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Prediction of trapping rates in mixtures of partially absorbing spheres
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The combined effects of diffusion and reaction in heterogeneous media govern the behavior of a
wide variety of physical and biological phenomena, including the consumption of nutrients by cells
and the study of magnetic relaxation in tissues. We have considered the so-called “trapping
problem,” in which diffusion takes place exterior to a collection of fixed traps while reaction occurs
at their surface. A simulation technique for predicting the overall trapping rate for systems of
partially absorbing spherical traps based on the first-passage spheres method is presented. Using
data obtained by applying this simulation technique, we then consider the problem of mixtures of
partially absorbing traps. By hypothesizing a method for reducing a general mixture of traps to a
mixture of perfect absorbers and perfect reflectoes, reducing the dimensionality of the space of
variableg, we are able to accurately predict the effective surface rate constant and the trapping rate
for an arbitrary mixture of partially absorbing traps. Remarkably, we find that a single, nearly
universal curve allows accurate predictions to be made over a wide range of trap volume fractions
and even for different trap distributions. ®002 American Institute of Physics.
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I. INTRODUCTION in which n is the unit outward normal to the pore region and
) ) , . , k Is the surface rate constant. The limitsof « corresponds
The_re are a wide variety of phy3|cal and b'OI.O gical SYS°to the case of instantaneous trappifmerfect absorption
tems with a simultaneously diffusing and reaciing SPECIEShile k=0 corresponds to complete reflection at the trap

(see, e.g., the reviews of Torquaand Weis®). The trapping . .
problem is concerned with the study of these systems in thg_urface. The case of perfectly absorbing traps has received

case in which the diffusing species reacts upon contact witli'gmﬁc"’mt attention in the literaturge.g., Refs. 1, 2, and

the surface of a trapping phase. Heterogeneous catalysis, m19_16 and references thergiGood analytical approxima-

gration of defects in solids, and colloidal growth are ex_'uons of the rate at which the diffusible species is trapped

; e inki13,15,16 " _
amples of physical systems which may be modeled in thi‘l:';’TIVil b(_aenldt(_avelop(facihln ctjh]:rs I_mH. n ahddltlonl, deb
manner. The most natural biological example is the diffusion®'® S|mug|_ons“o ? fiusion process have aiso been
and consumption of nutrients in cefé.An area of increas- carried out giving “exact rgsult-s f(?r a'rang7e (1)9f dierent trap
ing importance, however, is the study of NMR relaxation of volume fractions and spatial distributiorfs.

water in biological medf® (and in other, nonbiological, po- _ 1r@PPing in systems in which the trapping reaction is
rous medi&®). finite relative to diffusion have also been investi-

In all of these examples, the system may be divided intgated” "**°~*?Because many trapping systems of physical

in which the reaction takes place. Analytically, the dynamics'€gime, it is important to study the general case of arbitrary

Of the trapping prob'em are governed by the relation surface rate constant. AVariety of teChniqUeS have been prO-
posed ranging from analytical corrections to perfectly ab-
’9_0 =D V2 1) sorbing trap& to methods relying on the statistics of random
at ' walks among perfectly reflecting “traps.”In addition, re-

in the pore phase, whereis the concentration of the diffus- sults from direct simulation of random walks have also been

ible speciegmagnetization density in NMR relaxatipand reported”’ o . _

D is the diffusion constant. At the surface of the trapping . V& report a method for the efficient simulation of diffu-
region(the pore—trap interfagehe diffusible species is con- SON arlléj trapping based on the first-passage spheres
sumed in a first-order reaction, which is modeled by the ex/Method.” Using this method, we measure the trapping rate

pression for a wide range of surface rate constants and trap volume
fractions. Based on these results, we investigate the interest-

D§+Kc=0 @) ing problem of diffusion among mixtures of different par-

an ' tially absorbing traps. This choice of problem is motivated

by a variety of biological phenomena. One such scenario is
dAuthor to whom correspondence should be addressed. Electronic mai]‘:he S'tua_t'cm in which several d|ff_erem cells pOPUIat!OnS are
torquato@electron.princeton.edu present in a system, each of which consumes nutrients at a
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different rate. One important example in which heteroge- Enlargement
neous cell populations arise is the growth of malignant brain
tumors, which may harbor hundreds of distinct
subpopulationg® Another system which may be modeled by

a mixture of partially absorbing traps is magnetic relaxation
caused by a protein molecule, in which each amino acid in
the protein may relax the magnetization of bulk water at a
different rate?*

Predicting the relaxation behavior of such a mixture
poses a significant challenge because each distinct type of
trap (i.e., each cell population or amino agidas two vari-
ables associated with (its surface rate constant and relative FIG. 1. Schematic of a random walker ysing the'r.nodified first-passage
volurme fraction. Thus, a system vith all twenty amino acids S22 e The random waker begrs st posion 0 1 her procescs
would potentially be described by forty variables. By relatingwaiker is not trapped, so it proceeds with fixed steps of ledgtNote that
each type of trap to a binary mixture of perfect absorbers anthe step from position 4 to 5 requires a reflection away from the trap surface.
reflectors, we reduce the system to one which can be det position§ 3 to 6 the walkt_ar is ppnsidered to have entered t_he trapping

. ] ] phase, but is not trapped until position 6. For a perfectly absorbing trap, the
scribed by On_ly two Varlableﬁhe total trap volume fraction walker would always be trapped as soon as it enters the trapping region
and the relative proportion of perfect absorbeihus we  position 3 here
reduce the dimensionality of the space of variables to only
two (from forty in the case of amino acigsThis method
allows for the prediction of the effective surface rate constant )
for an arbitrary mixture of partially absorbing traps without ImPossible for the walker to actually contact the trap surface
recourse to simulations. This method is shown to be very'Sing this method, the walker is considered to have reached a
accurate for a wide range of trap volume fractions. NotablyfaP whenever it is within some very small distantef the
it also predicts the effective rate constant for mixtures infap surface. _
which the spatial distribution of traps is qualitatively differ- In the case of perfectly absorbing traps<=), once the
ent. walker has reached the trap, the walk ends. The mean sur-

In the following section, we describe the modifications Vival time, 7 for a given trap distribution is calculated as
made to the first-passage spheres method to treat partially steps
absorbing traps. In Sec. lll, we present simulation results for :< 2 t->
systems with a single surface rate constant. In Sec. IV, we " =
briefly outline results for binary systems of perfect absorbers
and reflectors. The results for single surface constant systemjghere the the summation is taken over the steps of an indi-
and for the binary systems are combined to yield a methogidual walk and the angular brackets indicate an average
for predicting the effective surface rate constantddiitrary  over all random walks and trap realizations. For partially
mixtures of partially absorbing trapsand several test cases absorbing traps, however, the walker may not be trapped the
are presented. This section is followed by predictions of thejrst time it reaches a trap surface. In this situation, the first-
effective surface rate constant for different spatial diStribU-passage spheres method needs to be modified. Specifically, a
tions of traps. Finally, we present some conclusions alongninimum-sized first-passage sphere radius is defined ® be
with directions for further research. (the thickness of the trapping layer previously defindthe
use of a minimum step size avoids computational problems
associated with infinitely small step sizes. The survival time
for a random walker in a system of partially absorbing traps

The algorithm used to model three-dimensional randons the sum of the time elapsed in all of the stéjluding
walks is an extension of the first-passage spheres methddose of a fixed step lengthThis process is illustrated in
described initially by Torquato and Kin?.Briefly, the first-  Fig. 1. The use of finitely sized steps leads to the possibility
passage spheres method allows the motion of a particle uf walkers passing into the trap area, which is not allowed in
dergoing a Brownian random walk to be simulated withoutthis problem. To treat this, whenever a walker reaches the
explicitly simulating the fine scale details of the path. This istrap surface, rather than continue into the trap region, it re-
done by generating a sphere of radiyssurrounding the flects away from the surface.
random walker which just touches the nearest trap. The To determine the probability with which a walker will be
walker then moves to a location on the surface of this sphergapped upon hitting the trap—pore interface, a linearization
randomly. The average time elapsed for this stepis com-  of the partially absorbing boundary condition is emplo§ed.

Shell thickness, &

4

II. DESCRIPTION OF ALGORITHM

puted using first-passage time results as Sufficiently close to the trap surface, the trap may be treated
;2 as a plane, with diffusion taking place in one-dimension.
ti:6_‘ 3) Thus we may approximate relatid8) as
D!
i iffusi ici i is re- c(e)—c(0
where D is the diffusion coefficient. This sequence is re b (e)—c( )+KC(0)=0, 5

peated until the random walker reaches a trap. Because it is
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wherec(0) is the concentration at the surface a(d@) is 5.0 ‘
concentration a distanaeaway from the surface. The nega- —e ¢ =0.30
tive sign accounts for the directionality of the normal vector. 40 | |*™¢=020
We make the approximation =+ =015
— $=0.10
c(0)=(1-P,)c(e), (6) a 30 [ |+>¢=005
whereP . represents the probability that a walker contacting NE

the trap surface is absorbed. Rearrangement yields the ex- 20y

pression

1.0
D[/ P, 7

eli-p ) ™ g ,

. . 00 107" 10° 10'
relating the surface rate constart,and the probability of a

. . R xR/D

simulated walker being trapped each time it hits a trap sur-
face, P.. FIG. 2. Dimensionless trapping rate versugor several trap volume frac-

For the detailed random walk simulatioa,in relation tions. Traps are RSA distributed, nonoverlapping spheres. Averages are
(7)is equal to the step size. In the fist-passage sphere sim{fie" " 100 120 reaizaons with 1000 waers per realzabon, Each
lations, however, this equality does not necessarily hold. Thigealizations. For clarity, error bars are only shown for a few combinations of
is because in the FPS simulations there is a layer in whick and ¢.
absorption occurs, versus a surface in a direct random-walk
simulation. Simulations in which the exaet behavior is
known (as discussed belgweveal that the parameteris
directly proportional tos. For the spherical trap systems
considered heres/ 6= 1.5. The value of this ratio is indepen-
dent of k but does depend on the geometry of the trdps
example, trapping in a planar system would have a differe
€/ & ratio).

case in which diffusion is confined to the pore region. Sec-
ondary reasons for using our own simulated data include
ensuring that numerically precise data was available over the
entire range of interest and further testing the behavior of our
NSimulations against well-established results.
In our simulations, random realizations of spherical traps
were generated using the random sequential adsorption
lIl. IDENTICAL SPHERICAL TRAPS (RSA) algorithm? In the RSA method, spheres are placed
one at a time. To add a sphere, the coordinates of the sphere’s
We begin by investigating diffusiomterior to isolated  center are chosen randomly. The new sphere is then tested to
identical spherical cavities of radiuR (i.e., the trapping ensure that it does not overlap with any previously placed
phase is the regioexterior to the cavities In this simple  gphere. If an overlap occurs, the new sphere is discarded and
case, exact solutions tl) and (2) can be obtaineff In  placement is attempted again. If there is no overlap, the

particular, the mean survival time in this system,, is sphere position is fixed and another sphere may then be
R2 R added. This protocol has been shown to asymptotically ap-
Tiso=ﬁ+ 3c (8 proach a trap volume fraction of »=0.38 (in

three-dimensions®™ The traps were placed in a cube with

This result holds for all values of and provides an excellent edges of length 1. Three boundary thicknesses=2
test of our algorithm. Trapping at the surface of an isolatedx 10 °, 1x 10" °, and 5< 10 ®) were employed and the re-
spherical cavity of radiuR®=0.1 was simulated for a wide sults extrapolated to zero thickness. In practice, even the
range ofP, values, fixing the diffusion coefficientd=1)  coarsest of these layers would have produced very accurate
and the boundary layer thicknes$=£1x10 °). In each simulation data. Periodic boundary conditions were en-
case, the mean survival time was calculated from the simuforced. All of the traps have the same value wofin this
lations and then relatiof8) was used to calculate the surface portion of the work.
rate constantg, corresponding to each value Bf,. Results We have tested systems of spherical traps with trap vol-
for eight values ofP, varying between 0.0002 and 0.01 ume fractions ranging betweeh= 0.05 and¢$=0.30. Values
yielded an estimated value of 1.565.016 for the ratice/ 5.  of the surface rate constant ranging froms=1 to k=10
These tests were then repeated for a larger caRty @.2),  have been investigated, along with perfectly absorbing traps
and for a thinner boundary layes€ 1x 10 %), with con- (k=). The k values are scaled bp/R to yield a dimen-
sistent results. sionless surface rate constant. Dimensionless trapping rates

With this confirmation, diffusion external to a system of as a function of are shown in Fig. 2 for several trap volume
impenetrable spherical traps was simulated. As discussefdiactions. The trapping ratds, is defined as
previously, some work in this area is available in the litera- K=1/r ©)
ture, but we have elected to perform our own simulations for '
several reasons. The most simple reason is that previous reshich is then scaled bp/R?. Because the placement of the
sults do not correspond exactly to the geometry consideretfaps in each realization is random, the trapping rate varies
here. For example, in the work of Rilet al.* diffusion can  between realizations. The standard deviation of this variation
take place in the trap region, while we are interested in thén the trapping rate was measured and is indicated in Fig. 2.
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The standard deviation was about 4% for all combinations of 5.0

x and ¢, and was always less than 5%. Averaging over 100

different trap realizations for each combination of the surface 40 t

rate constant and trap volume fraction reduces the relative

standard error to less than 1@tot indicated in the plot 30 |
It is useful to comment briefly on the limiting behavior a

of the trapping rate at high and low valuesrofn relation to < 20

previous research. In the highlimit the traps become per-
fect absorbers. As noted previously, the system of perfect
traps is a well-studied case. Comparing the results of Fig. 2
with previous studies, we find that the scaled trapping rate

for high « values approaches that of the perfectly absorbing 00 02 o4 08 0B 10
case. As can be seen from the figure, however, traps avith o

=10 are not quite perfect absorbéis which case the trap-

ping rate curves would have satura)temo obtain a better FIG. 3. The trapping rate for binary systems of perfect absorbers and perfect

; PR _ reflectors as a function of the fraction of absorbers. Traps are RSA distrib-
Compa”_son' the cas_e @r"_ 1 (I'e_" K_oc) was also tESte_d' uted, monodisperse spheres. The symbols are simulation data and the lines
These simulations yielded trapping rates that agreed with thge cubic fits to the simulation data.

results of Torquato and Kif to within less than 1% devia-
tions (data not shown

The low « limit corresponds to a system in which trap-
ping is slow relative to diffusion. An optimized lower bound
on mean survival time has been given by Torquato and Avel

1.0 r

the trapping rate for two systenfaeighted by volume frac-
tion) each with a single surface rate constant yields a good
estimate of the trapping rate of the mixed sysfem.

laneda as As the values of« become increasingly distinct, how-
(82 1-¢ ever, the arithmetic average begins to produce poorer results.
™ 2xR’ (10 1n the limit of a mixture of perfectly absorbers and reflectors,

. ) ) ) ~_ very poor predictions should resdliShown in Fig. 3 is the
in which () is the mean pore .S'Z?é-The data shown in Fig. rapping ratescaled as aboyéor systems of perfect absorb-
2 always respect this bourfhich becomes an upper bound ers and perfect reflectors as a function of trap volume frac-
on the trapping ratek). Furthermore, foi<10, for all val-  tjon, ¢, and the fraction of traps that are perfect absorbers,
ues of ¢, the bound and simulation data agree very Well.%l Configurations of traps are generated using the RSA
This is a very stringent test of relatidf), because in the low  gigorithm and then each trap is randomly assigned to be an
« limit, each walker samples the trap surface many times angpsorber or a reflector independently. We consider systems in
any error in the calculation oP, will be reflected in the \yhich the fraction of absorbers is uniform in space. The
mean survival time. curves in Fig. 3 are simple cubic curve fits with fixed end
points. The simulation data presented is for systems with 500
IV. MULTIPLE x SYSTEMS traps within a periodic box. Simulations with I.arger numbers
of traps, however, show that the scaled trapping #®8/D,

A problem of significant biological interest is the case inis independent of the number of traps in the system at a fixed
which each trap has a surface rate constant assigned to it. folume fraction.
principle, each trap could have a unigderalue, but a more One trend that can be seen from the figure is that as the
realistic scenario would be one in which a limited number ofoverall trap volume fraction drops, the relation between the
surface rate constants are present in the system. While thet@pping rate and fraction of absorbers becomes more linear.
are many systems that can be modeled in this matper  This behavior results from the decreasing interaction be-
ticularly in biology), the prediction of trapping rates for mix- tween traps as the volume fraction decreases. In the limit of
tures of partial absorbers remains a challenging problem. linfinite dilution (¢—0), each trap is independent of all oth-
particular, mixtures of partial absorbers are characterized bgrs and linear behavior should be observed. While the reflec-
a potentially large number of variablésvo for each type of tors do not trap any particles, their presence affects the trap-
trap), making analytical predictions difficult. ping rate of the system as a whole. They do this by

To study this problem it is useful to begin with the sim- obstructing the paths between the absorbing traps. This
plest case—a binary system. One can envision two limitingorces diffusing particles to take longer patfmn averagg
cases for a binary system: one in which the two surface ratbefore they encounter a trap, which reduces the trapping rate
constants are close to one another and a second in which thelative to a system with the same absorbing traps, but in
two values are widely separated. In keeping with previousvhich the reflectors have been removed.
work on effective properties of heterogeneous media, it is  While the investigation of a binary system of absorbers
reasonable to expect that the first limiting case would beand reflectors demonstrates the type of behavior expected
somewhat easier to solve than the second. Indeed, it has befsom a mixed« system, it does not provide a direct method
shown (albeit for a somewhat different system than consid-of understanding a system of traps wiinbitrary surface
ered herg that for a binary mixture of traps with two values rate constantsEven in the binary case, the behavior of mix-
of k that are relatively similar, a simple arithmetic average oftures of traps with intermediate surface rate constants cannot
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® FIG. 5. The effective surface rate constarts, of a binary system of
o) perfect absorbers and reflectors, for RSA distributed traps. The fraction of
absorbers in the binary system is denotedpas The trap volume fraction
O o | ¢ includes both absorbers and reflectors. Note that over the range of volume
fractions considered here, the dependence on volume fraction is very weak.
The line is a spline fit to the data.

10° 10'
K R/D

=

® we will show that it is an excellent approximation in many

circumstances. Note that the original mixture was character-

) ized by four variables£,, xp, ¢,, and¢y), but the final

0O o 0O binary system requires only two variables. Further, additional
components in the original mixture increase the number of

FIG. 4. Diagrammatic illustration of the mixing hypothesis underlying this Variables required to describe that system, the final binary

work. A mixture of partially absorbing tragat the top of the figuremay be  system still will only require two variables to characterize.

decomposed into two systems each with a single type of partially absorbingy ngther appealing aspect of this formulation is that it can be
traps. For each of these systems, a mixture of perfect absorbers and reflec- | ted i traightf d A sinal t of
tors with the same trapping rate can be found. The two mixtures of absorbellgnp emented In a straightiorward manner. single set o

and reflectors may then be combined into a third mixture of absorbers angurves is sufficient to find the ratio of absorbers to reflectors
reflectors(at the bottom of the figujeWe hypothesize that the trapping rate that corresponds to a given surface rate constant in a system
of the origin'al mix.ture of partially absorbing traps is well approximated by ¢ partially absorbing traps. The same set of curves can then
that of the final mixture of perfect absorbers and reflectors. .
be used to find thecs value that corresponds to the com-
bined system of absorbers and reflectors. Finally, a set of
data such as that presented in Fig. 2 can be used to predict
be predicted simply from the extreme case. However, on¢he trapping rate based on the calculaiggd.
aspect of these simulations does indicate that they may be All of the data required to construct the plot relating a
useful in predicting the behavior of arbitrary mixtures—thebinary system of perfect absorbers and reflectors to the
simple monotonic relationship between fraction of absorbergquivalent system with a singke value is contained in Figs.
and trapping rate. This means that for any system of traps df and 3. Because the curves in Fig. 3 are somewhat simpler
arbitrary «, there is some binary mixture of absorbers and(i.e., easier to fit wejl the data points from Fig. 2 were used
reflectors at the same volume fraction with the same trappingxplicitly, while we interpolated between data points in Fig.
rate. 3. Shown in Fig. 5 is the effective surface rate constant for a
This observation suggests a path for estimating the trapsinary mixture of perfect absorbers and reflectors wjth
ping rate of a mixture of traps of arbitrary valuessobased absorber fraction.
on simulations of binary systems of perfect absorbers and What stands out immediately from Fig. 5 is the very
reflectors. Consider a binary system of traps with surface rateeak dependence on the trap volume fraction. In addition,
constantsc, and«,, which we will denote as traps of ty@e  the ordering with respect to the trap volume fraction is not
and typeb, respectively. They occupy volume fractiogg  consistent between different values of;, suggesting that
and ¢y, respectively, such tha#,+ ¢,=¢. Considering random variations between the simulations may play a role
only traps of typea, there is some binary system of perfect in the scatter that is present. The significance of the scatter
absorbers and reflectors at a volume fractibp with the  between the data points will be investigated in more detail
same trapping rate as the traps of tgp&he same holds true below.
for the traps of typd. We hypothesize that the mixture of the An intuitive understanding of the weak dependence on
two binary systems of absorbers and reflectors approximateke trap volume fraction can be obtained from a simple ex-
the trapping rate of the mixture of the typeand typeb traps  ample. Consider two binary systems of perfect absorbers and
well. A schematic illustrating this hypothesis is shown in Fig.reflectors, with the fraction of absorbers set ¢o , and
4. While this hypothesis certainly does not hold for all casesg.. ,. There are singlec systems with the same trapping

.OO
o @)
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TABLE I. A comparison of directly measured ;) and predictedKer)  portion: k,= 10, x,= 25, andk.=50. Each of these subsets
trapping rates for mixtures of partially absorbing traps. Properties sub- ; ; ; ; ;
scripted with “mix” refer to the actual mixture, while those with “eff” refer of traps is equivalentin terms of trapping rabetp a binary .

to the predicted single surface rate constant system. The traps in the actu%YStem of perfept absorbers and reflectors,- with the fr.aCt'cm
mixture are equally divided between the setxgf, values, though in gen-  Of absorbers bem@x,a. bobr Do respectively. Reading

eral this is not necessar,, gives the number of traps in the system. from Fig. 5, ¢ 4=0.25, ¢, ,=0.45, andq‘)x .=0.6. Com-
bining these three sets of binary mixtures into a single mix-

¢ N Hmix Kmx  wen  Ken Kenkmx 46 vields a mixture in which the fraction of perfect absorb-
0.30 500 {25, 100 753 49 773 1.03 ers is ¢,=0.43. This is the arithmetic average of the
8-28 ;(5)88 Eg igbsgsp 112‘; 53 1713‘;; 2-%91 fractions for each subset of traps, weighted by the proportion
015 750 {106’ 25’07 50D 710 220 727 102 of tha'F type of trap in the original mixture. Reading from Fig.
0.15 1500 {10, 250, 509 774 72 750 097 O again,e.=0.43 yieldskes=23.
0.05 500 {10, 50, 250 139 47 143  1.03 There are several caveats to the tests made above. The

0.30 3000 {15, 20, 75, 150, 10g0 2091 59 2034  0.97 first is that because no good functional form has been found
to fit the data points in Fig. 5, the values have been read
directly from the plot, resulting in possible measurement er-
rors. In addition, each type of trap in the mixture must be

heresent in sufficient number to allow it to be approximated
y a binary system. For example, if only one trap has a given

surface rate constant, its contribution to the trapping rate
cannot be replaced by a combination of perfect absorbers and
reflectors. This is essentially a finite size effect. Finally, it is

'gpportant to reiterate the assumption that the different types

of traps are all distributed uniformly throughout the system.

If traps tend to cluster by type, markedly different behavior

fraction with the same single value. By hypothesis, the two is expected. In this scenario, however, the majority of diffus-

high volume fraction systems have very similar trapping"?g| particlgs will only see traps of a s_ingle type, meaning a
rates. Because the trap volume fractions are arbitrary in thi§Imple weighted average of the trapping rates for each type

example, this suggests that the relation between the scalé)cﬁ trap would give a good approximation of the overall rate.

trapping rate and effective surface rate constant should be
independent of the trap volume fraction V. OTHER TRAP DISTRIBUTIONS

We have run several tests to assess how well this method
can predict the effective trapping rate of a mixture of par-  Noting that the effective surface rate constant for very
tially absorbing traps. First, the trap volume fraction and thdow trap volume fractions is predicted accuraténd rely-
set of surface rate constants for the mixed system were chdg on the apparent volume fraction independende is
sen. Based on Fig. 5, an effective surface rate constant waxtural to ask if high volume fraction systems can also be
predicted. For this prediction, we used the spline curvereated using this method. However, as discussed previously,
shown in Fig. 5 for all trap volume fractions. We then simu- trap configurations generated using the RSA protocol have a
lated the mixed system and the effective system predictethaximum volume fraction of¢)=0.38. In order to test
and compared the resulting trapping rates. We have chosen kdgher volume fractions it is necessary to employ a different
directly measure the trapping rate of the predicted effectivénethod of generating trap distributions. The simplest method
system by simulation, rather than using the data presented i to generate configurations of traps which are allowed to
Fig. 2. In other words, we compare the trapping riate, overlap. The volume fraction occupied by overlapping
measured in a simulation of the mixture of partially absorb-spheres may be calculated as

rates, with surface rate constarisandx,,, respectively. We
have hypothesized that the trapping rate of the mixture of t
two binary systems is well approximated by the trapping rat
of a mixture of the singlec systems. If we now let the two
binary systems be identicéle., ¢.. ,= ¢.. ), the two single

« systems will also be identical. A mixture of the two binary
systems, yields a binary system at the same absorber fra
tion, but a higher trap volume fraction. The mixture of the
two single k systems similarly yields a higher trap volume

ing spheres with the ratie.s measured in a second simula- A

tion in which all spheres have a surface rate constart.pf p=1— exp{ e R3) , (11
This reduces the possible sources of inaccuracy in the com-

parisons. wherep is the number density of traps in the system. While

The results for several tests are given in Table I. In allthe motivation behind using the overlapping sphere system is
cases, excellent agreement was obtained between the two investigate higher trap volume fractions, several other
systems. This strongly suggests that using Fig. 2 and Fig. Structural features are affected. The most important is that
the trapping rate for a uniform mixture of partially absorbing the pore size distribution function becomes significantly al-
traps can be accurately predicted, without direct simulationgered from that of an RSA configuration. Pore size plays a
It is interesting to note that good agreement is obtained for &ey role in determining the trapping rate of a heterogeneous
trap volume fraction of¢p=0.05, even though this volume system in the diffusion-controlled lim#2° In addition, the
fraction is outside the range used to create Fig. 5. relationship between trap volume fraction and specific sur-

To illustrate the procedure for predicting the trappingface is different in overlapping sphere systems than in non-
rate for a mixture of partially absorbing spheres, consider theverlapping systems.
second test case listed in Table ¢+ 0.30, Nya=1500). The results of several test cases for overlapping traps are
There are three types of traps in this mixture in equal prodisted in Table Il. From the table it is clear that despite the
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TABLE II. A comparison of predicted trapping rates with direct simulations 1.0 .
for partially absorbing traps using different trap distributions. @ ¢-0.30 ’ﬁg
W ¢=0.20 [%
Overlapping traps 0.8 | ®#¢=015 L4
pping trap A 6010 w
¢ Ntrap Kmix kmix Keff keff keﬁ /kmix 8 $ : 822
0.26 1500 {20, 100, 509 830 73 819 0.99 06 r O 0=04 ’
0.39 1250 {10, 25, 50 571 23 556 0.97 o Ao=02 [p
0.50 1750 {10, 20, 1009 1130 37 1093 0.97 04 |
0.63 5000 {10, 25, 50 1700 23 1622 0.95 : a L 2
Equilibrated traps 0.2 O Ag
& I O
¢ Ntrap Kmix I(mix Keff keff keff/kmix O Ao ‘
0.30 500 {10, 50, 200, 50p 808 62 828 1.02 Y- J
040 1372 {10, 20, 1009 1515 37 1504 0.9 0.0 7 57 0° 10
0.50 500 {10, 250, 509 2230 72 2281 1.02 «.R/D
0.60 1372 {10, 100, 100p 5455 62 5172 0.95 eff
0.72 1372 {100, 250, 50p 16760 210 16900 1.01 . . .
072 1372 {10, 25, 50 8889 23 8163 0.92 FIG. 6. A comparison of the effective surface rate constant for mixtures of

perfect absorbers and reflectors between RSA distributed traps and traps
arrayed on the FCC lattice. The solid symbols are data of the RSA distribu-
tion, while the open symbols correspond to the FCC lattice.

significant structural differences between overlapping traps

and RSA distributed traps, reasonably accurate predictions

for trapping rates can be made in the case of overlappingould also explain the reduced predictive power at high trap
traps with mixed surface rate constants, using the result¢olume fractions.

from the RSA systems. Note that it is necessary to explicitty ~ In order to examine the flaws in the high volume fraction

measure trapping rates for singltesystems of overlapping predictions in greater detail, we have studied trapping in
traps as a function of the surface rate constant to quantitavhich the traps are arrayed in an FCC lattice. By fixing the
tively predict the trapping ratdi.e., an overlapping trap position of the traps, the variations caused by different trap
equivalent of Fig. 2 is needgdthough prediction of the ef- configurations is eliminated. As such, the FCC lattice will

fective surface rate constant does not reqaing data spe- also provide additional insight regarding the scatter between
cific to the overlapping trap system. data points in Fig. 5 at different trap volume fractions. For

In order to further explore the predictive power of our this part of the study, the centers of the traps were fixed at the
method at high trap volume fractions, we have also testedites of the FCC lattice, while the size was varied to study
nonoverlapping traps in equilibrium configurations. As thedifferent trap volume fractions. Trapping rates were found to
volume fraction of nonoverlapping spheres increagsas be independent of the number of traps included, so all of the
equilibrium), the system undergoes a thermodynamic phasdata presented below is obtained from simulations of 1372
transition. At low volume fractions, the trap distribution is traps. We repeated the methodology described above to gen-
liquid-like (below ¢=0.49), while at higher volume frac- erate a set of data analogous to Fig. 5 for FCC trap distribu-
tions (above ¢=0.55) the traps form a solid-like packing, tions. Specifically, trapping rates were calculated for a range
that eventually reaches the FCC crystal. As such, by increa®f trap volume fractions and surface rate constants. Trapping
ing the trap volume fraction, we can generate two morerates were then calculated for binary systems of perfect ab-
qualitatively different trap distributiongequilibrium liquid  sorbers and reflectors over the same range of trap volume
and solid, in addition to RSA distributed and overlappingfractions, for different proportions of absorbers. For each
traps. Again, we see that the effective trapping rate of mixedtrap volume fraction, the surface rate constant was plotted
systems of partially absorbing traps can be predicted quitagainst the absorber fractions that produced the same trap-
accurately. ping rate. The resultant plot is shown in Fig. 6.

One trend that stands out from Table Il is that as the trap It is immediately apparent from Fig. 6 that the weak
volume fraction increases, the predicted trapping rate genedependence on the trap volume fraction breaks down in the
ally becomes less accurate. Further, the predicted rate is sysase of a high volume fraction and low surface rate constant.
tematically lower that the directly measured rate in each cas€he range of volume fractions accessible using the RSA al-
in which there is a difference of 5% or mofalthough these gorithm is entirely within the regime in which the volume
cases represent a very small sample some regards, it is fraction dependence is very weak. However, even for high
reasonable to expect that the predictions would becom#&rap volume fractions, for values of greater than 30 all
worse as the trap volume fraction increases. The data used wolume fractions lie within a very narrow band. This obser-
making the predictions is taken from simulations at trap vol-vation suggests that trap volume fraction is responsible for
ume fraction of¢=0.3 and below. As predictions are made some of the scatter in Fig. 5, especially at low surface rate
farther away from that range, they are likely to become moreonstants. Examining the test cases in Table Il, each case in
inaccurate. Furthermore, the structural characteristics ofvhich significant errors were present in the predicted trap-
overlapping traps and equilibrium traps become increasinglyping rate was at high volume fraction and had at least one
pronounced as the trap volume fraction increases. This effegfroup of traps with smalk.
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VI. CONCLUSIONS dicted with errors of 3% or less. The traps in these systems
were distributed in a variety of ways, but this did not affect

The problem of diffusing species which are trapped att dict Ab th i | fracti
the surface of a heterogeneous media has a broad range f predictive power. Above these trap volume fractions, pre-
ctions became somewhat less accurate.

applications. These range from heterogeneous catalysis In summar nearly universal curve has been found
magnetic relaxation in NMR experiments. To date, however, su ary, a nearly universal curveé has been fou

the properties of systems of partially absorbing traps are onl lating the fraction of absorbers in a mixture of perfect ab-
beginning to be understood in detail. Correspondingly less i orbers and reflectors to the effective surface rate constant

known about the properties of mixed systems of partially or RSA distributed traps. Using this curve, it is possible to
absorbing traps predict the effective surface rate constant for an arbitrary

We have adapted the first-passage sphere method fgpixture of partially absorbing traps. Surprisingly, .the. eff?C'
simulating diffusion among traps to treat the case of partiall Ive surface rate constant for other types of trap distributions

absorbing traps. Calibration against analytically tractable@n also be predicted accurately, despite significant structural

trapping problems has yielded a simple expression relatin ifferences. Only in the limit of a h|g_h .trap f_rac.tlpn andl
the surface rate constant, in the boundary conditions of mall surface rate constant were predictions significantly in

the diffusion equations and the probability that a walker iserrog | i . ding th dicti

trapped in a simulation of a random walk. This modified ¢ ev;rat_ques |c]:ns renj[aln opein rte?ar 'r.]gt N pr;atlc lon

first-passage method allows the efficient simulation of the_(l)_ an efiective surface rate constant Tor mixtures ot traps.
he most fundamental is if an analytical relation can be

trapping problem with partially absorbing traps. Utilizing ; .
this method, we have plotted the trapping rate for monodisfound for the effective surface rate constant for a mixture of

perse(in both size and surface rate consyaspiherical traps, perfectly absorbing and reflecting traps. This would elimi-

versus the surface rate constant over a range of volume fraE_ate the need to rely on tabulated relations. It also remains to

tions. We chose to generate our trap configurations using th © determinec_i why the spatial distribution of the traps seems
RSA protocol, which confined the trap volume fractions tot0 have very "t.tle effegt. Ithas been prewously.shown that a
be below 0.38. umversa] sﬁcalmg exists for a varliety of different trap
In considering the overall trapping rate of binary mix- geometries? which may offer insight |r_1to the \{vea_k depen-
tures of perfect absorbers and reflectors, a method for thi€Nce Of the trapping rate on spatial distribution. More
prediction of the trapping rate for general mixtures was de_broadly, one can ask what oiher classes of heterogeneous

veloped. This method relies on the hypothesis that the trar;[_rapping systems could be treated u.sing this method. For
xample, can an analogous analysis be found for cube

ping rate of a mixture of several types of traps can be welf . .
approximated by a different, well-defined system of trapsshaped traps? Perfectly absorbing traps in other shapes have

This second system is comprised of subsets of traps, each en studied previousf,** suggesting that an extension of

which individually displays the same trapping rate as ondne methods shown here to nonspherical geometries is a trac-

type of trap in the original mixture. Figure 4 shows a sche-table problem.

matic of this hypothesis. In practice, a mixture of partially
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