡ (p; q) determined how the vectorization of the upper/lower triangle of ” was done
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to obtain ”̂). We can also write this in indicial form suitable for computational use as

(Lij)s =

{

(�nij)p(uij)q + (�nij)q(uij)p

(�nij)p(uij)q if p= q

}

: (4)

2.4. Adaptive networks

A network is perfectly adaptive if the lengths of all its bars can be changed (actu-

ated) independently of one another. Actuation of the bars will induce a commensurate

deformation of the structure. It is also desirable that there be a unique deformation

corresponding to every actuation. It is easy to see that in order for this to be true the

rigidity matrix R must be invertible, since the change of the bar lengths Ml (alterna-

tively Ml can be thought of as the rate of bar elongation/contraction) during a small

deformation Mp (alternatively joint velocities) is to *rst order

Ml = (∇pl)
TMp= RTMp:

This relation is bijective only when R is invertible. We will come to the same con-

clusion but in a much more general setting later on.

2.5. Macroscopic stress

The condition of mechanical equilibrium

Rf = 0

reduces to the Nd microscopic force balances at each node
∑

{i; j}

fijAij = 0;

as well as the d(d+ 1)=2 conditions that there be no macroscopic stresses:

�̂ =
1

|�|

∑

{i; j}

fijLij = 0: (5)

Here �̂ is the vectorized version of the upper or lower triangle of the symmetrized

macroscopic stress (tensor) �, and we normalized with the reciprocal unit cell volume

|�| in order to get the correct units of stress. This is expected since stress is the strain

gradient of the energy density, and not of energy. To be in agreement with standard

convention (which adds factors of 2 to the o@-diagonal strains), one should add a

factor of 1=2 in Eq. (4) for the o@-diagonal stresses, to obtain

(Lij)s = 1
2
[(�nij)p(uij)q + (�nij)q(uij)p];

or consider a matrix form of the (unsymmetrized) stress tensor

� =
1

|�|

∑

{i; j}

fij[u
T
ij(�nij)

T]; (6)

which more clearly displays the tensor character through the use of the diadic product

uT
ij(�nij)

T.
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We note that the expression for the macroscopic stress (5) is invariant with respect

to choosing a di@erent unit cell as the reference cell, as it should on physical grounds.

However, this is di)cult to show in general as n depends non-trivially on the choice

of the cell, and we do not give such a proof here.

It is important to point out that equivalent results for the macroscopic stress in

a force network have appeared elsewhere. Compare (5) to the expressions found in

Latzel et al. (2000) (and references therein) for the macroscopic stress in a disordered

network (recast into a form more suitable for our presentation):

� =
1

V

∑

{i; j}∈V

fijlij(uiju
T
ij) =

1

V

∑

i∈V; j �∈V

fij(uijr
T
i ): (7)

The second expression in Eq. (7) only involves microscopic forces crossing the bound-

ary of a given reference (averaging) volume V , i.e. only the bars {i; j}∈ 9V . For a

periodic system it is natural to take the unit cell as the averaging volume. Consider

a bar {i; j} with nonzero nij. It will appear twice in the sum in Eq. (7), once as the

“original” bar with direction uij, and once as an “image” bar {i′; j′} with ui′j′ = −uij
and ri′ = ri − �nij + lijuij. Therefore the contribution from this bar to the averaged

macroscopic stress in Eq. (7) is

1

|�|
fij[u

T
ij(�nij)

T] −
1

|�|
fijlij(uiju

T
ij):

The *rst term in this expression is identical to the one in Eq. (6). If we take a large unit

cell, in the spirit of the averaging in Eq. (7), the second term will become negligible.

2.6. Sti:ness matrix

Another important matrix describing the given network is the sti@ness matrix, which

is the Hessian of the energy with respect to deformations:

H = ∇
2
ppE = (∇pR)f + R(∇T

p f):

We now take a crucial simplifying step valid for the rest of this paper: The periodic

structure is unloaded and is in equilibrium, i.e.,

f = 0;

so that we get

H = R(∇T
p f) = R[(∇pl)(∇lf)]T = RCRT;

where C=∇
2
llE=Diag{92Eij(�ij ; lij)=9l

2
ij} is a diagonal matrix containing the individual

bar sti@nesses. We call H the sti:ness matrix of the network.

3. Actuation

We now consider activating an unstressed network in equilibrium by actuating some

of its bars, i.e., by changing �. Taking the equilibrium condition

∇pE = 0;



A. Donev, S. Torquato / J. Mech. Phys. Solids 51 (2003) 1459–1475 1467

and di@erentiating with respect to �, we get for small actuations

(∇2
p�E)M� + (∇2

ppE)Mp= 0;

which gives the deformation Mp induced by the actuation M�. If we further simplify

G = ∇
2
p�E = (∇pl)[∇2

l�E] = RC̃;

where C̃= ∇
2
l�E = Diag{92Eij(�ij ; lij)=9lij9�ij} is a diagonal matrix, we get

Mp= −H−1RC̃M�: (8)

Eq. (8) gives the sought-after relation between the actuation and the induced deforma-

tion, and assumes that H is invertible (see Section 5).

3.1. Actuation energy

Some activations will not cost any energy beyond that needed to induce the actuation

M�, but others will induce self-stresses in the structure and therefore cost energy. The

elastic energy stored in the network due to the stresses induced by the actuation is of

second order in M�, and is given by

ME =
1

2
[M�TĈM� + MrTHMr] + MrTGM�;

where Ĉ= ∇
2
��
E = Diag{92Eij(�ij ; lij)=9

2�ij}. Using relation (8) this simpli*es to

ME =
1

2
M�TKM�;

where

K = Ĉ−GTH−1G = Ĉ− C̃RTH−1RC̃:

Therefore, any activations M� that lie in the null eigenspace of the matrix K will cost

no energy up to second order, i.e., they will induce no self-stresses in the network.

In this work we focus on the simplest type of actuation: One in which the actuation

is achieved by changing the equilibrium lengths Rl of the bars (say by heating/cooling

them or applying a voltage), i.e.,

� ≡ Rl;

where the elastic energy is some strictly convex function of the length mismatch:

Eij = Eij(lij − Rlij):

Furthermore, we assume that only a subset of the arcs can be actuated, and we take

the [M ×M ] diagonal matrix D= Diag{0 or 1} to be the indicator of which arcs can

be activated: a 1 on the diagonal indicating the arc is active, and a 0 indicating it is

inactive (i.e., its length is *xed). We denote with Ma the number of active arcs. With

these simpli*cations we have

C̃= −CD and Ĉ= C;

which gives

K = C1=2(I −Q)C1=2; (9)
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where

Q=DC1=2RT(RCRT)−1RC1=2D: (10)

The meaning of the multiplications with D here is that we are extracting an [MA ×
MA] submatrix Qa corresponding to the rows and columns of the active arcs from

C1=2RT(RCRT)−1RC1=2. We can also take the case when all arcs are identical in the

sense of their sti@ness being the same, C= cI, to get the simpler expression

Q=DRT(RRT)−1RD: (11)

3.2. Ideal activations

Now we are in a position to clearly state the condition that there exist ideal actuations

M�, i.e., actuations that induce no self-stresses and cost no energy: Q must have a

nonempty eigenspace of eigenvalue 1. To every independent eigenvector of Q with

eigenvalue 1 corresponds an independent ideal actuation.

It may not be obvious that Q will ever have eigenvalues 1. However, notice that

if D = I, i.e., if all arcs are active, then all eigenvalues of Q are all 1 or 0. The

“bad” eigenvalues 0 correspond to actuations in the null-space of R, i.e., to self-stresses

of the network. All the other eigenvalues of unity are “good” eigenvalues. This is a

very intuitive result: If the lengths of the bars are changed along a direction that is

a self-stress of the network, then this will induce no useful deformation, Mp = 0, but

it will induce the corresponding self-stress and store elastic energy in the network.

Otherwise, the actuation of the bar lengths will produce a deformation and cost no

energy.

The main point to get across is that Q usually has eigenvalues 1, even when not all

arcs are active. This means that in most networks it is possible to change the lengths

of only a small subset of the bars, in a coordinated manner (i.e., not independent of

one another), while not changing the length of the other bars. To our knowledge, this

crucial observation has heretofore not been made.

3.3. Isostatic unit cells

The best case, i.e., the most adaptive network, is obtained when R is invertible.

In other words, the unit cell is isostatic, or kinematically and statically determinate.

However, note that this does not mean that the in*nite lattice network is also isostatic

(this important point will be discussed later). When R is invertible we have that

Q=D2 or equivalently Qa = I;

which means that the lengths of all of the active arcs can be changed periodically

independently without a@ecting the lengths of the other bars, i.e., without inducing

stresses.

This occurs in the case of *nite isostatic structures. However, here we are considering

in*nite periodic networks in which the actuation is also periodic, i.e., the lengths of all

the image arcs of a given active arc are changed in unison. This is the main di@erence

from having an in*nite network in Euclidean space that is isostatic, in which case the
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length of any of the arcs can be changed independently of all other arcs. Therefore,

we will say isostatic unit cell and not isostatic structure. The real structure we have in

mind is an in*nite structure made by repeating the unit cell periodically.

The expressions given in the previous sections simplify considerably when R is in-

vertible. In particular, the relation between actuation (bar elongations) and deformation

(induced strain and joint displacements) is unique and invertible and given by

RTMp=DM�: (12)

The rest of this paper assumes R is invertible, and also that isostaticity is a generic

property, i.e., it is determined primarily by G (see Graver et al., 1991 for details), and

not by the particular con*guration p. That isostaticity is a generic property for net-

works on a deforming torus has not yet been rigorously proven to our knowledge. Our

assumption is that the unit cell of the adaptive periodic framework under consideration

is generically isostatic.

4. Adaptive periodic networks

The main goal of this work is to *nd an in*nite repetitive network which can be

deformed uniformly in an arbitrary manner just by actuating a small subset of the bars

in each unit cell. Since there are d(d + 1)=2 independent strains, we need at least

this many active bars. The only requirement is that actuating each active arc induces

a nonzero strain, and that the strains induced by actuating di@erent active arcs be

linearly independent. If this is the case then we can achieve any strain by combining

the individual actuations accordingly.

In mathematical terms, what we need is the submatrix formed from the last d(d+1)=2

rows of R−T, and a basis B(R) for it (i.e., d(d + 1)=2 columns which are linearly

independent):

B(R) = R−T

[

last
d(d+ 1)

2
rows; active arcs columns

]

: (13)

Choosing the arcs corresponding to these columns as the active arcs gives us an in*nite

perfectly adaptive network. Any desired strain ”̂ can be achieved by using the actuation

M�a = M�active arcs = [B(R)]−1
”̂:

4.1. The bitriangular lattice

We have constructed a simple example of a rigid (de*ned in the context of in*nite

structures more precisely later) two-dimensional lattice whose unit cell is isostatic as

de*ned above, and identi*ed 3 arcs suitable to be used for actuation. In doing so, we

looked for periodic subnetworks of the triangular lattice whose unit cell consists of

2× 2 = 4 unit cells of the triangular lattice. Since there are n= 4 joints per unit cell in

such a unit cell, there need to be 9 bars in an isostatic unit cell, and so 3 bars need

to be removed from the 12 bars present in the original triangular lattice. We found

that removing three bars forming a (small) triangle produces a lattice which is rigid
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Fig. 1. The unit cell of the bitriangular framework. The 4 joints in the unit cell are shown as circles, while

the 9 bars in the unit cell are shown with a solid line. The three active arcs are shown with thicker lines,

and the periodic images of the arcs with non-zero nc are also shown with dashed lines.

and whose unit cell is isostatic, and we call this the bitriangular lattice, since it is

composed of two kinds of triangles (small and large).

For this lattice, it turns out that actuating any of the 3 bars forming the (remaining)

small triangle does not produce any lattice deformation (global strain). Therefore, one

should actuate 3 of the 6 bars bounding the larger triangle. We chose to use the 3 odd

(or even) arcs as actuators, as shown in Fig. 1. Therefore, in this example lattice one

third of the bars are active.

Actuating each of the 3 active arcs produces an independent global uniform strain.

Fig. 2 shows one of these (equivalent) independent actuation modes. By combining

these 3 deformations one can achieve any uniform strain in the in*nite lattice. Anima-

tions illustrating how to uniformly shrink or expand the structure, i.e., achieve

” = ±

[

−1 0

0 −1

]

;

are shown on the authors’ website.

4.2. Large deformations

The mathematics above was concerned with in*nitesimal deformations. However,

it should be stressed that an adaptive periodic network (with a generically isostatic

unit cell and appropriately chosen d(d + 1)=2 active arcs) can be *nitely uniformly

deformed without storing energy. To do this, an ordinary di@erential equation (ODE)

system needs to be solved. Assume we want to achieve a time-dependent rate of strain

d”(t)=dt, which integrated over time gives the desired deformation. This can be done

by employing the (coordinated) time-dependent actuation �a(t), which can be found

as a solution to the ODE system (with the appropriate initial conditions)

d�a(t)

dt
= {B[R(t)]}−1 d”̂(t)

dt
; (14)
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Fig. 2. An activation mode of the bitriangular framework. The *gure shows the deformation induced in

the framework as one of the active bars is elongated by Ml = �t as a sequence of time frames with

t = 0;Mt; 2Mt; 3Mt for some arbitrarily scaled Mt and �, in the sequence: upper left, upper right, lower left,

lower right. The corresponding deformations when each of the remaining two active arcs are actuated can be

predicted from symmetry considerations. Note that we assume in*nitesimal deformations but show a larger

deformation for visualization purposes, which explains why some of the non-actuated bars also change their

length (to second order).

d�(t)

dt
=

d”(t)

dt
�(t); (15)

dr(t)

dt
= B̃[R(t)]

d�a(t)

dt
: (16)

Here B̃(R) denotes the submatrix of R−T corresponding to the joint degrees of freedom

and the active arcs:

B̃(R) = R−T [*rst (N − 1)d rows; active arcs columns]:

We stress the fact that in Eqs. (14)–(16) the rigidity matrix R(t) is also time-dependent,

since it depends on the current con*guration. Solving this ODE system tells us both

how to actuate the active arcs and how the network deforms in time.

We illustrate such an ideal *nite actuation with the bitriangular lattice by solving

the above ODE to achieve a large deformation in which we shrink the unit cell by

25% also make it into a square (from the original rhomboidal unit cell, as illustrated

in Fig. 3) and showing the result in Fig. 4.

5. Rigidity of the adaptive network

This paper is concerned with the deformability of in*nite periodic networks. One

important assumption made throughout this is that the structure has no mechanisms

(Hexes), i.e., deformations Mp which change no bar lengths. This is a very important

property for an adaptive structure, since it provides for uniqueness of the relationship

between actuation and induced deformation. It is customary in rigidity theory to simply
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Fig. 3. A 4nite deformation of the bitriangular lattice. A large deformation of the unit cell of the bitriangular

lattice is shown using the lattice vectors. The original vectors are shown with a solid line, while the *nal

ones are shown with a dashed line. During this deformation, the unit cell shrinks and becomes a square.

We ensure that the lattice does not rotate so that it is possible to achieve this deformation by integrating a

symmetric (time-dependent) strain rate.

Fig. 4. Achieving the deformation from Fig. 3. This sequence of time frames (as in Fig. 2) shows how one

can achieve a global uniform deformation of the bitriangular structure during which the unit cell shrinks

and becomes square by only actuating the three active arcs. Notice that the inactive arcs do not change

length and therefore this actuation does not store any elastic energy. The mathematics used to produce this

illustration is given in the ODE system of Eqs. (14)–(16).

call such a Hex-free structure a rigid framework. It may be better in the context of

real applications to use the term sti: framework. A sti@ structure for us is one which

can support a given set of loads without too large of a deformation, de*ned in an

application speci*c context.

In the above analysis, the assumption that H is invertible was based on the rigidity

of the unit cell. However, here we are really considering rigidity of the in4nite network.

What exactly does rigidity mean in the context of in*nite structures? It appears that

this has not been carefully investigated. It is not necessary that the same concept of
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rigidity be extended from *nite to in*nite structures, but rather, to understand what are

the relevant mathematical idealizations for modeling real large periodic trusses. Note

that for the bitriangular lattice truss we can show analytically that it is (in*nitesimally)

rigid for all choices of unit cell. We do not reproduce this argument due to Robert

Connelly here.

The mathematical framework which we believe is suitable for analysing in*nite (i.e.,

very large) repetitive networks is the following:

Take a primitive lattice �p for the periodic network and the Hat torus that this lattice

de*nes. Now consider rigidity of the framework on this torus. This means looking at

deformations which have a repetition (period) of one unit cell plus deformations of

the lattice. Notice that this is only a very small subset of all the possible deformations

of the in*nite network, which need not be periodic at all. Then take a sublattice of

the primitive lattice, � = �pNc, Nc integer, and the larger torus that it de*nes and

consider rigidity of the network on this torus. It should be obvious that many of the

properties depend on Nc. Here Nc can in a sense be viewed as the “wavelength”

at which the repetitive framework is analysed. A related novel systematic analysis is

brieHy explained in Hutchinson et al. (2002) and consists of looking for “canonical”

Hexes, which can be thought of as the Fourier components of the Hexes of a repetitive

structure. A similar procedure can be applied when the lattice is allowed to deform

and also when the self-stresses of a structure are considered, but further discussion is

postponed for future work.

5.1. Determinacy of in4nite periodic networks

In this subsection, we revisit the subject of isostaticity of in*nite periodic networks,

from the perspective of the above model of rigidity on an enlarging torus. We arrive

to the same conclusion as Guest and Hutchinson (2003): It is not possible to make

an isostatic in*nite periodic structure. However, our arguments use periodic boundary

conditions.

For simplicity, we will focus on two dimensions, but the results apply as well to

arbitrary space dimensions. Referring to Eq. (2), in order for a network on a torus

with lattice � to be isostatic it must be that

M = 2(N − 1) + 3 = 2N + 1; (17)

where as before N ¿ 1 is the number of nodes in the unit cell and M is the number

of bars per unit cell. It is the extra +1 that is of great importance in Eq. (17). Now

consider a larger torus, with a lattice �′ = �Nc. When wrapped around this torus the

network has

M ′ = NcM = 2NcN + Nc¿ 2NcN + 1 = 2N ′ + 1;

where Nc = |Nc| is the number of unit cells *tting in the larger torus. Therefore, on the

larger torus the network necessarily is overbraced, i.e., it must have self-stresses. This

also means that it is possible for the in*nite network to be su)ciently constrained and

have no periodic mechanisms if its primitive cell is isostatic, as with the bitriangular

lattice.
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The essence of this argument is that counting equilibrium is not maintained as di@er-

ent tori are considered. If the network has no small-period (short-wavelength) mecha-

nisms (i.e., it is rigid on a small torus), then it must have self-stresses of larger period

(long-wavelength). If the network has no self-stresses on a large torus, it must have

shorter-period mechanisms. It should be evident that any mechanism/self-stress can

be replicated in*nitely many times to produce a mechanism/self-stress of the in*nite

structure, i.e., of the periodic network wrapped around an in*nite torus.

6. Future directions

There are many directions along which future research can be based. The basic

question to consider is how applicable this work is to achieving arbitrary deformations

in in*nite adaptive structures. It is clear that when the strain is non-uniform there will

be some self-stresses induced during actuation and therefore zero energy storage is not

possible. However, an expansion analysis is needed to determine how the expanded

actuation energy depends on the (small) strain gradient.

Moreover, the simple analysis given in this work considered in*nite structures. How

does *niteness a@ect the deformability of repetitive structures? If the corrections in-

duced by *nite size are too large, they may compound together to completely over-

whelm the *rst-order terms and thus make the proposed actuation mechanism unus-

able. Both numerical and analytical studies of non-uniformly deformed *nite, but large,

structures would thus be an obvious next step.

Another line of research to be pursued is to *nd the “best” isostatic unit cells. Based

on the analysis we have given, there is no criterion beyond isostaticity and sti@ness to

consider when choosing among di@erent lattices. Some of the higher-order corrections

discussed above may be the guiding principle in choosing between candidate lattices.

Additionally, we did assume an unloaded structure. In a real application an adaptive

structure would be used to move loads. Are there higher-order corrections under global

loading which di@erentiate between di@erent lattices? If yes, is this load-speci*c or are

some lattices universally better? Hutchinson et al. (2002) point to other desirable qual-

ities of the lattice structure, such as isotropic sti@ness and high buckling and isotropic

in-plane yield strength, and show that a structure like the Kagome lattice, which does

not have an isostatic unit cell, is very e@ective in the context of adaptive structures. A

comparison between this lattice and the bitriangular lattice in a practical setting might

be a useful future project.
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