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Questions surrounding the spatial disposition of particles in various condensed-matter systems continue to
pose many theoretical challenges. This paper explores the geometric availability of amorphous many-particle
configurations that conform to a given pair correlation function g(r). Such a study is required to observe the
basic constraints of non-negativity for g(r) as well as for its structure factor S(k). The hard sphere case receives
special attention, to help identify what qualitative features play significant roles in determining upper limits
to maximum amorphous packing densities. For that purpose, a five-parameter test family of g’s has been
considered, which incorporates the known features of core exclusion, contact pairs, and damped oscillatory
short-range order beyond contact. Numerical optimization over this five-parameter set produces a maximum-
packing value for the fraction of covered volume, and about 5.8 for the mean contact number, both of which
are within the range of previous experimental and simulational packing results. However, the corresponding
maximum-density g(r) and S(k) display some unexpected characteristics. These include absence of any pairs
at about 1.4 times the sphere collision diameter, and a surprisingly large magnitude for S(k)0), the measure
of macroscopic-distance-scale density variations. On the basis of these results, we conclude that restoration
of more subtle features to the test-function family of g’s (i.e., a split second peak, and a jump discontinuity
at twice the collision diameter) will remove these unusual characteristics, while presumably increasing the
maximum density slightly. A byproduct of our investigation is a lower bound on the maximum density for
random sphere packings in d dimensions, which is sharper than a well-known lower bound for regular lattice
packings for d g 3.

1. Introduction

Over a broad range of length scales, many-particle systems
exhibit a rich variety of structures with varying degrees of long-
range order, spanning from crystals, quasicrystals, and poly-
crystals to amorphous solids and liquids. Consequently, it is
natural to focus attention on the statistical mechanics of the
arrangement of the particles. In the case of a macroscopic system
containing a large number N of particles, a full configurational
description of that system usually is neither feasible, desirable,
nor necessary. For most practical purposes, it suffices to
determine, or to describe, the distribution functions of low orders
n , N. Conventionally, this information is conveyed in the form
of correlation functions. For statistically homogeneous systems
consisting of identical spherical particles in a volume V, these
correlation functions are defined so that Fng(n)(r1,r2,...,rn) is
proportional to the probability density for simultaneously finding
n particles at locations r1, r2, ..., rn within the system,1 where
F ) N/V is the number density. With this convention, each g(n)

approaches unity when all particle positions become widely
separated within V.

The present study concerns the special circumstances for
which the constituent particles are spherically symmetric and
identical, and the system is statistically homogeneous and
isotropic. These conditions can be satisfied if the system contains
a single fluid or amorphous solid phase. The correlation function
of primary interest is g(2)(r12), depending configurationally just
on scalar pair distance r12, and thus specifying how many pair

distances of a given length occur statistically within the system.
The third-order function g(3)(r12,r13,r23) reveals how these pair
separations are linked into triangles. This additional information
strictly speaking cannot be inferred from the knowledge of g
≡ g(2) alone, although the Kirkwood superposition approxima-
tion1,2 presumes to fill that knowledge gap. The fourth-order
function g(4) controls the assembly of triangles into tetrahedra,
and is the lowest-order correlation function that is sensitive to
chirality of the medium.

On account of their probability interpretation, all of the g(n)

must be non-negative; in particular, for all r g 0 we must have

In addition to this fundamental constraint, g(r) is also subject
to another basic inequality that arises from its connection to
density fluctuations. This concerns the behavior of the structure
factor defined thus3

The second line assumes that we are treating three-dimensional
systems. The second fundamental constraint is the non-negativity
of S(k), i.e.,

which must be obeyed for all real values of k. It should be noted
that (1) and (3) are not at all restricted to states of thermal
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g(r) g 0 (1)

S(k) ) 1 + F∫exp(-ik‚r)[g(r) - 1] dr

) 1 + 4πF∫0

∞r sin kr
k

[g(r) - 1] dr (2)

S(k) g 0 (3)
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equilibrium but are more general. It is currently unknown if
these necessary conditions (1) and (3) are also sufficient to
guarantee that any function satisfying them is actually the pair
correlation function for a realizable many-particle system;
however, no counterexamples are currently known.

Two recent studies4,5 have examined the theoretical possibility
of controlling pair interactions in an isothermal many-particle
system over a nonvanishing density range, starting at F ) 0, in
such a way that g(r) remains invariant over that range. The cases
examined have assigned forms to the invariant g that were the
zero-density limits appropriate for rigid rods, disks, and spheres,4

and for the hard core plus square well pair potential.5 In each
of these examples an upper terminal density F* could be
identified such that over

the g invariance could indeed be maintained. However, crossing
F* would cause the S(k) inequality (3) to be violated at some k.

The principal objective of the present project is to apply the
g-invariance technique to the still-challenging problem of
random packings of spheres. It has now been well established
that the old concepts of “random loose packing” and “random
close packing” are ill-defined.7 Instead, a nontrivial density range
exists over which irregular packings of various types (locally,
collectively, or strictly jammed11) can be formed, the preferred
densities and local structures of which depend on the preparation
algorithm. Our objective has been to study the logical connec-
tions between qualifying rigid-sphere g’s and the maximum
corresponding densities, emerging as the terminal F*’s.

Section 2 introduces a parametric family of qualitatively
reasonable, but functionally elementary, pair correlation func-
tions for the amorphous-state sphere spatial arrangement
problem. This family contains a set of five adjustable parameters,
whose values must of course be consistent with the two basic
inequalities (1) and (3). Section 3 describes a numerical search
procedure over these parameters, and its results, the goal of
which was to produce the largest F*. We believe it is significant
that even with such a simple parametric family of pair
correlation functions, F* can come close to that obtained in many
experimental and simulational preparations of random sphere
packings. Section 4 offers some interpretive remarks stimulated
by the numerical results in section 3 and indicates the natural
and useful directions for future investigation. Finally, in an
appendix, we derive a lower bound on the maximum density
F* for random sphere packings in d dimensions and show that
it is sharper than a well-known lower bound for regular lattice
packings for d g 3.

2. Model Family

Our interest in this paper is to study models in which long-
range order is suppressed and short-range order is controlled.
Information that is available from previous determinations of
local order in amorphous sphere packings provides useful
guidance in choosing a model family of functions for the present
investigation. In particular, we note that a survey of several
experimental and computer-simulation protocols,8-10 using
distinct packing preparation procedures, appear to agree on the
presence of some qualitative features. (Figure 1 shows the pair
correlation function for a dense random packing of spheres as
generated by us employing the Lubachevsky-Stillinger “com-
pression” protocol.10) Using the sphere-pair distance of closest
approach as the natural length unit, these g(r) attributes are the
following:

(i) Obviously, g(r) must vanish for all 0 e r e 1.
(ii) On account of the jamming, virtually all spheres (a few

“rattler” spheres can be present as exceptions) are rigidly in
contact with neighbors. The number of such contacts must
average at least 4 to meet the definition of “local” jamming.11

(iii) For rg 1, g(r) displays finite-amplitude oscillations about
unity, which decay to zero with increasing r. The length scale
of these oscillations is roughly comparable to the sphere
diameter.

(iv) A pair of distinctive g(r) peaks appear at distances
approximately equal to x3 and x4. These are often termed a
“split second peak”, and appear in modified form for amorphous
deposits of soft-sphere and attracting particles.14

(v) As r increases through r ) 2, g(r) experiences a
discontinuous drop in magnitude.

It is not the objective of the present work to try to include
all of these features slavishly. Instead, we have chosen as a first
step to represent only attributes i-iii by a simple parametric
function family, and to see how close the largest corresponding
density would come to the approximate experimental range12,13

of “random” packing densities:15

The equivalent approximate range of covering or packing
fractions φ ≡ πF/6 is

Computer-simulation determinations of random packing frac-
tions7 lie in the wider range

illustrating the fact that the packing densities are protocol-
dependent and hence non-unique.6,7 After the fact, this approach
should determine how important the remaining attributes iv and
v are for the random sphere packing problem.

Consequently, we have elected to write g(r) as a linear
combination of three portions, corresponding respectively to (i),
(ii), and (iii) above:

The first involves just the unit step function U:

0 e F e F* (4)

Figure 1. Pair correlation function g(r) vs r as obtained by averaging
over 10 configurations at a packing fraction φ ) 0.64. The “binned”
peak value of g(1) (not shown) is approximately 24.

1.18 e F e 1.26 (5)

0.62 e φ e 0.66 (6)

0.60 e φ e 0.68 (7)

g(r) ) gI(r) + gII(r) + gIII(r) (8)

gI(r) ) U(r - 1) (9)
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while the second represents the sphere contacts:

Here, Z is the first of our adjustable parameters, equal to the
mean number of contacts (coordination number) experienced
by each sphere. The third portion contains four more adjustable
dimensionless parameters (A, B, C, D):

and is intended to represent approximately the damped oscil-
lation beyond contact.

The Fourier transforms required to evaluate the structure
factor,

are expressible entirely in terms of elementary functions:

The five adjustable parameters Z, A, B, C, and D are subject
to some obvious constraints. Clearly, we must demand that

In addition, an exponential increase with r is not permissible,
so

Furthermore, D only needs to span a single period of the
trigonometrical factor in which it occurs:

The remaining parameter pair A, C is not entirely free, of course,
but must be consistent with both inequalities (1) and (3). Our
central objective is to search over the five-dimensional domain
defined by (1), (3), and (16)-(18), for the maximum terminal
density F*(Z,A,B,C,D) or terminal covering volume fraction
φ*(Z,A,B,C,D) that they permit. Under the working assumption
that this maximum is attained at the boundary of the five-

dimensional domain, it becomes important to know which
constraint or constraints are at issue there, and why.

3. Numerical Search Procedure and Results

The problem of finding the maximal packing fraction
φ*(Z,A,B,C,D) can be posed as an optimization problem.
Specifically, this can be posed as a two-level “min-max”
problem: one wants to maximize φ(Z,A,B,C,D) over the
parameters Z, A, B, C, and D with the restrictions (16)-(18)
such that the minimum of S(k;Z,A,B,C,D) in the variable k and
the minimum of g(r;Z,A,B,C,D) in the variable r are both non-
negative, i.e.,

such that

The interval-arithmetic paradigm16 is a global optimization
methodology that in principle should enable one to obtain exact
narrow interval bounds on the maximal packing fraction in a
computationally efficient manner. We attempted this calculation
using the GlobSol Fortran 90 global optimization library17 but
could not obtain an exact interval solution. This program is best
suited for finding conventional extrema of simple differentiable
functions with simple constraints. Our problem is considerably
more complex and so we instead used GlobSol to find the
minimum

and then employed a brute-force grid search over Z, A, B, C,
and D subject to the aforementioned conditions in order to
maximize φ.

The search procedure is implemented for six different cases
summarized in Table 1. In the first case (case I), no restrictions
on the functions, other than the ones described above, are
imposed. In the remaining cases, we impose additional restric-
tions. In particular, it is known that dense random packings are
typically spatially uniform, implying that S(k)0) ≈ 0. Therefore,
in some instances, we carry out the search subject to the
condition that S(k)0) ) 0.

Case I. Not surprisingly, the least restrictive case yields the
largest value of the maximal packing fraction: φ* ) 0.627. The
corresponding values of the parameters are listed in Table 2.
Figure 2 shows the structure factor and pair correlation function.
These functions reveal structural features that are not charac-
teristic of typical dense random packings obtained either
experimentally or computationally. For example, the structure
factor at k ) 0 is unusually high, implying significant density
fluctuations in the infinite-wavelength limit. Moreover, at three
different finite wavelengths (k ≈ 3.1, k ≈ 6.3, and k ≈ 10) the
structure factor is essentially zero or nearly zero, implying

gII(r) )
Z

4πF
δ(r - 1) (10)

gIII(r) )
A
r

exp(-r/B) sin(2πr
C

+ D)U(r - 1) (11)

S(k) ) 1 + F[GI(k) + GII(k) + GIII(k)] (12)

GI(k) )∫exp(-ik‚r)[gI(r) - 1] dr

)
4π

k3
[k cos k - sin k] (13)

GII(k) )∫exp(-ik‚r)[gII(r) - 1] dr

)
Z
F

sin k
k

(14)

GIII(k) )∫ exp(-ik‚r)[gIII(r) - 1] dr

)
2π exp(-B)

k

[B cos(k - C - D) - (k - C) sin(k - C - D)

B2
+ (k - C)2

-

B cos(k + C + D) - (k + C) sin(k + C + D)

B2
+ (k + C)2 ] (15)

Z g 0 (16)

B g 0 (17)

0 e D e 2π (18)

TABLE 1: Terminal Packing Fractions O* for Six Different
Cases in Which the Step-Function Contribution gI to g in (8)
Is Always Included

case I gII * 0 gIII * 0 S(k) > 0 φ* ) 0.627
case II gII * 0 gIII * 0 S(k) ) 0 φ* ) 0.46
case III gII * 0 gIII ) 0 S(k) > 0 φ* ) 0.41
case IV gII * 0 gIII ) 0 S(k) ) 0 φ* ) 0.3125
case V gII ) 0 gIII * 0 S(k) > 0 φ* ) 0.375
case VI gII ) 0 gIII * 0 S(k) ) 0 φ* ) 0.3535

max
Z,A,B,C,D

φ (19)

min
k

S(k;Z,A,B,C,D) g 0 min
r

g(r;Z,A,B,C,D) g 0 (20)

min
k

S(k;Z,A,B,C,D)
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vanishingly small density fluctuations at these wavelengths.
Atypically, the pair correlation function g(r) exhibits appreciable
oscillations before attaining its long-range value at about r )

8. This feature could be the result of polycrystallinity, but the
fact that g(r) vanishes at r ≈ 1.4 (another anomalous charac-
teristic) evidently eliminates the possibility that such putative
crystallites are face-centered cubic arrangements. Interestingly,
the coordination number Z ≈ 5.8 is approximately equal to the
value observed in experiments and simulations of typical dense
random packings.7-9 Theoretical arguments have been put forth
predicting that Z ) 6 for random packings of identical
frictionless spheres in three dimensions.18-20

Case II. In the second case, we conduct the search under the
condition that S(k)0) ) 0. For this condition to hold, Z must
be given by

This condition also implies that the term in S(k) of order k2 is
zero, and therefore the first nonzero term is of order k.4 Both
the maximal packing fraction and coordination number drop
from the first case to the values φ* ) 0.46 and Z ) 2.3964
(see Tables 1 and 2). Figure 3 shows the structure factor and
pair correlation function. Note the atypical curvature of the
function g(r) near the contact value.

Case III. In the third case, we suppress the damped-oscillating
component [gIII(r) ) GIII(k) ) 0]. Here we find that φ* ) 0.41
and Z ) 3.1504.

Case IV. In the fourth case, we suppress the damped-
oscillating component [gIII(r) ) GIII(k) ) 0] and we also impose
the condition S(k)0) ) 0. This problem can be solved exactly.
Here we find

In the Appendix, we obtain the d-dimensional generalization
of this result and show how it leads to a lower bound on φ* for
the general case in which the third component is not suppressed
[gIII(r) * 0, GIII(k) * 0].

Case V. In the fifth case, we suppress the δ-function
component (Z ) 0). Here we obtain φ* ) 0.375 (see Tables 1
and 2).

Case VI. In the sixth case, we suppress the δ-function
component (Z ) 0) and we also impose the condition
S(k)0) ) 0. We find that φ* ) 0.3535 (see Tables 1 and 2).

4. Concluding Remarks

For the family of pair correlation functions specified by (8),
the optimal packing fraction is characterized by unusual
structural features such as substantially large density fluctuations
in the infinite-wavelength limit, vanishing or nearly vanishing
fluctuations at several finite wavelength values, and an inter-
particle radial distance (r ≈ 1.4) at which particle centers are
prohibited. Nonetheless, the maximal packing fraction and
coordination number (φ* ) 0.627 and Z ) 5.8) are consistent
with values for dense random packings generated experimentally
and computationally. Clearly, however, properties iv and v
(“split second peak” and the discontinuous drop at r ) 2) that
are characteristic of typical random packings are absent in the
optimal solution. In future work, one may want to consider other
families of functions that are not as smooth as (8) away from

Figure 2. Structure factor (a) and pair correlation function (b) for case
I. Note the appearance of a vertical line at contact in (b), indicating a
δ-function contribution there.

TABLE 2: Values of the Parameters for the Cases in Table
1

case I A ) 2.733 B ) 0.510 C ) 7.471 D ) 0.627 Z ) 5.80
case II A ) 1.15 B ) 0.510 C ) 5.90 D ) 1.66 Z ) 2.3964
case III A ) 0 B ) 0 C ) 0 D ) 0 Z ) 3.1504
case IV A ) 0 B ) 0 C ) 0 D ) 0 Z ) 1.5
case V A ) 4.8 B ) 1.2 C ) 5.90 D ) 0.90 Z ) 0
case VI A ) 3.9 B ) 0.9 C ) 5.70 D ) 0.90 Z ) 0

Z ) 8φ - 1 -
24φ

B2
+ C2[(B +

B2
- C2

B2
+ C2) sin(C + D) +

(C +
2BC

B2
+ C2) cos(C + D)] (21)

Figure 3. Structure factor (a) and pair correlation function (b) for case
II. Note the appearance of a vertical line at contact in (b), indicating a
δ-function contribution there.

φ* )
5

16
Z )

3
2

(22)
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r ) 1, e.g., piecewise continuous functions. Such extensions
would quantify the significance of properties iv and v in raising
φ* above the optimal value of 0.627, while presumably driving
S(k)0) downward toward zero.

Assuming that the optimal packing can actually be realized,
there remain many open questions. Do the spheres form a
contacting percolating network? Given the high density that is
achieved, we suspect that the answer is in the affirmative. If
so, what is the geometry of the contact set? Are rattlers present
in the optimal solution? Is the packing locally, collectively, or
strictly jammed?11 The answers to all of these questions would
greatly be facilitated if we could determine whether there are
packings that achieve the optimal solution. This can be
accomplished using stochastic reconstruction techniques that
enable one to obtain realizations of sphere packings that have
a targeted pair correlation function or structure factor.21 We will
attempt such a reconstruction in a future study. Another
interesting extension of the present work is to generalize the
family of pair correlation functions to the case of spheres of
different sizes and to determine the maximal packing fraction.
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Appendix: d-Dimensional Generalization of Case IV

In this appendix, we obtain an exact expression for the optimal
value of φ* for the d-dimensional generalization of case IV. A
consequence of this result is a lower bound on φ* for random
sphere packings in d dimensions, which we compare to a well-
known lower bound for regular lattice packings.

Consider the evaluation of the structure factor S(k) of relation
12 in d dimensions but without the short-ranged (damped-
oscillating) contribution, i.e.,

where GI(k) and GII(k) are the d-dimensional Fourier trans-
forms22

and

The quantity s1(r) is the surface area of a d-dimensional sphere
of radius r.

It immediately follows that

where

is the d-dimensional packing fraction. If this were the only
contribution to the structure factor, then the non-negativity
condition S(k) g 0 implies

which agrees with the result given in ref 4. It easily follows
that

Substitution of (29) and (32) into (23) yields

The last explicit term changes sign if Z increases past 2dφd/(d
+ 2). At this crossover point,

Since the minimum occurs at k ) 0, then we have the exact
results

Thus, we have the lower bound

for random sphere packings in d dimensions because the addition
of the short-range contribution (which we have neglected) would
result in a generally larger value of φ*. In obtaining the lower
bound (36), we have assumed there are no further sufficiency
conditions beyond (1) and (3).

In very high dimensions (d ∼ 1000), the densest known
packings are nonregular lattices.23 Thus, it is of interest to
compare the lower bound (36) to the Minkowski-Hlawka
theorem,23 which gives a lower bound on the maximum packing
fraction for d-dimensional regular lattices of identical spheres:

where ú(d) is the Riemann ú function. The lower bound (36) is
larger than the lower bound (37) for d g 3. Indeed, the
difference between these bounds grows with increasing d.
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