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the film thickness were compared with experimental data. 
I t  was found that the three-dimensional solution gave 

more accurate information on the film thickness. However, 
the one-dimensional solution predicts the film thickness 
reasonably well a t  the small value of 8'. 
Nomenclature 
B = dimensionless coefficient in polynominals 
b = dimensionless coefficient in polynominals 
F = dimensionless radial velocity 
G = dimensionless tangential velocity 
H = dimensionless axial velocity 
K = 7 / 2 p r ~ ( v u ) ' / ~ ,  dimensionless parameter 
Q = $ow rate 
8' = dimensionless flow rate 
r = radial coordinate 
u = radial velocity 
II = tangential velocity 
w = axial velocity 
z = axial coordinate 
Greek Letters 

= viscosity 
v = kinematic viscosity 
6 = dimensionless axial coordinate 
p = density 

T = shear stress 
T,, = Bingham yield stress 
w = angular velocity 
Subscripts 
0 = free surface 
1 = interface between the surface flow and the shear flow 
zr = z-r plane 
Z B  = 2-0 plane 
' = derivative with respect to 5 
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An Equation for the Latent Heat of Vaporization 

Salvatore Torquato 

Department of Mechanical En$ineering, General Motors Institute, Flint, Michigan 48502 

George R. Stell" 

Departments of Mechanical Engineering and Chemistry, State University of New York at Stony Brook, 
Stony Brook, New York 71794 

An expression for the latent heat of vaporization of a fluid is formulated employing renormaiization-group theory 
predictions for the thermodynamics of fluids in the vicinity of the critical point. A least-squares fit of the latent 
heat data of water is made using the general and relatively simple equation: L = a ,tB + a,tg+* + a,tl-"+@ + 
CM,,,,b,,f", 3 I M 5 5, yielding predicted values that are in excellent agreement with the data throughout a wide 
range of temperatures. The optimum value of the critical temperature, 373.92 O C ,  is found to be somewhat lower 
than the tabulated value. 

Introduction 
In recent years an effort has been made to describe the 

anomalous thermodynamic behavior of fluids in the vi- 
cinity of the critical point through phenomenological 
scaling theory (Widom, 1965; Kadanoff, 1966; and Grif- 
fiths, 1967) and, more recently, via the renormalization- 
group approach (Wilson and Fisher, 1972). In this study 
we apply the results of modern critical-point theories to 
obtain the functional form of the latent heat of vaporiza- 
tion L of a pure fluid that is applicable throughout the 
entire domain of existence of the latent heat, i.e., from the 
triple point to the critical point. The resulting formula 
for the latent heat contains system-dependent parameters 
which must ultimately be fitted to data. For purposes of 
illustration, we perform a least-squares fit of latent-heat 
data of water. 

Formulation of the Latent Heat Formula 
Latent-heat formulas for various substances have pre- 

viously been given many times: the works of Nutting 
(1930) and Watson (1943) exemplify early efforts in this 
direction. Equations such as theirs, however, suffer in that 
they cannot accurately describe latent heat data over the 
broad domain of values that we are interested in here. 
Those empirical equations that are able to accurately 
predict latent heat values for temperatures ranging be- 
tween the critical temperature Tc and the triple point 
temperature TT are typically complex in form and contain 
a large number of terms (ASME Steam Tables, 1977). The 
aforementioned defecta in all these empirical equations can 
be attributed to their not utilizing the fundamental un- 
derstanding of the thermodynamic nature of the critical 
region that has only recently evolved. 
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Implicit in the form of eq 6 and 7 is the symmetry of 
the Ising (lattice-gas) model, a symmetry that is not ex- 
pected in a real fluid (Vause and Sak,  1980). To the order 
that we are interested in here, however, the term ac- 
counting for the first nontrivial difference between a fluid 
and the Ising model will not enter. Combining 4,5,6,  and 
7 gives the singular contribution to the latent heat as 

(8) 
which is eq 2 expanded up to n = 4 with $1 = 0, & = 0 + A, $3 = 30, and $ J ~  = 1 - a! + 0. This finite sum, for the 
purposes of this study, appears to contain a sufficient 
number of terms to accurately describe the critical region. 
We shall take j3 = 1/3 and a! = 1/8; they represent the 
simplest fractions that are both close to the values for the 
three-dimensional Ising model and within the range of 
experimental values for a variety of different fluids (Sen- 
gers and Levelt Sengers, 1977). The value of the gap 
exponent A is not well established either experimentally 
or theoretically (from renormalization group calculations); 
reported values of A range from as low as 0.3 to 0.65 
(Chang et al., 1977; Ferer, 1977), although 0.5 from low- 
est-order theoretical calculations is the most commonly 
used value. 

Equation 8 added to the regular part of L,  eq 3, gives 
an equation for the latent heat that is valid in the regions 
both near and away from the critical point 

(9) 

where M is the number of terms in the regular part of L. 
The term containing the exponent 30 has been absorbed 
by the first term in the sum, since j3 = 1/3. In order to 
determine the u, and b, one must fit eq 9 to latent-heat 
data of the fluid of interest. As an example of the use of 
eq 9, we perform a least-square analysis to fit this formula 
to the highly accurate latent-heat data of water of &borne, 
Stimson, and Ginnings (OSG) (1937) and Osborne, Stim- 
son, and Fiock (OSF) (1930). 
Results and Discussion 

Before undertaking the general task of curve fitting the 
latent-heat data, we determine the optimum value of Tc 
and A by least-squares fitting the OSG data, using eq 9 
with M = 1, for temperature values within 15" of the 
critical temperature. The optimum critical temperature 
is found to be 373.92 "C in contrast to the higher OSG 
tabulated value of 374.15 "C. Critical temperatures de- 
termined in this manner have been shown elsewhere to be 
lower than the corresponding tabulated Tc value (Sengers 
and Greer, 1971; Sengers and Sengers, 1975). It seem that 
values of Tc given in steam tables are the result of 
smoothing which produces artificially high critical tem- 
peratures. The best value of A is found to be 0.79 - j3 = 
0.4567, which is a bit lower than the value of 0.5 given by 
first-order renormalization-group calculations. Considering 
the relative simplicity of both the experimental and the- 
oretical determinations, the agreement is remarkable and 
possibly fortuitous. 

The latent-heat values tabulated by OSG and OSF were 
obtained by smoothing the corresponding experimentally 
measured values. In order to avoid introducing any bias 
as a result of smoothing on their part, we shall use the OSG 
and OSF experimentally measured latent values whenever 
possible. Such data were provided in the OSG work in the 
temperature range from 200 "C to the critical temperature. 
The OSF study contained experimentally determined la- 
tent values in the range 100 "C I T < 200 "C. For tem- 
peratures less than 100 "C, only smoothed values were 

Ls = alt@ + uzt@+A + u3t3@ + u p + @  

M 

n = l  
L = ults + uzt@+A + u4tl-a+@ + c b,P 
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Figure 1. Predicted latent heat values using eq 9, with M = 3, 
compared to data of Osborne et al. (1930, 1937), as a function of 
temperature. Solid line denotes the predicted values and black 
circles the measured values. 

For most pure fluids, the first derivative &/dT becomes 
infinite as T - Tc precluding the use of a Taylor expan- 
sion of L in temperature in the vicinity of Tc (see Figure 
1). In contrast, the latent heat is found to be analytic away 
from the critical region. Consequently, we are motivated 
to write the expansion 

L = Ls + L R  (1) 

(3) 

where the 4, (n = 1,2, ...) are the critical exponents (which 
are, in general, non-integral), the a, and b, are system- 
dependent parameters, the t = (Tc - T)/T,. The term Ls 
is the contribution to the latent heat which describes the 
singular behavior near the critical point whereas the term 
LR is the analytic or regular contribution to L character- 
izing the behavior away from the critical region. We now 
turn to the problem of ascertaining the critical exponents 
$, via theories of the critical point. 

The latent heat is given exactly by the Clausius-Cla- 
peyron equation 

(4) 

where @/dT is the slope of the vapor pressure curve and 
pL and pG denote the liquid and vapor coexisting densities, 
respectively. Ley-Koo and Green (1977) made use of the 
general form of the singular part of the thermodynamic 
potential proposed by Wegner (1972) for describing the 
critical region of fluids. From their expression, one may 
obtain 

( 5 )  

(6) 

pG/pC 1 - BitB - B2tB+A + B3t1-u (7) 

dP/dT  = Al + A2t1-u 

pL/pc = 1 + Bit@ + B 2 P A  + B3tl-l 

where Ai (i = 1,2) and Bi (i = 1,2,3)  are parameters that 
depend upon the particular system of interest. Here a! and 
P are the critical exponents describing the singularities 
associated with the specific heat and the difference in 
coexisting densities, respectively. The exponent denoted 
by A is Wegner's first "gap" exponent. 
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Table I. Standard Error vs. Number of Terms in LR, M 

2.72 
1.57 
0.63 
0.42 
0.35 
0.23 
0.23 
0.23 

i % 3 t  

2 41 g 41  

-: :: 50 100 150 200 250 300 350 400 
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Figure 2. Percentage deviation, d, w obtained from eq 9 with M = 
3, as a function of temperature. Significance of line and circles as 
in Figure 1 

given. Instead of utilizing all the smoothed tabulated 
values in the range 0.01 "C 5 T C 100 "C, we used only 
the triple-point value (the same in both the OSG and OSF 
studies). Combining the OSG and OSF values in this 
manner gives us experimental latent heat data, for TT < 
T C Tc, and a smoothed L value for T = TT. 

We fit these data, using eq 9 for various values of M. A 
comarison of these fits is summarized in Table I where the 
standard error 

N 

1 = l  
u 3 (E (L,* - L1)2/N)'/2 

is given as a function of M. Here N is the number of 
experimental values, and L,* and L, are the ith measured 
and predicted latent-heat values. 

The largest standard error occurs when M takes on its 
smallest value, unity, as expected. The standard error 
monotonically decreases as M is made larger in such a way 
that very little accuracy is gained for M 2 6. OSF indicate 
that the maximum experimental error in the range 100 "C  
I T I 270 "C is one part in 1300, becoming progressively 
worse as the critical temperature is approached. As a result 
of great experimental difficulties faced by OSG in the 
critical region, no estimates of error were given for the 
vicinity of the Tc. 

In light of our limited knowledge of error estimates, we 
conclude that the cases M 1 3 should yield predicted la- 
tent-heat values within experimental error since the L, for 
100 "C  I T 5 270 "C are within one part in 3000 of the 
data in the case M = 3, based upon an average latent heat 
of 2000 kJ/kg in this range and Q = 0.63 kJ/kg. A com- 
parison of the predicted latent-heat values for this case 
with the corresponding measured values plotted against 
temperature is depicted in Figure 1. Figure 2 shows the 
percentage deviations d 100 X (L,* - L,)/L,*, associated 
with the preceding figure, as a function of temperature. 
The maximum deviation occurs a t  T = 373.5 "C (a tem- 
perature nearly equal to Tc) where we observed the pre- 
dicted value to differ from the data by about one part in 

Table 11. Results of Least-Squares Analysis using 
Eq 9 with 3 < M < 5 

- 
M 

3 4 5 

a ,  2059.1061 2 
a2 6604.54101 
a4 7 694.31 324 
b ,  -1 1318.02807 
b 2  -4284.42966 
b3 2598.60251 
b4 

bs 

2017.77302 1989.41582 
9132.07411 11 178.45586 

17454.07847 26923.68994 
-20696.33099 -28989.28947 
-10666.82494 -19797.03646 

-4286.78779 -30382.30642 
9818.48294 28403.32283 

15210.380 

max dev 0.74% 0.40% 0.24% 

100. Considering the enormous experimental difficulties 
one faces in this region, a percent deviation here is in all 
probability within the error of the experiment. In Table 
I1 we summarize some of the results of our least-squares 
analysis where we list the values of the coefficients a, and 
b, and the maximum percentage deviation for the in- 
stances 3 I M I 5 in eq 9. In all these cases the maximum 
deviation occurs a t  T = 373.5 "C. 
Concluding Remarks 

We are able to formulate an accurate expression for the 
latent heat of a fluid over its entire domain of existence. 
A least-squares fit of latent-heat data of water using this 
single simple expression, over this wide temperature range, 
yields predicted values well within the error of the ex- 
periment. We propose that our latent-heat expression 
provides a highly accurate means of smoothing measured 
latent-heat data, as it properly accounts for behavior in 
the anomalous critical region. By understanding the 
thermodynamic behavior in this vicinity of the critical 
point, one may obtain more precise values for critical 
properties such as the critical temperature, for example, 
which we determine to be 373.92 "C in this study. 

Finally, it should be noted that the latent heat equation 
formulated in this study may be applied to other fluids 
which are in the same universality class as water (Stell, 
1974; Sengers and Sengers, 1977). Furthermore, one may 
develop expressions for other saturated liquid-vapor 
properties using arguments very similar to the ones 
presented in this analysis. 
Nomenclature 
AI,  A2 = constants in eq 5 
al, a2, a3, a4 = constants in eq 8 
B1, B2, B3 = constants in eq 6 and 7 
bl, b2, b3, b,, b,  = constants in eq 9 

L = latent heat of vaporization 
Li = ith predicted L value 
Li* = ith measured L value 
L R  = regular part of L 
Ls = singular part of L 
M = number of terms in L R  
N = number of measured L values 
P = pressure 
T = temperature 
Tc = critical point temperature 
T T  = triple point temperature 
t = (Tc - T ) / T c  

Greek Letters 
a = scaling exponent in eq 6 
/3 = scaling exponent in eq 6 
A = scaling exponent in eq 6 
&, = scaling exponent in eq 2 
p = density 
p~ = saturated vapor density 
pL = saturated liquid density 

d = 100 x (Li* - Li)/Li* 
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A new parametric pumping process for the separation of protein mixtures has been developed, based on cyclic 
variation of pH and electric field. The model system used is human hemoglobin plus human serum albumin on 
CM Sepharose ion exchanger. Experimental results are presented. They indicate that the process is a useful 
method for splitting proteins from each other. 

Introduction 
Parametric pumping is a separation process which in- 

volves reciprocating flow of a mixture to be separated 
through a fixed bed and simultaneous, synchronous cyclic 
variation of intensive variables, such as gas pressure, so- 
lution temperature, solution ionic strength, solution pH, 
electric field, etc. The intensive variables most often used 
to motivate parametric pumping have been temperature 
and prmure. Electric field or pH has been used less often. 

Parametric pumping via pH variation usually involves 
the so-called “recuperative mode” of operation of the 
process (Sabadell and Sweed, 1970; Shaffer and Hamrin, 
1975). In this mode, various levels of pH are set in the 
streams entering either end of the parametric pumping 
column. As the entering streams penetrate the column, 
a pH change in the column occurs. This is opposed to the 
“direct mode”, in which the intensive variable is changed 
uniformly over the entire length of the column. 

Unlike pH, changes in the electric field as an intensive 
variable can be immediately and speedily applied to the 
parametric pumping system. Electrochemical para- 
pumping has been shown to be a promising technique for 
desalination of water (Thompson and Bass, 1974; Oren and 
Soffer, 1978). 

Chen et al. (1977,1979,1981) have studied the separa- 
tion of hemoglobin and albumin by one-column pH par- 
ametric pumping. The experimental data have shown that 
a pH-driven parapump is capable of yielding high sepa- 
ration factors. Also, Chen et al. (1980a,b) have indicated 
that the multicolumn parapump (columns packed alter- 
nately with cation and anion exchangers) has a much 
higher separation capability than the one-column unit. In 
this paper, separation of protein mixtures is experimentally 
investigated by pH and electric field-driven parametric 
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pumping. Emphasis is placed on the problem of separating 
two proteins from each other. 
Experimental Section 

The experimental apparatus is shown in Figure 1. An 
LKB 7900 Uniphor column electrophoresis system was 
modified for continuous operation by the addition of a 
second elution stopper. Minor modifications were made 
on the elution stopper and the filter in order to supply 
adequate support for the solid phase. The column (0.026 
m i.d. and 0.15 m height) was packed with CM Sepharose, 
a cation exchanger. The system was maintained a t  278 K 
by circulation of cooling water through the jacket of the 
Uniphor column and the jackets of the Uniphor buffer 
chambers. The external buffer reservoirs (2 L volume) 
were kept a t  288 K. 

Reciprocating flow through the system was obtained by 
use of a reversible peristaltic pump (manufactured by 
Pharmacia Fine Chemicals). A higher capacity peristaltic 
pump (manufactured by Bio-Rad laboratories) was used 
for buffer circulation. A Buchler 3-1500 power supply was 
used for a direct current source to maintain constant 
voltage across the column. The feed pump and the power 
supply were connected to a timer for precise control of 
reservoir displacements and feed volumes. Valves were 
placed on each inlet channel of the feed pump in order to 
introduce the reservoir liquids, to introduce the high or 
low-pH feeds, and to take product samples. 

Each product stream was analyzed at the end of every 
cycle using a Bausch and Lomb spectrophotometer. 
Hemoglobin concentration was determined by adsorbance 
at  a wavelength of 403 pm and total protein was deter- 
mined at a wavelength of 595 pm. Albumin concentration 
was then determined by difference. 
pH Parametric Pumping 

The first system to be considered (Figure 2) is a one- 
column parametric pump (Chen et al., 1979). Two pH 
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