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Rigorous upper and lower bounds on the effective electrical conductivity (T * of a two-phase 
material composed of equi-sized spheres distributed with an arbitrary degree of impenetrability in 
a matrix are obtained and studied. In general, the bounds depend upon, among other quantities, 
the point/n-particle distribution functions G ~i), which are probability density functions 
associated with finding a point in phase i and a particular configuration of n spheres. The G ~i) are 
shown to be related to thepn, the probability density functions associated with finding a particular 
configuration of n partially penetrable spheres in a matrix. General asymptotic and bounding 
properties of the G ~i) are given. New results for the G ~i) are presented for totally impenetrable 
spheres, fully penetrable spheres (i.e., randomly centered spheres), and sphere distributions 
between these latter two extremes. The so-called first-order cluster bounds on (T * derived here are 
given exactly through second order in the sphere volume fraction for arbitrary A (where A is the 
impenetrability or hardness parameter) for two different interpenetrable-sphere models. 
Comparison of these low-density bounds on (T * to an approximate low-density expansion of (T * 
derived here for interpenetrable-sphere models, reveals that the bounds can provide accurate 
estimates of the second-order coefficient for a fairly wide range of A and phase conductivities. The 
results of this study suggest that general bounds derived by Beran, for dispersions of spheres 
distributed with arbitrary A and through all orders in ¢2' are more restrictive than the first-order 
cluster bounds for O':;;A < 1; with the two sets of bounds being identical for the case of totally 
impenetrable spheres (A = 1). For most values orA in therangeO':;;A < 1, however, the numerical 
differences between the Beran and cluster bounds should be small; the greatest difference 
occurring when A = O. The analysis also indicates that the cluster bounds will be easier to 
compute than the Beran bounds for dispersions of partially penetrable spheres. 

I. INTRODUCTION 
The degree of the connectivity of the constituent phases 

may greatly influence the transport properties of two-phase 
disordered materials (e.g., composite and porous media), 
particularly when the phase properties differ significantly. I 
For example, the pronounced decrease of the electrical resis­
tivity of a compacted mixture of silver particles and Bakelite 
powder near 30% by volume of silver occurs because the 
more conductive phase changes from a dispersed phase to a 
continuously connected one.2 Percolation theory provides a 
useful conceptual framework for interpreting the morpho­
logy and transport properties of two-phase composites in 
which one phase is infinitely conducting relative to the oth­
er. I- 3 

In this paper it is desired to estimate the effective electri­
cal conductivity (T * of two-phase media composed of a parti­
culate phase of variable connectivity dispersed throughout a 
matrix (e.g., dispersions,2 sandstones,4,5 sintered materials,4 

and unglazed ceramics4) for any phase conductivity ratio. 
Equi-sized spheres distributed with an arbitrary degree of 
impenetrability in a matrix represent a reasonable model of 
such a medium. The degree of impenetrability may be char­
acterized by some parameter A whose value varies between 
zero (in the case where the sphere centers are randomly cen­
tered, i.e., "fully penetrable spheres") and unity (in the in­
stance of totally impenetrable spheres). The degree of con-

nectivity of the particle phase is obviously dependent upon 
the degree of impenetrability A. For example, for fully pene­
trable spheres (A = 0) and totally impenetrable spheres 
(A = 1), the particle phase percolates (i.e., a sample-span­
ning cluster appears) at a sphere volume fraction of approxi­
mately 0.36 and 0.64,7 respectively. The conductivities of 
such models of disordered composite media shall be estimat­
ed employing rigorous bounding techniques. Bounds on (T * 
are desirable since (i) comparison with bounds allows one to 
test the merits of a theory and (ii) bounds can provide useful 
estimates of (T * even when the phase conductivities widely 
differ.s It should be remembered that all results obtained 
here will apply also to the thermal conductivity, dielectric 
constant, magnetic permeability, and diffusion coefficient 
associated with heterogeneous media. Examples of materials 
(characterized by a connected particle phase) for which it is 
desired to predict such properties include foams,9 polymer 
blends,1O and cermets (ceramic-metal mixtures). II 
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This is the third in a series of studies of the bulk proper­
ties of two-phase disordered media. In the first paper, 12 

(hereafter referred to as I), a cluster expansion for the di­
electric constant or, equivalently, electrical conductivity, of 
a dispersion of penetrable spheres was obtained. Rigorous 
bounds and an approximate expression for the effective 
property were derived in the subsequent paper13 (hereafter 
referred to as II) through second order in the sphere volume 
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fraction and for arbitrary A. for a particular interpenetrable­
sphere model. 

In Sec. II, formal nth-order cluster bounds on u * are 
derived using classical variational principles for media com­
posed of spheres distributed with arbitrary A. in a matrix. 
First-order cluster bounds are then explicitly expressed in 
terms of integrals that involve, among other quantities, cer­
tain statistical distribution functions, G ~2) and G i2

). The 
point/n-particle distribution function G ~i) is the probability 
density associated with finding a point in phase i and a parti­
cular configuration of n spheres. In Sec. III, the G ~i) are 
rigorously defined and some of their general properties are 
described. Among other results, the relationship between 
the G ~i) and the more fundamental n-particle probability 
densitiesPn (defined in the text) is given here for a distribu­
tion of equi-sized spheres of variable impenetrability. Gen­
eral rigorous upper and lower bounds on the G ~i) are pre­
sented. Some new results for the G ~i) for the extreme cases of 
totally impenetrable spheres and fully penetrable spheres are 
given. The exact density expansion of G ~i) and G f), through 
second order in the number density P, is then derived for the 
permeable-sphere l4 and penetrable-concentric-shell I2 mod­
els. In Sec. IY the first-order cluster bounds on u * are given 
exactly through second order in the sphere volume fraction 
for both of the aforementioned interpenetrable-sphere mod­
els for arbitrary values of the impenetrability parameter A.. 
An approximate expression for the low-density expansion of 
u * for dispersions of penetrable spheres is derived. The low­
density bounds described above are found to be in good 
agreement with the approximate expansion for a wide range 
of A. and phase conductivities. Lastly, in Sec. Y the main 
results of this study are briefly summarized. 

II. NEW VARIATIONAL BOUNDS 

Consider a statistically isotropic two-phase medium of 
volume V composed of N equi-sized spheres of conductivity 
U 2 dispersed throughout a matrix phase of conductivity Up 

The volume fraction of matrix and spheres is tP 1 and tP2 
( = 1 - tPI), respectively. The spheres are distributed with 
an arbitrary degree of impenetrability A., Oos;;;A.os;;; 1, where 
A. = 0 corresponds to fully penetrable spheres and A. = 1 cor­
responds to totally impenetrable spheres. Examples of 
sphere distributions involving values of A. that lie between 0 
and 1 are the permeable-sphere (PS) 14 and penetrable-con­
centric-shell (PCS) 12 models. Employing classical vari­
ational principles,15 a new set of rigorous upper and lower 
bounds on the effective conductivity of such a composite for 
arbitrary A. is derived here. 
A. Formal nth-order cluster bounds 

1. Principle of minimum potential energy 
A 

Let the average of the trial electric field (E(r» (where 
angular brackets denote an ensemble average and r is a field 
point) be required to equal the average of the actual electric 
field (E(r». Let 

U = !<u(r)E(r) . E(r», (2.1) 

where u(r) is the local conductivity. Then among all ir!.ota­
tional trial electric fields, the field which makes u(r)E(r) 
solenoidal is the one that minimizes U and is unique. 

This principle is general and hence applies to composite 
media of arbitrary microgeometry. The condition on the tri­
al electric field implies that the tangential component of E 
must be continuous across surfaces of discontinuity in the 
medium (i.e., at the particle-matrix interface for the specific 
geometry considered here). At its minimum value the total 
energy U is given by 

A A 

U = !u *(E(r» . (E(r», (2.2) 

where u * is the effective electrical conductivity. Applying 
the principle of minimum potential energy and Eq. (2.2) 
yields the following rigorous upper bound on the effective 
conductivity: 

A A 

* (uE. E) u OS;;; >< ><. (2.3) 
(E)·(E) 

For a dispersion of N equi-sized penetrable spheres of 
radius R, the electric field at r can be expanded in a cluster 
expansion of the form l2

: 

E(r) = (E(r» + E(l)(r) + E(2)(r) + .... (2.4) 

The k th-order term E(k) is the contribution to E that ac­
counts for intrinsic k-body interactions and therefore in­
volves a sum over k-tuplets of particles. 12 We require that 
(E(k» = 0 for all k:>l. The E(k) are derived from I by ob­
taining the cluster expansion ofEq. (2.10) of this reference 
and eliminating the applied field Eo in favor of the average 
field. If this is done then the average ofE(k) will be zero for 
all k. For example, from Eq. (2.22), it is obvious that 
(E(l) = o. Clearly, all the quantities in Eq. (2.4) depend 
upon the positions of the N spheres of the system. 

An allowable trial function based on Eq. (2.4) is the 
following: 

A n 

E(r) = (E) + L thE(k)(r). (2.5) 
k=l 

In Eq. (2.5) the quantities lh are constant multipliers which 
are to be chosen as to minimize the upper bound (2.3). Sub­
stituting Eq. (2.5) into upper bound (2.3) and setting au * / 
J1/l = 0, where", is a column vector whose elements are given 
by 7.fk' gives that 

y-ZW-1y 
u *os;;;(u) - (E). (E) . (2.6) 

Here yT denotes the transpose of the column vector Y whose 
elements are given by 

Vk = (E) . (u E(k», (2.7) 

and W- 1 denotes the inverse of the matrix W whose ele­
ments are given by 

Wkl = (uE(k). E(/». (2.8) 

Upper bound (2.6) is exact through nth order in the sphere 
volume fraction tP2' since it is based on the exact solution of 
the electrostatic field equations for n interacting spheres. 
Accordingly, this is referred to as an nth-order cluster upper 
bound. Note that V, Eq. (2.7), and W, Eq. (2.8), depend not 
only upon field quantities but, as a result of ensemble averag­
ing these many-body functions, statistical quantities which 
characterize the spatial distribution of the inclusions. In gen­
eral, it can be shown that the nth-order cluster upper bound 
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Eq. (2.6) depends upon the sets of distribution functionsPI' 
P2"'" P2n _ I , P2n' and G ~2), G \2) , ••• , G i!)- I , G i!) defined in 
the subsequent subsection. This, however, shall not be dem­
onstrated here for arbitrary n. 

2. Principle of minimum complementary potential 
energy 

Let the average of the trial current field (J (r» be re­
quired to equal the average of the actual current field 
(J(r». Let 

T= !(J(r) . J(r)/(7(r». (2.9) 

Then among all solenoidal trial current fields, the field 
which makes J(r)/(7(r) irrotational is the one that mini­
mizes T and is unique. 

The condition on the trial current field implies that the 
normal component of J must be continuous across surfaces 
of discontinuity in the medium. At its minimum value the 
total energy T is given by 

T= (J) . (J)/(7 *. (2.10) 

The use of the principle of minimum complementary poten­
tial energy and Eq. (2.10) gives a rigorous lower bound on 
(7 *, namely 

(2.11 ) 

For a composite medium composed of penetrable 
spheres dispersed throughout a matrix, an allowable trial 
current field is given by 

J(r) = (J) + i WkJ(k)(r). (2.12) 
k=1 

As in the case of the trial electric field, the quantity J(k) is 
derived from the exact solution of the electrostatic field 
equations for k interacting spheres. We require that 
(J(k» = 0 for all k> 1. Substitution ofEq. (2.12) into lower 
bound (2.11) and setting a(7 *1 aro = 0, where ro is a column 
vector whose elements are given by Wk, yields that 

(7*>[(1/(7) _ XIY-IX]-l 
(J) . (J) 

(2.13) 

Here X T denotes the transpose of the column vector X whose 
elements are given by 

X k = (J). (J(k)/(7) (2.14) 

and y-I denotes the inverse of the matrix Y whose elements 
are given by 

Yk1 = (J(k). J(l) 1(7). (2.15 ) 

Lower bound (2.13) is referred to as an nth-order cluster 
lower bound since it is exact through nth order in tP2' The 
averaged quantities X and Y depend upon functions which 
statistically characterize the medium. The nth-order cluster 
lower bound (2.13) also can be shown to depend upon the 
sets of distribution functionsPI,P2""'P2n' and G ~2), G \2) , ... , 
Gi~)_l' Gi~)· 

B. Explicit first-order cluster bounds 

Here explicit expressions for first-order cluster bounds 
on (7 * are derived. Setting n = 1 in Eqs. (2.6) and (2.13) 
gives, respectively, 

(2.16) 

(2.17) 

The local conductivity may be expressed in terms of the 
characteristic functions ofthe phases, i.e., 

(7(r) = (7/(l)(r) + (72[(2)(r) 

(2.18 ) 

where 

[(i)(r) = {I, rEDi> (2.19) 
0, otherwise, i = 1,2 

and DI and D2 are the regions of space occupied by matrix 
and particles, respectively. For N overlapping spheres ofra­
dius R centered at positions -? r l,r2, ... ,rN , respectively, it 
has been shown thatl6 

N 

[(1)(r;-?) = II [1 - m (Xi)] (2.20a) 
i=1 

N N 

= 1 - I m(xi ) + I m(xi)m(xj ) 

i= I i<j 

N 

- L m(xi )m(xj )m(Xk) + ... , 
i<j<k 

(2.20b) 

where 

{
I, 

mer) = 0, (2.21) 

and 

Xi = Ir-ril· 

For n = 1 the trial fluctuation fields EW and JW are 
easily obtained from the one-sphere electrostatic boundary­
value problem. Specifically, for an inhomogeneous system of 
N spheres, one has 

E(1)(r;-?) = itl K(xi)· (E) - f drIPI(rl)K(xl) . (E) 

(2.22) 

and 

J(1)(r;-?) = itl M(xi)· (E) - J drIPI(rl)M(xl)· (E), 

(2.23) 

where K and M are the single-body operatorsl2 

_ {/3R 
3 [3rr _ U], r>R, 

K(r) = ~ 

-/3U, r<R, 

(2.24) 

_ {(7I/3R
3 

[3rr-U], r>R, 
M(r) = ~ 

2u1 /3U, r<R, 

(2.25) 

/3 - (72 - (71 (2.26) 
- (72 + 2(71 ' 

X = r - ro r = Irl, r = r/r, and U is the unit dyadic. In the 
volumeintegralsofEqs. (2.22) and (2.23) thequantitYPI is 
the one-particle density function defined below. 
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It remains now to substitute Eqs. (2.18), (2.20), 
(2.22), and (2.23) into the bounds (2.16) and (2.17) and 
obtain the necessary ensemble averages. Let F(r') denote 
any many-body function. Then the ensemble average of F is 
given by 

(F(rN» = f ... f dr' F(r')PN (rN), (2.27) 

where dr' ==.drl,···,drN and PN (rN) drN is the probability of 
simultaneously finding the center of particle 1 in volume dr I 
about r l, the center of particle 2 in volume drz about rz, ... , 
and the center of particle N in volume drN about rN' It is 
convenient to introduce the reduced n-particle probability 
density Pn (rn) defined by 

Pn(rn) = f ... f drn+I···drNPN(r'). (2.28) 

Let 

(2.29) 

Thenpn (rn) drn is the probability that the center of exactly 
one (unspecified) particle is in volumedrl about r l, the cen­
ter of exactly one other (unspecified) particle is in volume 
drz about rz, etc. 

The ensemble averaged quantities of Eqs. (2.16) and 
(2.17) for isotropic media are, after some algebraic manipu­
lation (see Appendix A), given by 

(0") = 0"1 + tPz(O"z - 0"1)' (2.30) 

(2.31) 

(0" E(!) = - 417"P(O"z - 0"1) (E) f dz:rH lZ) (z), 

(2.32) 

(J(!)/O") = 817"P (0"1 ~ 0"2) (E) f dz z2H l2) (z), 

(0" E(I) • EO» 
P2(E) . (E) = O"IA + (0"2 - O"I)B, 

(J(I) . J(!)/O") C (0"1 - 0"2) D 

PZ(E) . (E) = 0"1 + 0"10"2 ' 

where 

A =A I +A2 +A3, 

B=BI +B2 +B3 +B4 , 

C=2A I +4A2 +A3, 

D=4BI +Bz + 4B3 +B4 , 

AI = 31], 

(2.33 ) 

(2.34) 

(2.35 ) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41 ) 

(2.42) 

(2.43) 

(2.44) 

9 11 II Jl B3 = _1]2 dz:r dy y2 du Q(y,z)/p2, (2.45) 
2 0 0 -1 

and 

Q(y,z) = Gi2)(y,z) -pGl 2 )(y) -pGl2)(z) +p2tP2. 
(2.47) 

HerethesphereradiusR is taken to beunity,p = N /Vis the 
number density, 1] = p VI is a reduced density, VI is the vol­
ume of one sphere, P2 (u) is the Legendre polynomial of or­
der 2 [not to be confused with the reduced two-particle 
probability density ofEq. (2.28)], 

y2 +:r _xz 
u = ""---'----

2yz 
(2.48) 

and 

x= Iy-zl. 

Moreover, the quantity G~i)(rn+l) drz,dr3, ... ,drn+ 1 gives 
the probability of finding phase i at r I> the center of one 
(unspecified) particle in volume drz about r2, the center if 
another (unspecified) particle in volume dr3 about r3, etc. 
Weissberg and Pragerl7 introduced G ll) and Gil) in the re­
lated problem of determining the effective viscosity of a sus­
pension and evaluated these quantities for a geometry offul­
ly penetrable spheres. This appears to be the only model 
microstructure for which the G ~i) have been evaluated. 
These statistical quantities, which shall be referred to here as 
point/n-particle distribution functions, are studied in some 
detail in the subsequent section. For statistically homogen­
eous and isotropic media, G li)(rl,rz) = G li)(r lz ) and 
G ii)(r l ,rZ,r3) = G ii) (r12,r13,iI2 . i 13 ), where rij = Iri - rj I 
and iij = rij/rij' The function H li) appearing in Eqs. (2.32) 
and (2.33) is trivially related to Gli) through Eq. (3.15). 
The quantity hex) appearing in Eqs. (2.41) and (2.42) is the 
total correlation function and is related to the radial distri­
bution functiong(x) P2(X)/pz, i.e., 

hex) =g(x) - 1. (2.49) 

In the limit x~ 00 , h~, assuming the system does not pos­
sess long-range order. In Appendix A the steps leading to 
integrals (2.41 )-(2.46) are outlined. 

Weissbergl8 actually was the first to employ trial fields 
based upon the solution of the single-body electrostatic 
boundary-value problem. He did so to obtain an upper 
bound on 0" • for the specific model of a bed of perfectly 
insulating fully penetrable spheres (a = 0, where 
a = O"Z/O"I)' Weissberg did not need to compute the lower 
bound on 0". since it vanishes in this case. Since Weissberg 
had the geometry of fully penetrable spheres specifically in 
mind he did not bother to express ensemble averages in 
terms of the general statistical quantities hex), G IZ)(x), and 
G Y) (y ,z), as is done here. For the case of fully penetrable 
spheres these statistical functions are trivial and so Weiss­
berg evaluated such ensemble averages using simply prob­
ability arguments. (In Sec. III, the G ~i) are, for the first time, 
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expressed in terms of the fundamental n-particle probability 
densities for any sphere distribution.) The Weissberg upper 
bound on U * for a = 0 always improves upon the Hashin­
Shtrikman (HS) 19 upper bound for all u.2 The HS bounds 
give the best possible bounds on u * for an isotropic two­
phase composite given the simplest microstructural infor­
mation on the medium, the volume fraction of one of the 
phases. Hashin and Shtrikman also showed that in order to 
improve upon the HS bounds information beyond that con­
tained in </JI or </J2 must be utilized. 

De Vera and Strieder20 extended Weissberg's results for 
beds of fully penetrable spheres to the entire range of 
a(O<a< 00). The De Vera and Strieder bounds improve 
upon the HS bounds for most </J and a. For the specific two­
dimensional model of impenetrable circular disks in a ma­
trix, McCoy21 also employed trial fields based upon the one­
body boundary-value problem to derive bounds on the 
effective conductivity. 

The trial fields employed here, Eqs. (2.22) and (2.23), 
are actually slightly different from the ones employed by 
previous investigators. 18,20,21 The former trial fluctuating 
fields, unlike the latter, are such that their respective aver­
ages are zero, irrespective of the sample shape, and hence 
lead to absolutely convergent (i.e., shape-independent) inte­
grals when they are ensemble averaged. That all of the inte­
grals that arise in the bounds derived here are absolutely 
convergent is proved in Appendix A. 

Employing the results of Sec. III, some of the integrals 
given above are easily evaluated. For example, using Eqs. 
(3.2), (3.7), and (3.15) one has for n = 1 that 

G\2)(X) =P, x<1 

and 

H\2)(X) =P</JI' x< 1. (2.50) 

Hence Eqs. (2.32), (2.33), and (2.43) are, respectively, giv­
en by 

(uEU» = -/3'1]</JI(U2 -ul)(E), (2.51) 

(2.52) 

and 

Bl = '1]. (2.53) 

The integrals of Eqs. (2.41), (2.42), (2.44), (2.45), and 
(2.46) are, in general, more difficult to evaluate. 

To summarize, for an isotropic composite medium con­
sisting of equi-sized spheres of variable penetrability dis­
persed throughout a matrix, the effective conductivity is 
bounded by 

u *< [(u) _ 'l]2</Jf (U2 - u1 )2 ] 

ulA + (U2 - ul)B 

and 

[( ) 
4'1]2</Ji (U2 - Ul)2/UIU2]-1 

U *~ 1/u - , 
CU2 + (ul - (2)D 

(2.54) 

(2.55) 

where A, B, C, and D are given by Eqs. (2.36)-(2.39), re­
spectively. These general bounds are new. For partially pen­
etrable spheres the inclusion volume fraction </J2 can be relat-

ed to the reduced density '1].22,23 For example, for fully 
penetrable and totally impenetrable spheres </J2 = 1 - e - ." 
and </J2 = '1], respectively. General expressions which relate 
</J2 as a function of 'I] for arbitrary values of the impenetrabil­
ity parameter A have been obtained for the PS22 and PCS23 

models. It is important to note that although the difference 
between the upper and lower bounds diverge in the limits u 1/ 
u 2-0 or u2/ u 1-00 , the bounds can nonetheless remain use­
ful. Lower bounds of the type derived here should yield accu­
rate estimates of u * / u I, provided that the volume fraction of 
the highly conducting phase, say phase 2, is below its perco­
lation-threshold value </J~. 8,13 Similarly, upper bounds of this 
type should give reasonable estimates of u */ul, provided 
that </J2~</J~. 

III. POINT/n-PARTICLE DISTRIBUTION FUNCTIONS 

Here the general point/n-particle distribution function 
G ~i) is rigorously defined. Some properties of G ~i) which 
immediately follow from its definition are described. The 
relationship between the G ~i) and the n-particle probability 
densities Pn is then written down, for the first time, for a 
distribution of equi-sized spheres of variable impenetrabil­
ity. Successive upper and lower bounds on the G ~i) are given. 
Some general results are noted for the particular case of to­
tally impenetrable spheres. This is followed by an evaluation 
of the G ~i) for dispersions offully penetrable spheres. Lastly, 
the low-density expansion of the point/one-particle and 
point/two-particle distribution functions, G Ii) and G ii), re­
spectively, are evaluated for both the PS and PCS models. 

A. Definition and some properties of the G<n') 
The distribution function associated with finding phase 

i at r and a particular configuration of n spheres at positions 
rl, ... ,rn is defined as 

G ~i)(r;rn) 

= N! f .•. fdrn+I ... drN/(i)(r;rN)PN(r'), 
(N - n)! 

(3.1) 

where / (i) is the characteristic function of phase i given by 
Eq. (2.20) and PN is the N-particle probability density de­
fined in the previous section. 

Use of Eq. (3.1) and the fact that /U) = 1 - /(2) gives 
that 

G~I)(r;rn) +G~2)(r;rn) =Pn(rn ). (3.2) 

Equation (3.2) is an obvious result; it states that, since there 
are only two phases, the distribution function associated 
with finding a point in the matrix at rand n spheres at posi­
tions rn added to the distribution associated with finding a 
point in the particle phase at rand n spheres at positions r" 
must be equal to Pn' the probability density associated with 
finding n spheres at positions rn. If n is set equal to zero in Eq. 
(3.1) then it is clear that G bi

) = (/ (i» is equalto the volume 
fraction of phase i, </JiJ for a statistically homogeneous medi­
um (Le., the limit N-oo, V_oo, such that P = N /V re­
mains finite). It follows that Po= 1. 

The conditional distribution function G ~i) (rlrn) asso­
ciated with finding a point in phase i given that there are n 
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spheres at positions r" is given by 

G ~/) (rlrn) = G ~j) (r;rn)/Pn (rn). (3.3) 

Dividing Eq. (3.2) by Pn yields the following expected result 
for the conditional distribution functions: 

G~1)(rlrn)+G~2)(rlrn) 1. (3.4) 

Since G ~i) is a joint distribution function one has the 
normalization conditions 

and 

N! (3.6) 
(N -n)! 

Equation (3.5) is arrived at by integrating Eq. (3.1) over 
positions rn. Equation (3.6) follows by noting that 
(/(1) + (1(2» = 1. 

It is clear that 

G~l)(r;rn)=o, if Ir-rjl<R, i l, ... ,n, (3.7) 

since the point r cannot be in any sphere for the G ~ I). From 
Eq. (3.2) one also has that 

G~2l(r;r")=p"(r"), if Ir-r;I<R, i=l, ... ,n. (3.8) 

Expression (3.8) states that the distribution function asso­
ciated with finding particle phase at r and a particular con­
figuration of n spheres is simply equal to the probability den­
sity associated with finding the same configuration of n 
spheres whenever the point r is in one of the n spheres. 

For the PCS model 12 the quantitiesPn and G ~;) are iden­
tically zero for certain values of their arguments. In the PCS 
model (depicted in Fig. 1) spheres (cylinders) of radius R 
are statistically distributed throughout space subject only to 
the condition of a mutually impenetrable core of radius ..1..R. 
0<..1..<1. Each sphere (cylinder) of radius R. therefore, is 
composed of an impenetrable core of radius ..1..R encom­
passed by a perfectly penetrable concentric shell of thickness 
(1 - A. )R. The PCS model should serve as a useful model of 

FIG. 1. A realization of a distribution of disks of radius R = ul2 (shaded 
region) in a matrix (unshaded region) in the pes model. The disks have an 
impenetrable core of diameter A.U, indicated by a smaller circular region. 
Here A. = 1/3 and the particle volume fraction is about 0.28. 

certain sintered materials. In light of this discussion one has 
that in the PCS model 

(3.9) 

and 

(3.10) 

for any j and k such that j# k. 
It is useful to study the asymptotic behavior of G ~j) for 

certain limits of its arguments for any statistically inhomo­
geneous dispersion of spheres. First consider the G ~ I). The 
set (r,rl, .... rn) is partitioned intoL = L(b) disjoint subsets, 
where (b) = (b1Ib2 1 .. ·lbd is any partition of the aforemen­
tioned set. bj is the ith subset and 1]; is the number of ele­
ments in b I' Let all of the relative distances between the 1]; 

elements of subset bi remain bounded, and let Fbi be the 
polyhedron with 1]; vertices located at the positions associat­
ed with the subset bl • Denote by R; the centroid of Fbi' As­
suming no long-range order and that the element r is a mem­
ber of the first subset bl' one has 

L 

lim G~I)(b)=G~)(bl) ITpT/,(b;), (3.11) 
Rjk-oo 1=2 

where all Rjk-+tYJ, m = 1]1 - 1, Rjk is the relative distance 
between centroids of Fbi and Fb

k 
andj and k are all possible 

values such that 14 <k<L. Combination ofEqs. (3.2) and 
(3.11) yields 

L 

lim G~2)(b)=[Pm(bl)-Gm(bl)] ITpT/,(bi ). 
Rjk-oo i= 2 

( 3.12) 

Similar arguments were employed by Torquato and Stell 16 to 
study the asymptotic behavior of the so-called n-point ma­
trix probability functions S". 

For the particular partition (rlrl, ... ,rn ) Eqs. (3.11) and 
(3.12) yield, respectively, 

G~1J(r;r")-+G61)(r)Pn(rn) = (1(l)(r»Pn(r") 

and 

G ~2) (r;r")-+G 62) (r)Pn (rn) = (1(2)(r) )Pn (rn). 

(3.13) 

(3.14) 

Recall that G 6il = tPl for a statistically homogeneous medi­
um. It is convenient to define a new set of point/n-particle 
distribution functions H ~i) as follows: 

H~;)(r;rn)=G ~il(r;r") - G6il (r)Pn (rn). (3.15) 

Clearly, when the vector r is infinitely far away from the set 
(rl, ... ,rn), H ~i)-+O. The quantity H fl is precisely the func­
tion that appears in Eqs. (2.32) and (2.33). 

B. Relationship of Q(,/) to Pn 

Employing definition (3.1) for i = 1 and Eqs. (2.20) 
and (2.21) yields that 

[ 
n ] N' G ~I) (r;rn) = IT e(x;) . 

;=J (N-n)! 

where 

X J ... J drn+J,· .. ,drNPN(rN) 

N 

X IT [1 - m (XI) ], 
i=n+ 1 

(3.16) 
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e(r) = 1 - mer) = to, 
1, 

(3.17) 

The function e(xl ) arises because the "point" particle at r 
must always lie in the matrix phase and hence the point par­
ticle at r and a spherical particle of radius R at r l must be 
impenetrable to one another. Since the product appearing in 
the integrand ofEq. (3.16) may be expanded in the manner 
ofEq. (2.20b) one has 

G ~I) (r;rn) 

= II e(x/) ~ - n . 
[ 

n ] N! N - n (N )' 

1=1 (N-n)! k=O (N-n-k)! 

X J '" J dr n + 1 ,···,dr n + k 

n+k 
XPn+k(rl,···,rn+k) II m(xl ) 

/=n+1 

[ 

n ] N-n ( _ l)k 
= II e(x;) ~ , 

1=1 k=O k. 

( _ I)k 

k! 

(3.18 ) 

(3.19) 

In arriving at Eqs. (3.18) and (3.19), Eqs. (2.28) and 
(2.29), respectively, have been employed. Note that proper­
ty (3.7) follows directly from Eq. (3.19). Information re­
garding the penetrability of the spheres enters through the 
Pn contained in Eq. (3.19). The corresponding expression 
for the G ~2) is obtained by substituting Eq. (3.19) into Eq. 
(3.2). 

It is convenient to change the integration variables from 
r n + 1 ,r n + 2"'" to r n + 2,r n + 3 , ••• , respectively, and to replace 
the variables r,rl> ... ,rn with rl,r2,· .. ,rn + I' respectively. 
Hence, from Eq. (3.19) the matrix phase point/n-particle 
distribution function is given by 

N-n 

G ~I)(rn + I) = ~ G~:k (r" + I), (3.20) 
k=O 

where 

G ~:k(rn+ I) 

= [X(e(rli )] (~:)k J ••• Jpn+k(r2, ... ,rn + k+ 1 ) 

n+k+1 
X II m(rli)dr" (3.21) 

/=n+2 

[
n+ 1 ) 

G~:J(r"+I)= 112 eCru) Pn(r2, ... ,rn+t>, (3.22) 

and 

rlj = Ir; - rjl. 
For statistically homogeneous media the Pn and thus the 
G ~I) depend only upon relative positions, i.e., 

(3.23) 

Equation (3.20) for the G ~ I) may also be derived by 
applying the formalism of Torquato and SteW4 developed 
for a different set of statistical quantities. Using these meth­
ods it is straightforward to show that there is a one-to-one 
mapping between Eq. (3.20) and the Kirkwood-Salsburg2S 

hierarchies for a binary mixture of spheres in equilibrium 
under certain limits. Specifically, one considers the Kirk­
wood-Salsburg equations for a binary mixture of spheres in 
which one of the two species consists of point particles (i.e., 
spheres of zero radius) in the limit of infinite dilution of the 
point particles. The other species consists of spheres of radi­
usR with density P that are partially penetrable to each other 
but are impenetrable to point particles. The probability den­
sity function associated with finding a point particle at rand 
a particular configuration of n spheres of radius R for such a 
binary mixture in the Kirkwood-Salsburg representation is 
trivially related to G ~l). Interestingly, although the deriva­
tion of the G ~I) in this way assumes an equilibrium distribu­
tion of spheres, the Kirkwood-Salsburg representation of 
the G ~I) is nonetheless isomorphic with Eq. (3.20) which 
was derived without any equilibrium assumptions. 

The Kirkwood-Salsburg series for the G ~I) enjoy useful 
bounding properties. Using geometrical arguments similar 
to the ones employed by Torquato and Stell24 one has the 
following successive upper and lower bounds on G ~ I): 

G~I)<G ~:J, 

G~I»G~:J +G~:l, 
G (I)/G (1) + G (I) + G (I) 

n "n.O n.1 n.2' 

G(I»G(I) + G(I) + G(I) + G(1) 
n n,O n,1 n,2 n,3 ~ 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

where the G ~:k are given in Eqs. (3.21) and (3.22). 
It is interesting to note that the point/one-particle func­

tion G \ I) (x) for an isotropic dispersion when x = R is close­
ly related to a function G(R) introduced by Reiss, Frisch, 
and Lebowitz in their "scaled-particle" theory.26 In the lan­
guage of scaled-particle theory, pG(R) gives the average 
density of solvent molecules (i.e., spheres of radius R) in 
contact with the solute point particle. Hence, pG(R) 
= GjI)(R)/tPl' 

C. The Gi-n/l for totally impenetrable spheres 

For distributions of totally impenetrable spheres the 
terms of the infinite series (3.20) are identically zero for 
k> 1, i.e., 

n+1 
G ~I) (rn + I) = II e(rlj) [Pn (r2, ... ,rn + 1 )] 

1=2 

-J drn + 2 Pn+ 1 (r2,···,rn + 2 )m(rt.n+2)· 

(3.25) 

This follows from series (3.20) since the product m(ru ) 

m(r1j ) Pn (rz, .. ·,r/ .... rj .... rn + 1) = ° for any 2<i < j<n + 1 
for totally impenetrable spheres. This implies, for example. 
thatG P) dependsonlyuponpl andpzand thatGi1

) depends 
only uponpl'PZ' andp3' 

It is of interest to examine how the lower-order n-point 
probability functions SI' Sz, and S ~6 (which arise in the Ber­
an bounds on u • 27) are related to the G ~ I) for dispersions of 
totally impenetrable spheres. The Sn (rn) give the probabil­
ity of finding n points with positions rn in one of the phases, 
say phase 1. For distributions of partially penetrable spheres, 

J. Chern. Phys .• Vol. 84, No. 11. 1 June 1986 

Downloaded 15 Oct 2010 to 128.112.70.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Torquato and Stelll6 have related the n-point "matrix" func­
tions Sn to the Pn' Applying the results of Ref. 16 and em­
ploying Eq. (3.25), it can be shown that for a statistically 
homogeneous distribution of totally impenetrable spheres, 

SI = G[/) = <PI> 

S2(r12 ) = SI - f dr3m(r13 )G ll)(r23 ), 

and 

S3(r12,r I3 ) = S2(r23 ) - f dr4m(rI4 )e(r24)G p)(r34 ) 

(3.26) 

(3.27) 

+ f f dr4drsm(rI4)m(r2S)G il)(r34,r3S)' 

(3.28) 

G 61) is obviously equal to SI' However, given G ll) and 
Gil), one may obtain S2 and S3' respectively, by integrating 
over the former quantities according to Eqs. (3.27) and 
(3.28) . 

In general, it can be shown that Sn depends upon the 
functionals of the set G 61),G p) , ... ,G ~I~ I for distributions of 
totally impenetrable spheres. Note furthermore that since 
G ~ I~ I depends upon a threefold integral involvingpn _ I and 
Pn' then Sn depends upon a threefold integral involving PI' a 
sixfold integral involvingp2'"'' and a 3n-fold integral involv­
ingpn. Consequently, the Sn generally are more difficult to 
compute than the G ~ I~ I for this model. 

D. The d,,1) for fully penetrable spheres 

The point/n-particle distribution functions for distribu­
tions of fully penetrable spheres are easy to obtain using Eq. 
(3.20). For the case offully penetrable spheres, the sphere 
centers are spatially uncorrelated, which implies that 

Pn (rn) =pn. (3.29) 

Substitution ofEq. (3.29) into Eq. (3.20) gives 
G~I)(~+I) 

[
n+1 ] '" (_l)kpn+k 

= II e(rli) L , 
;=2 k=O k. 

f f
n+k+1 

X ... . II m(rij)dr; 
l=n+2 

n+1 n+IG(1)(r.) 
=pn<PI II e(rli) = II I n- :' . 

;=2 ;=2 <PI 
(3.30) 

For this model, all the G ~ I) are expressible simply in terms of 
<PI and the point/one-particle functions for n> 1. Weissberg 
and Prager 17 obtained both G ll) and Gil) for dispersions of 
fully penetrable spheres using simple probabilistic argu­
ments. Combination ofEqs. (3.2), (3.29), and (3.30) yields 
that the complementary function for this geometry is given 
by n+1 

II Gj!)(rli) 
G~2)(rn+ I) =pn _ ~;_=.=..2 ___ _ 

<p~-I 
(3.31) 

Applying the general results of Ref. 16, Torquato and 
Stell28 have obtained an integral representation of the n­
point matrix probability function Sn for the specific geome­
try of fully penetrable spheres. These results combined with 
Eq. (3.30) give 

where 

X f .. · f drn + 1 ... drn+mF(rl,,,·rn+m) 

=exp[ -pVn(rn)], 

n+m n 

F(rl>".,rn+ m) = 1- L p-n<pl- n II Gp)(rij) 
j=n+1 ;=1 
n+m n 

(3.32) 

(3.33) 

+ L p-2n<pI-2n+1 II Gil)(rij,r;k) 
j=n+1 ;=1 

j<k 

n+m - L p-3n<pI-3n+2 
j=n+1 
i<k<l 

n 

X II Gjl)(rij,rik,ri/) + ... , (3.34) 
;=1 

and Vn (rn) is the union volume of n spheres of radius R with 
centers at rn. Unlike the case of totally impenetrable spheres, 
the Sn' for finite n, depend upon the infinite set 
G61),GP), ... ,G,U>' where M--+oo. However, as in the in­
stance of totally impenetrable spheres, the Sn are more diffi­
cult to compute than the G ~ I~ I . 

E. Low-density expansion of G\II and G'zll 
For subsequent calculations it is required to have the 

density expansion of G l2) and G i2
) through second order in 

P in both the PS and PCS models. It is assumed that the 
isotropic medium possesses no long-range order and that the 
n-particle probability density Pn (rn) may be expanded in 
powers of density. Hence the leading term is of order pn and 
from Eq. (3.20) one has 

G ll) (rI2) = pe(rI2 ) [ I - P f dr~O(r23)m(r13)] + O(p3) 

=pe(r12 ) [ I-pVI -p f dr3ho(r23)m(r13)] 

+ O(p3) (3.35) 

and 

Gi l
)(r12,r13 ) =p2go(r23)e(r12)e(r13) + O(p3). (3.36) 

Here VI = 411'R 3/3, and go(x) = 1 + ho(x) and ho(x) are 
the zero-density limits of the radial distribution function 
g(x) and total correlation function hex), respectively, as 
defined through Eq. (2.49). 

In the PS model,14 the zero-density limit of the total 
correlation function is given by 

{
-A 

ho(x;A) = ' 
0, 

x<2R, 

x>2R. 

For the class ofPCS models described in I, one has 

( 3.37) 

ho(x;A) = {- 1, x <2RA, (3.38) 
0, x>2RA. 

The convolution integral in the second line ofEq. (3.35) can 
be easily evaluated by transforming to a bipolar coordinate 
system.29 In the case of the PS model this integral is simply, 
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apart from a minus sign, the volume common to two spheres, 
one of radius R and the other of radius 2R, whose centers are 
separated by a distance r 12• For the PCS model the same 
integral is the volume common to two spheres, one of radius 

Combining the results given above with Eqs. (3.2) and 
(3.35) gives through order p2 in the PS and PCS models, 
respectively, that 

G\2)(X) = m(x) p + e(x) [VI _Av~nt(x;R,2R)] p2 
(3.40) 

and 

G \2)(X) = m(x) p + e(x) [VI - v~nt(x;a,b)] p2. (3.41) 

In Eq. (3.41) a = min(R,2RA) and b = max(R,2RA). 
The particle phase point/two-particle function through 

order p2 is given by 

Gi2)(r12,r13 ) =gO(r23 )[1-e(r12 )e(r13 )]p2. (3.42) 

r12 >R and r13<R, 

r12 <R and r13 <R. 
(3.43 ) 

IV. LOW-DENSITY BOUNDS IN THE PS AND pes 
MODELS 

Here the first-order cluster bounds (2.54) and (2.55) 
are evaluated exactly through order ¢~ in the PS and PCS 
models. These calculations will not only improve our under­
standing of the effects of overlap or connectivity on 0' • for 
dilute concentrations of penetrable spheres but will provide 
insight into the fundamental mechanisms at work at high 
particle concentrations. In order to compute the bounds 
through second order in ¢2' the quantities A, B, C, and D 
which appear in these bounds must be evaluated through 
second order in 1] for these models. 

Consider obtaining such results for the PS model first. 
Evaluation of the integrals (2.41), (2.42), and (2.44)­
(2.46), using Eqs. (3.37), (3.39), (3.40), and (3.43), gives 
through order 1]2 that 

A2 = _,.1.1]2, (4.1 ) 

A3 = - U1]2, (4.2) 

B2 = [2 - A (~ + i In 3 ) ] 1]2, (4.3) 

B3 = - {1 + ,.1.)1]2, (4.4 ) 

and 

B4 =O. (4.5) 

Note that the results for A2 and A3 are exact through all 

I 

R and the other of radius 2RA, whose centers are separated 
by a distance r 12• Let v~nt (x;R I ,R2) be the volume common 
to two spheres, one of radius R I < R2 and the other of radius 
R 2, whose centers are separated by a distance x. Then 

(3.39) 

I 
orders in 1] (see Appendix B). Equation (4.2) is obtained 
employing the identity given in Appendix C. 

Combining Eqs. (2.36)-(2.39), (2.40), and (2.53), 
and Eq. (4.1 )-( 4.5) for the PS model yields through order 
1]2 that 

and 

A = 31]{1 -1],.1.), 

B = 1] + [l-A(ll + i In 3) ]1]2, 

C = 61]{1 -1],.1.), 

(4.6) 

(4.7) 

(4.8) 

( 4.9) 

Similarly, Eqs. (2.41), (2.42), and (2.44)-(2.46), to­
gether with Eqs. (3.38), (3.39), (3.41), and (3.43) for the 
PCS model, gives through order 1]2 that 

A2 = - [U 6 - 9,.1. 4 + 8,.1. 3]1]2, (4.10) 

A3= -2[U 6 -9A 4+8A 3]1]2, (4.11) 

B2= [2+1.,.1.4_ 8,.1.3+1.,.1.2 
2 4 

3,.1. 3 ] + 2 - -In( 1 + U) 1]2, 
4(1+U) 8 

(4.12) 

and 

(4.13 ) 

Unlike the analogous results for the PS model, the results for 
A2 andA3 in the PCS model are only exact through order 1]2. 
Equation (4.11) is derived by applying the identity of Ap­
pendix C. 

Combination of Eqs. (2.36)-(2.39), (2.40), and 
(2.53), and Eqs. (4.10)-(4.13) for the PCS model yields 
through order 1]2 that 

A = 31] - 3[U 6 - 9,.1. 4 + 8,.1. 3]1]2, (4.14) 

B=1]+ 1_U 6 + ___ 16A 3+ __ 
[ 

27,.1. 4 9,.1. 3 

2 4 

3,.1. 3 ] + 2 - -In(1 + U) 1]2, 
4{1+U) 8 

( 4.15) 

C = 61] - 6[U 6 - 9,.1. 4 + 8,.1. 3]1]2, ( 4.16) 

and 
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It is useful to eliminate 7J in favor of <Pz in the results 
given above using the relation13 

7J = <P2 + G<p~. ( 4.18) 

For the PS and pes models,13 respectively, 

G= (1-,1)/2 ( 4.19) 

and 

(4.20) 

To summarize, expanding Eqs. (2.54) and (2.55) 
through second order in <P2 gives 

U *lu l , 1 + 3 f3<P2 + K f<pL (4.21) 

u*luI>1 +3f3<P2 +Kf<p~. (4.22) 

Since Eqs. (4.21) and (4.22) coincide through order <P2' 
then K f and K f are upper and lower bounds, respectively, 
on the exact second-order coefficient. It is useful to decom­
pose these coefficients as follows: 

Kf=Kf* +Kf+, 

Kf =Kf* +Lf+· 

For both the PS and pes models 

K f* = 3 fP + f3 2 (a - 1) [g - i In 3] , 

Kf*=3f32+f32 (a-1) U-jln3], 
a 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

anda=u2/uI' TheremainingtermsKf+ andKf+ have 
the same form in the PS and pes models: 

Kf+ =f3 z(a - l)a(A) + (f312)(a -1)b(A) (4.27) 

and 

Kf+ =f32 (a - 1) a(A) _ f3 (a - 1) b(A), 
a a 

where in the PS model, 

a (A) = (1 - A )( ~ + j In 3 ) 

and 

b(A) = (1-,1), 

and in the pes model, 

a(A) =..2.,1 4 _ 8,1 3 +..2.,1 z + 2-
2 4 6 

3,1 3 1 (I+U) + 4(1 +U)2 -8 n -3-

and 

b(A) = - (U 6 - 9,1 4 + 8,1 3 - 1). 

(4.28) 

( 4.29) 

( 4.30) 

(4.31) 

(4.32) 

In arriving at these results for the PS and pes models Eqs. 
(4.6)-( 4.9) and Eqs. (4.14)-(4.17) have been used, respec­
tively. As in the previous papers in this series,12,13 the sec­
ond-order coefficients are decomposed into a sum of two 
terms: one being the contribution from a reference disper­
sion oftotally impenetrable spheres (i.e., K f* and K f*) and 
the other being the contribution in excess of this which arises 
when pairs of inclusions belong to the same cluster (i.e., 
K f + and K f + ). The quantities with the superscripts * and 
+ can be shown to depend upon the zero-density limits of 

the pair-blocking function ~ (x) and pair-connectedness 

function go+ (x), respectively. 13 Therefore, K f+ 
= K f + = 0 for the case of totally impenetrable spheres 
(A = 1). 

The first-order cluster bounds through second order in 
<P2 are always sharper than the HS bounds expanded through 
the same order in <P2' For example, for U 2 > (11' K f in either 
the PS or pes model is always greater than 3 f3 z, the value of 
the second-order coefficient of the HS lower bound. For rea­
sons already given in Refs. 8 and 13, K f---+oo when a---+oo 
and K f ---+0 when a---+o. Hence, when a---+ 00 and when a---+O, 
K f and K f, respectively, provide reasonable estimates of 
the actual second-order coefficient, K1• 

In Fig. 2, K f is shown as a function of the impenetrabil­
ity parameter A in both the pe and pes models for a = 00. 

Figure 3 gives the analogous plot for K f at a = O. Note that 
K f for the pes model always lies above the corresponding 
curve for the PS model for 0 < A < 1; with the converse being 
true for K f. This indicates that the degree of connectivity in 
the pes model is greater than that in the PS model. It is 
expected that the actual second-order coefficients for the 
two models will behave in a similar manner. 30 

Evidence for such behavior is provided by considering 
the following approximate expression for the actual second­
order coefficient K t . Rearrangement of the exact result for 
K t given in II yields 

Kt =_I_Jdx[21r u(1,2):U- 3f3 V2 (X)]go+(X), 
vi 3uI 2 

(4.33 ) 

where 

V2(X)=VI [I+! ~ --k- ;33]' x<2R (4.34) 

is the union volume of two overlapping spheres of radius 
R,u( 1,2) is the polarizability tensor associated with over­
lapping inclusions centered at r l and rz(x = Irl - rzl), 
go+ (x) is the zero-density limit of the pair-connectedness 
function31 g+ (x), and U is the unit dyadic. (The quantity 
p2g+ (x) drl dr2 is the probability ofsimultaneously finding 
the center of a sphere in the volume dr I about r I and another 
particle, of the same cluster, in the volume dr 2 about rz.) It is 
assumed that the electric field induced within the two over­
lapping spheres (in the presence of a uniform applied field) 
is equal to the field induced within a single ellipsoid having a 
major axis of length R + xl2 and two minor axes both of 
length R, i.e., one has 

(4.35) 

where 

F(X)=(a-l)[ 1 
6 1 + (a - I)DI (x) 

2 ] + , 
1 + (a - 1)D2 (x) 

(4.36) 

and DI(x) and Dz(x) =D3 (x) are the depolarization fac­
tors associated with the major and minor axes, respective­
ly.32 The depolarization factors must satisfy the following 
relation: 
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5.0----------------------------~ 

3.0 

1.0 

0.0 L......._--'-__ --'-__ '--_--'-_---I 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 2. The lower bounds on the second-order coefficient K2 in the PS (low­
er curve) and PCS (upper curve) models as a function of the impenetrabil­
ity parameter A. for the case a = 00. 

(4.37) 

In II it was shown that F(x), in the PS model, to an excellent 
approximation is independent of x and hence the D; may be 
treated as undetermined constants. If this assumption is in­
voked for general models then it follows that the actual sec­
ond-order coefficient K2 = K 1 + K 2+ (where K 1 is the 
contribution from a reference dispersion of totally impen­
etrable spheres l3-see Table I of II), is given by the follow­
ing approximate expression: 

K2=K1 + [F- (3/1/2)]U2, 

where 

U2 = _1_ J dx V2 (x)go+ (x). 
Vi 

1.0 ..---------------. 

~Q5~=-----------

0.0 1....-_--1-__ -'-__ ""'--_---''--_--' 

0.0 0.2 0.4 0.6 0.8 1.0 

(4.38) 

(4.39) 

FIG. 3. The upper bounds on the second-order coefficient K2 in the PS (up­
per curve) and PCS (lower curve) models as a function of the impenetrabil­
ity parameter A. for the case a = O. 

DI = 0.189 16, and D2 = 0.405 42.13 The D; are determined 
in the same manner outlined in II. It can be shown that Eq. 
(4.41) is exact through second orderin (0'2 - 0'1)' 

Using the results given in II for go+ , it is easy to show 
that in the PS and PCS models one has that 

and 

U2 = 8(1-A 3) + 9(1-A 4) - 2(l-A 6), (4.41) 

respectively. It is seen that U2 (which is related to the total 
expected volume of dimers34

) is always larger in the PCS 
model than it is in the PS model, at the same value of A for 
A < 1. In the dilute limit, therefore, this indicates that (for 
fixed A) the excluded volume effects associated with spheres 
possessing an internal hard core of radius AR (i.e., the PCS 
model) results in a dispersion which has a higher degree of 
connectivity than one in which the probability of spheres 
intersecting is linear in (1 - A) (i.e., the PS model). Refer­
ring to Eq. (4.38), this implies that for A < 1, K2 is larger in 
the former model than it is in the latter one. Combination of 
Eqs. (4.36), (4.38), and (4.41) yields a new approximate 
relation for K2 in the PCS model. Equation (4.38) should 
provide a reasonable approximation to K2 for interpenetra­
ble-sphere models. 

Relation (4.38) always lies between bounds (4.23) and 
(4.24). It is noteworthy that the upper bound Kf [Eq. 
(4.23)] forO.;;;;a.;;;; 1 is nearly equal to approximation (4.38), 
regardless of the value of A, for both the PS and PCS models. 
Similarly, for l.;;;;a < 10, the lower boundK f [Eq. (4.24)] is 
approximately equal to (4.38) for both the PS and PCS 
models, for any value of A. For a > 10 and fixed A, the devi­
ation of K f from Eq. (4.38) increases as a increases. This 
discrepancy increases as A decreases for fixed a. Note also 
that in the PCS model for a = 00, K f (A) is approximately 
equal to Kf(O) = 4 for the range 0,;;;;A.;;;;0.5 (see Fig. 2). 
Approximation (4.38) in the PCS model behaves in a simi­
lar manner since U2 for 0< A < 0.5 is nearly equal to (but 
always smaller than) the corresponding quantity for fully 
penetrable spheres (A = 0). Similarly, in the PCS model for 
a = 0, K f(A) is approximately equal to K f(O) = 0.5 for 
the range O';;;;A ,0.5. Again relation (4.38) for the PCS mod­
el predicts that K 2 (A) is roughly equal to K 2 (0) for this 
range of A. To summarize, the bounds on K2 for both the PS 
and PCS models not only qualitatively reflect the essential 
physics involved when particles overlap but together can 
provide accurate estimates of K2 for O<a< 10 at any value of 
A. 

In II bounds on K2 in the PS model were derived using 
the Beran bounds.27 The Beran bounds are completely gen­
eral and hence, unlike the cluster bounds, are not restricted 
to microstructures involving various types of spherical in­
clusions. If K f.B and K tB denote these upper and lower 
bounds, respectively, then we have13 

and 

Kf.B =3fj2+/12(a-1)[(~-pn3) 

+ (l-A)0.701 56] ( 4.42) 
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+ (1-A)0.701 56]. (4.43 ) 

Note that for the special case totally impenetrable 
spheres (A = 1) Eqs. (4.42) and (4.43) are identical to the 
corresponding bounds obtained from the first-order cluster 
bounds. This is a very interesting result since the Beran 
bounds, unlike the cluster bounds, depend upon the n-point 
probability functions 16 SI' S2' and S3' Elsewhere35 it is shown 
that the first-order cluster bounds (which depend upon h, 
G a2

), G ~2), and G 12
) are identical to the Beran bounds 

through all orders in ¢2 for the special case of totally impen­
etrable spheres (A = 1). Therefore, the functionals of h, 
G a2

), G ~2), and G f) that arise in the first-order cluster 
bounds, Eqs. (2.54) and (2.55), contain precisely the same 
information as the functionals of SI' S2' and S3' that arise in 
the Beran bounds. It turns out, however, that the first-order 
cluster bounds for A = 1 are easier to compute than the Ber­
an bounds for this model since the statistical quantities in­
volved in the former are less difficult to compute than the 
corresponding functions that arise in the latter. (See the dis­
cussion in Sec. III C.) 

For O<A < 1, bounds (4.42) and (4.43) are slightly 
more restrictive than the corresponding bounds derived here 
from first-order cluster bounds; the greatest difference oc­
curring at A = O. For example, for a = 00 and A = 0, 
K f.B = 4.12, which is to be contrasted with 4.0, the value 
obtained from the first-order cluster lower bound. However, 
unlike bounds (4.42) and (4.43), the first-order cluster 
bounds in the PS model expanded through second order in 
¢2 involve relatively simple integrals and hence can be ex­
pressed analytically. 

Note that the computation of the Beran bounds through 
second order in ¢2 in the PCS model is even more difficult 
than in the PS model. Some of the integrals involved in the 
latter calculation had to be numerically evaluated. 13 This is 
to be contrasted with the corresponding analytical first-or­
der cluster bounds easily derived here for both the PS and 
PCS models. 

The low-density results described above suggest that the 
Beran bounds, for spheres distributed with arbitrary degree 
of impenetrability A and through all orders in ¢2' are more 
restrictive than the first-order cluster bounds for O<A < 1; 
with the two sets of bounds being identical for A = 1. For 
most values of A in the range O<A < 1, however, the numeri­
cal differences between the Beran and cluster bounds should 
be small; the greatest difference occurring when the spheres 
are fully penetrable to one another (i.e., A = 0, see Appendix 
D). Furthermore, the aforementioned results also strongly 
indicate that the cluster bounds, although nontrivial in gen­
eral, will be easier to compute than the Beran bounds for 
dispersions of partially penetrable spheres. 

V. CONCLUSIONS 

It is generally desired to relate the bulk property of a 
two-phase composite medium to the details of its micro-

structure. In doing so one can then relate changes in the 
microstructure quantitatively to changes in the effective 
properties of the heterogeneous material. In order to exactly 
evaluate the bulk property, an infinite set of statistical func­
tions that characterize the microstructure needs to be deter­
mined. However, apart from a few special models, this infi­
nite set off unctions is never known. Bounding techniques do 
provide a means of estimating the bulk property using limit­
ed microstructural information on the composite material. 

In this article rigorous bounds on the effective conduc­
tivity of dispersions of spheres of variable impenetrability 
have been derived and shown to depend upon not only the 
sphere volume fraction ¢2 but integrals that involve the total 
correlation function h and the particle phase pointln-parti­
cle distribution functions, G ~2) and G 12

). Given the n-parti­
cle distribution functionsPn' one may now in principle cal­
culate the G ~2), for arbitrary values of the impenetrability 
parameter A and for any n and hence nth-order cluster 
bounds using the results of Sec. III. Interpenetrable-sphere 
models should prove useful in studying the effects of connec­
tivity of the particle phase on the effective property of the 
composite medium. The analytical expressions for low-den­
sity expansions of the first-order cluster bounds in the PS 
and PCS models obtained here suggest that cluster bounds 
may be the simplest nontrivial set of bounds available to 
estimate the effect of particle overlap or connectivity on the 
conductivity of composite media for arbitrary phase conduc­
tivities and volume fractions. 

Note that many of the results obtained here can be easily 
extended to dispersions of spheres characterized by a size 
distribution. Moreover, analogous two-dimensional results 
for dispersions of multi-sized circular disks (useful models 
of fiber-reinforced materials) are also straightforward to de­
rive. In subsequent articles such findings shall be reported. 
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APPENDIX A 

In order to illustrate how the simplified integrals of Sec. 
II are obtained from the original ensemble-averaged quanti­
ties the steps leading to integrals (2.41)-(2.46) are briefly 
outlined. It follows from Eqs. (2.18) and (2.34) that 

A = (E(!). E(!» 

P2(E) . (E) , 

B = (I (2)E(!) • E(!) 

P2(E) . (E) . 

(AI) 

(A2) 

Consider the quantity B first. Combination of Eq. (2.22) 
and definition (3.1) leads to 
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B = {32(~ )2 f dx, [K(x,) - (E)] 

. [K(x,). (E)]Gl 2 )(x l ) 

+ {32(~ )2 f f dxldx2[K(xl ) . (E)] 

. [K(x2) • (E) ]Q(XI,X2), (A3) 

where the statistical function Q is given by Eq. (2.47) and 
(E)2 = (E) . (E). 

A spherical coordinate system shall be employed to 
evaluate the integrals ofEq. (A3). Let the polar axis be par­
allel to the constant vector (E) and let the two vectors z = XI 

and y = X2 have spherical coordinates (z,Oz,tPz) and 
(y,Oy,tPy ), respectively. Then 

{32R6(E)2, , 
3 3 [P 2 (Uy)P 2 (Uz )cos(tPy - tPz) 

yz 

+ 4P2 (uy )P2 (uz )]' y>R, z>R, 

[K(y) . (E)] . [K(z) . (E)] = 
2{32R3(E)2 

- z3 P 2 (Uz )' y<R,z>R, (A4) 

where Pn and P'; are Legendre and associated Legendre 
polynomials of order n,36 respectively, uy = cos Oy and 
Uz = cos Oz. 

Consider the first integral of Eq. (A3). Substitution of 
Eq. (A4) into Eq. (A3) and integrating over polar and azi­
muthal angles gives 

{32(~ )2 f dz[K(z) . (E)] 

. [K(z). (E)]Gl 2 )(z) =B, +B2, (AS) 

where Bland B2 are given Eqs. (2.43) and (2.44), respec­
tively. 

Next consider the second integral ofEq. (A3). Follow­
ing Lado and Torquato,37 the function Q is expanded in Le­
gendre Polynomials, i.e., 

00 

Q(y,z) = L Dn (y,z)Pn (uyz )' 
n=O 

where 

2n + I II 
Dn (y,z) = -- dUyzQ(y,z)Pn (uyz ) 

2 -, 

and 

U = y.z. 
yz y·z 

Employing the addition theorem36 

P n (uyz) = P n (uy )Pn (uz ) 

+ 2 ± (n - m); P';(uy )P';(uz ) 
m=l(n+m). 

Xcosm(tPy -tPz), 

(A6) 

(A7) 

(A8) 

and the orthogonality properties of the Legendre polynomi­
als36 it is straightforward to show that upon substitution of 
Eq. (A6) into the second integral ofEq. (A3) one has 

{32(~ )2 f f dz dy [K(y)· (E)] 

. [K(z) . (E) ]Q(y,z) = B3 + B4. (A9) 

Here B3 and B4 are given, respectively, by Eqs. (2.45) and 
(2.46). 

The ensemble average A defined by Eq. (AI) may be 
obtained from Eq. (A3) by replacing G \2) and Q in the inte­
grals by p and p2 h (where h is the total correlation function) , 
respectively. Therefore 

2 P 2 =fdz[K(z). (E)]. [K(z). (E)] =A
" {3 (E) 

whereA , is given by Eq. (2.40), and 

2p2 2ff dZdy [K(Y)'(E)] 
{3 (E) 

. [K(z). (E)]h(x) =A2 +A3, 

(AW) 

(All) 

where A 2 and A 3 are given by Eqs. (2.41) and (2.42), respec­
tively, and x = Iy - zl. The ensemble averages C and D de­
fined, respectively, by Eqs. (2.38) and (2.39) can also be 
simplified in the manner outlined above. 

It is shown that the integrals which comprise B, Eq. 
(A2), are absolutely convergent. Clearly the first integral of 
Eq. (A2) is absolutely convergent since it decays to zero like 
x 1- 6 as x I~ 00 . Consider the remaining integral. Let the field 
point r be denoted by f I and let the two spheres be centered at 
r2andr3. Then the second integral ofEq. (A2) maybe writ­
ten in the equivalent form 

f dr23 f dr, [K(r12 ) • (E)] [K(fl3 ) • (E) ]Q(r12,fl3 ), 

where fij = fi - fj" To prove the absolute convergence of 
this sixfold integral one need only show that the first volume 
integral over fl decays to zero faster than ri'3 3 as r23~00, 
where r23 = If2 - f31. When particle 2 is far from particle 3, 
there are only three possible configurations which can con­
tribute to the integral; point I near particle 2 or 3 and point I 
far from both particles. When point I is near particle 2, then 
according to Eqs. (3.11) and (2.47), 
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and 

G i2) (rI2,rl3)~pG 12
) (rI2 ), 

G 12
) (r13 )-+p¢J2' 

Q(rw r 13 )--+O. 

The same result is obtained when point 1 is near particle 3. If 
point 1 is far from both particles, then 

G i2
) (rWrl3)~p2¢J2' 

G i2) (rlj )-+P¢J2' j = 2,3, 

and 

Q(r12,r13 )--+O. 

Hence the integral is absolutely convergent. Similar argu­
ments may be used to prove the absolute convergence of 
integral (2.42) as well. 

APPENDIXB 

The evaluation of the integrals A 2, A 3, and B3 given in 
Sec. II are straightforward to evaluate in the PS model for 
arbitrary A: In the PS model, the full density-dependent total 
correlation function has the form 14 

h(x) = - AH(2R - x) + H(x - 2R)y(x), (Bl) 

where the H is the Heaviside step function defined by 

{
I, x < t 

H(t-x) = 
0, x>t 

(B2) 

and y(x) is a continuous density-dependent function such 
thaty( 00) = ° for a system without long-range order. For 
spheres of unit radius the integral A 2, Eq. (2.41), depends 
only upon the behavior of h (x) for x < 2 and is trivially relat­
ed to integral (6.3) of I. Hence, in the PS model one exactly 
has that 

(B3) 

Now employing the results of Sec. III, it is easy to show, 
using Eq. (2.47), that for y < 1 and z < 1, 

Q(y,z) =p2[h(x) - ¢Jtl, (B4) 

where x = Iy - zl· Substitution ofEq. (B4) into Eq. (2.45) 
yields, for the PS model, an integral similar to A 2, namely 

B3 = - (A + ¢JI)r/. (B5) 

To evaluate integralA 3 , Eq. (2.42), the identity in Ap­
pendix C is employed. Differentiating Eq. (Bl) with respect 
to x yields 

h'(x) =AD(x-2) +D(x-2)y(x) +H(x-2)y'(x), 
(B6) 

where 15 (x) is the Dirac delta function and a prime indicates 
the first derivative of a function. Using the identity given in 
Appendix C one has that 

A3 = - U7l. (B7) 

Combining Eqs. (2.36), (2.40), (B3), and (B7) gives 
that A in the PS model is exactly given by 

A = 31](1-X1J). (B8) 

Similarly, the quantity C, which appears in the lower bound 
(2.55), is given by 

C= 61](1-A1]) 

for this model. 

APPENDIXC 

(B9) 

A useful integral identity is proved here. Consider the 
integral 

9 ioo dzi oo 

d JI 1=- - 2 duj(x)P2(u), 
2 I z I Y -I 

(Cl) 

where P2 (u) is the Legendre polynomial of order two.! (x) 
is a piecewise continuous function of x, and 

y2+r _x2 
U= (C2) 

2yz 
Then 

1=- dx!'(x)w(x), 9100 

4 0 

where!, (x) = dj /dx and 

[ 
12[ - x 6 + 18x4 

- 32x3
] , 

w(x) = -3 

Proof: Using the fact that 

P I d 3 
2(U) =-- (u - u) 

2 dx 

and integrating Eq. (Cl) by parts gives 

x<2, 

x>2. 

(C3) 

(C4) 

(C5) 

I=~ roo dze(z)i
oo 

dye(y)J
I 

du!'(X) (u3 -u) 
4 Jo 0 -I X 

= - -= e(z) 2 e(y) dx!,(x)(u3 
- u) 9100 

d 100 

d i~+z 
4 0 z 0 Y Iy-zl 

9100 

= - dx!'(x)w(x), 
4 0 

(C6) 

where 

w(x) = roo dz e(z) iX+z dy e(y) {(y2 + Z2 - X2)3 
Jo z Ix-zi Y 2yz 

_ (y2 + ;;z- x
2 

) } (C7) 

and 

e(x) = {
O, x< 1 
I, x> 1. 

(C8) 

Direct integration shows that integral (C) is given by 
Eq. (C4). The second line of Eq. (C6) is the result of a 
change of the integration variable from u tox. The third line 
follows when the order of integration is changed as indicat­
ed. 

APPENDIX 0 

Here it is shown that the general first-order cluster 
bounds on (T *, Eqs. (2.54) and (2.55), for the special case of 
a distribution offully penetrable spheres (A = 0) in a matrix 
reduce to the DeVera-Striedero bounds on (T *. 

For distributions offully penetrable spheres of unit radi­
us the total correlation functionh(x), defined by Eq. (2.49), 
and the function Q(y,z), defined by Eq. (2.47), are given by 

h(x) = 0, Q..;;x..;; 00 (Dl) 

and 
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Q(y,z) = {-PV)I' y< 1 and z< 1 
0, otherwise . (D2 ) 

Here the results of Sec. III D have been employed. 
Substitution of Eqs. (D 1) and (D2) with Eqs. (2.41), 

(2.42), (2.44)-(2.46) yields 

A2 =A3 =B4 = 0, (D3) 

B2 = 21/4>2' (D4) 
and 

B3 = _1/24>1' (D5) 

Combining these relations with (2.36)-(2.40) and (2.53)­
(2.55) gives, for a bed of fully penetrable spheres, the bounds 

u • ..;;[<u>- 1/4>t(U2-UI)2 ] (D6) 
3uI + (U2 - u l )[ 1+ 24>2 -1/4>d 

and 

U .>[<l/U) _ 21/4>t (U2 - UI)2/UIU2 ]-1 
3U2 + (UI - U2) [2 + 4>2 - 21/4>d 

(D7) 

These bounds were originally derived by DeVera and 
Strieder (DS). 20 

For most 4>2 and a = U2/UI' bounds (D6) and (D7) 
improve upon the HS bounds. For large sphere volume frac­
tions (4)2 >0.7), typically one of the HS bounds is better than 
the corresponding DS bound. This is not a surprising result 
for beds of fully penetrable spheres since the single-body trial 
functions employed here, although perfectly allowable, do 
not accommodate the overlap geometry of spheres at high 

4>2' 
It should also be noted that the Beran bounds27 for the 

same model are found to be sharper than the DS bounds. The 
DS bounds enjoy the advantage, however, that they may be 
expressed analytically. The reason for this is that for fully 
penetrable spheres the point/n-partic1e functions G \2) and 
G i21 involved in the DS bounds have a simpler functional 
form than the n-point functions S2 and S3 that arise in the 
Beran bounds (see the discussion in Sec. III D). 
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