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Prediction of trapping rates in mixtures of partially absorbing spheres
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The combined effects of diffusion and reaction in heterogeneous media govern the behavior of a
wide variety of physical and biological phenomena, including the consumption of nutrients by cells
and the study of magnetic relaxation in tissues. We have considered the so-called ‘‘trapping
problem,’’ in which diffusion takes place exterior to a collection of fixed traps while reaction occurs
at their surface. A simulation technique for predicting the overall trapping rate for systems of
partially absorbing spherical traps based on the first-passage spheres method is presented. Using
data obtained by applying this simulation technique, we then consider the problem of mixtures of
partially absorbing traps. By hypothesizing a method for reducing a general mixture of traps to a
mixture of perfect absorbers and perfect reflectors~i.e., reducing the dimensionality of the space of
variables!, we are able to accurately predict the effective surface rate constant and the trapping rate
for an arbitrary mixture of partially absorbing traps. Remarkably, we find that a single, nearly
universal curve allows accurate predictions to be made over a wide range of trap volume fractions
and even for different trap distributions. ©2002 American Institute of Physics.
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I. INTRODUCTION

There are a wide variety of physical and biological sy
tems with a simultaneously diffusing and reacting spec
~see, e.g., the reviews of Torquato1 and Weiss2!. The trapping
problem is concerned with the study of these systems in
case in which the diffusing species reacts upon contact w
the surface of a trapping phase. Heterogeneous catalysis
gration of defects in solids, and colloidal growth are e
amples of physical systems which may be modeled in
manner. The most natural biological example is the diffus
and consumption of nutrients in cells.3,4 An area of increas-
ing importance, however, is the study of NMR relaxation
water in biological media5,6 ~and in other, nonbiological, po
rous media7–9!.

In all of these examples, the system may be divided i
a pore region in which diffusion occurs and a trapping reg
in which the reaction takes place. Analytically, the dynam
of the trapping problem are governed by the relation

]c

]t
5D ¹2c, ~1!

in the pore phase, wherec is the concentration of the diffus
ible species~magnetization density in NMR relaxation! and
D is the diffusion constant. At the surface of the trappi
region~the pore–trap interface! the diffusible species is con
sumed in a first-order reaction, which is modeled by the
pression

D
]c

]n
1kc50, ~2!

a!Author to whom correspondence should be addressed. Electronic
torquato@electron.princeton.edu
10580021-9606/2002/116(24)/10589/9/$19.00
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in which n is the unit outward normal to the pore region a
k is the surface rate constant. The limit ofk5` corresponds
to the case of instantaneous trapping~perfect absorption!,
while k50 corresponds to complete reflection at the tr
surface. The case of perfectly absorbing traps has rece
significant attention in the literature~e.g., Refs. 1, 2, and
10–16 and references therein!. Good analytical approxima
tions of the rate at which the diffusible species is trapp
have been developed in this limit.1,13,15,16 In addition, de-
tailed simulations of the diffusion process have also be
carried out giving ‘‘exact’’ results for a range of different tra
volume fractions and spatial distributions.14,17–19

Trapping in systems in which the trapping reaction
finite relative to diffusion have also been inves
gated.4,7,9,20–22Because many trapping systems of physi
and biological interest exist outside the diffusion-controll
regime, it is important to study the general case of arbitr
surface rate constant. A variety of techniques have been
posed ranging from analytical corrections to perfectly a
sorbing traps22 to methods relying on the statistics of rando
walks among perfectly reflecting ‘‘traps.’’9 In addition, re-
sults from direct simulation of random walks have also be
reported.4,7

We report a method for the efficient simulation of diffu
sion and trapping based on the first-passage sph
method.19 Using this method, we measure the trapping r
for a wide range of surface rate constants and trap volu
fractions. Based on these results, we investigate the inte
ing problem of diffusion among mixtures of different pa
tially absorbing traps. This choice of problem is motivat
by a variety of biological phenomena. One such scenari
the situation in which several different cells populations a
present in a system, each of which consumes nutrients
il:
9 © 2002 American Institute of Physics
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different rate. One important example in which heterog
neous cell populations arise is the growth of malignant br
tumors, which may harbor hundreds of distin
subpopulations.23 Another system which may be modeled b
a mixture of partially absorbing traps is magnetic relaxat
caused by a protein molecule, in which each amino acid
the protein may relax the magnetization of bulk water a
different rate.24

Predicting the relaxation behavior of such a mixtu
poses a significant challenge because each distinct typ
trap ~i.e., each cell population or amino acid! has two vari-
ables associated with it~its surface rate constant and relati
volume fraction!. Thus, a system with all twenty amino acid
would potentially be described by forty variables. By relati
each type of trap to a binary mixture of perfect absorbers
reflectors, we reduce the system to one which can be
scribed by only two variables~the total trap volume fraction
and the relative proportion of perfect absorbers!. Thus we
reduce the dimensionality of the space of variables to o
two ~from forty in the case of amino acids!. This method
allows for the prediction of the effective surface rate const
for an arbitrary mixture of partially absorbing traps witho
recourse to simulations. This method is shown to be v
accurate for a wide range of trap volume fractions. Notab
it also predicts the effective rate constant for mixtures
which the spatial distribution of traps is qualitatively diffe
ent.

In the following section, we describe the modificatio
made to the first-passage spheres method to treat par
absorbing traps. In Sec. III, we present simulation results
systems with a single surface rate constant. In Sec. IV,
briefly outline results for binary systems of perfect absorb
and reflectors. The results for single surface constant sys
and for the binary systems are combined to yield a met
for predicting the effective surface rate constant forarbitrary
mixtures of partially absorbing traps, and several test case
are presented. This section is followed by predictions of
effective surface rate constant for different spatial distrib
tions of traps. Finally, we present some conclusions al
with directions for further research.

II. DESCRIPTION OF ALGORITHM

The algorithm used to model three-dimensional rand
walks is an extension of the first-passage spheres me
described initially by Torquato and Kim.19 Briefly, the first-
passage spheres method allows the motion of a particle
dergoing a Brownian random walk to be simulated witho
explicitly simulating the fine scale details of the path. This
done by generating a sphere of radiusr i surrounding the
random walker which just touches the nearest trap. T
walker then moves to a location on the surface of this sph
randomly. The average time elapsed for this step,t i , is com-
puted using first-passage time results as

t i5
r i

2

6D
, ~3!

where D is the diffusion coefficient. This sequence is r
peated until the random walker reaches a trap. Because
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impossible for the walker to actually contact the trap surfa
using this method, the walker is considered to have reach
trap whenever it is within some very small distanced of the
trap surface.

In the case of perfectly absorbing traps (k5`), once the
walker has reached the trap, the walk ends. The mean
vival time, t for a given trap distribution is calculated as

t5K (
i 51

steps

t i L , ~4!

where the the summation is taken over the steps of an i
vidual walk and the angular brackets indicate an aver
over all random walks and trap realizations. For partia
absorbing traps, however, the walker may not be trapped
first time it reaches a trap surface. In this situation, the fi
passage spheres method needs to be modified. Specifica
minimum-sized first-passage sphere radius is defined to bd
~the thickness of the trapping layer previously defined!. The
use of a minimum step size avoids computational proble
associated with infinitely small step sizes. The survival tim
for a random walker in a system of partially absorbing tra
is the sum of the time elapsed in all of the steps~including
those of a fixed step length!. This process is illustrated in
Fig. 1. The use of finitely sized steps leads to the possib
of walkers passing into the trap area, which is not allowed
this problem. To treat this, whenever a walker reaches
trap surface, rather than continue into the trap region, it
flects away from the surface.

To determine the probability with which a walker will b
trapped upon hitting the trap–pore interface, a linearizat
of the partially absorbing boundary condition is employe8

Sufficiently close to the trap surface, the trap may be trea
as a plane, with diffusion taking place in one-dimensio
Thus we may approximate relation~2! as

2D
c~e!2c~0!

e
1kc~0!50, ~5!

FIG. 1. Schematic of a random walker using the modified first-pass
spheres method. The random walker begins at position 0. It then proc
via first-passage spheres to position 3~in the enlargement!. At position 3 the
walker is not trapped, so it proceeds with fixed steps of lengthd. Note that
the step from position 4 to 5 requires a reflection away from the trap surf
At positions 3 to 6 the walker is considered to have entered the trap
phase, but is not trapped until position 6. For a perfectly absorbing trap
walker would always be trapped as soon as it enters the trapping regio~at
position 3 here!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wherec(0) is the concentration at the surface andc(e) is
concentration a distancee away from the surface. The nega
tive sign accounts for the directionality of the normal vect
We make the approximation

c~0!5~12Pk!c~e!, ~6!

wherePk represents the probability that a walker contact
the trap surface is absorbed. Rearrangement yields the
pression

k5
D

e S Pk

12Pk
D , ~7!

relating the surface rate constant,k, and the probability of a
simulated walker being trapped each time it hits a trap s
face,Pk .

For the detailed random walk simulation,e in relation
~7! is equal to the step size. In the first-passage sphere s
lations, however, this equality does not necessarily hold. T
is because in the FPS simulations there is a layer in wh
absorption occurs, versus a surface in a direct random-w
simulation. Simulations in which the exactk behavior is
known ~as discussed below! reveal that the parametere is
directly proportional tod. For the spherical trap system
considered here,e/d51.5. The value of this ratio is indepen
dent ofk but does depend on the geometry of the traps~for
example, trapping in a planar system would have a differ
e/d ratio!.

III. IDENTICAL SPHERICAL TRAPS

We begin by investigating diffusioninterior to isolated
identical spherical cavities of radiusR ~i.e., the trapping
phase is the regionexterior to the cavities!. In this simple
case, exact solutions to~1! and ~2! can be obtained.22 In
particular, the mean survival time in this system,t iso, is

t iso5
R2

15D
1

R

3k
. ~8!

This result holds for all values ofk and provides an excellen
test of our algorithm. Trapping at the surface of an isola
spherical cavity of radiusR50.1 was simulated for a wide
range ofPk values, fixing the diffusion coefficient (D51)
and the boundary layer thickness (d5131025). In each
case, the mean survival time was calculated from the si
lations and then relation~8! was used to calculate the surfa
rate constant,k, corresponding to each value ofPk . Results
for eight values ofPk varying between 0.0002 and 0.0
yielded an estimated value of 1.50560.016 for the ratioe/d.
These tests were then repeated for a larger cavity (R50.2),
and for a thinner boundary layer (d5131026), with con-
sistent results.

With this confirmation, diffusion external to a system
impenetrable spherical traps was simulated. As discus
previously, some work in this area is available in the lite
ture, but we have elected to perform our own simulations
several reasons. The most simple reason is that previou
sults do not correspond exactly to the geometry conside
here. For example, in the work of Rileyet al.,4 diffusion can
take place in the trap region, while we are interested in
Downloaded 12 Jul 2002 to 128.112.82.136. Redistribution subject to A
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case in which diffusion is confined to the pore region. S
ondary reasons for using our own simulated data inclu
ensuring that numerically precise data was available over
entire range of interest and further testing the behavior of
simulations against well-established results.

In our simulations, random realizations of spherical tra
were generated using the random sequential adsorp
~RSA! algorithm.25 In the RSA method, spheres are plac
one at a time. To add a sphere, the coordinates of the sph
center are chosen randomly. The new sphere is then test
ensure that it does not overlap with any previously plac
sphere. If an overlap occurs, the new sphere is discarded
placement is attempted again. If there is no overlap,
sphere position is fixed and another sphere may then
added. This protocol has been shown to asymptotically
proach a trap volume fraction of f50.38 ~in
three-dimensions!.25 The traps were placed in a cube wi
edges of length 1. Three boundary thicknesses (d52
31025, 131025, and 531026) were employed and the re
sults extrapolated to zero thickness. In practice, even
coarsest of these layers would have produced very accu
simulation data. Periodic boundary conditions were e
forced. All of the traps have the same value ofk in this
portion of the work.

We have tested systems of spherical traps with trap v
ume fractions ranging betweenf50.05 andf50.30. Values
of the surface rate constant ranging fromk51 to k5103

have been investigated, along with perfectly absorbing tr
(k5`). The k values are scaled byD/R to yield a dimen-
sionless surface rate constant. Dimensionless trapping r
as a function ofk are shown in Fig. 2 for several trap volum
fractions. The trapping rate,k, is defined as

k51/t, ~9!

which is then scaled byD/R2. Because the placement of th
traps in each realization is random, the trapping rate va
between realizations. The standard deviation of this varia
in the trapping rate was measured and is indicated in Fig

FIG. 2. Dimensionless trapping rate versusk for several trap volume frac-
tions. Traps are RSA distributed, nonoverlapping spheres. Averages
taken over 100 trap realizations with 1000 walkers per realization. E
realization contained 500 traps. The error bars reflect the variability betw
realizations. For clarity, error bars are only shown for a few combination
k andf.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The standard deviation was about 4% for all combinations
k andf, and was always less than 5%. Averaging over 1
different trap realizations for each combination of the surfa
rate constant and trap volume fraction reduces the rela
standard error to less than 1%~not indicated in the plot!.

It is useful to comment briefly on the limiting behavio
of the trapping rate at high and low values ofk in relation to
previous research. In the highk limit the traps become per
fect absorbers. As noted previously, the system of per
traps is a well-studied case. Comparing the results of Fi
with previous studies, we find that the scaled trapping r
for high k values approaches that of the perfectly absorb
case. As can be seen from the figure, however, traps wik
5103 are not quite perfect absorbers~in which case the trap
ping rate curves would have saturated!. To obtain a better
comparison, the case ofPk51 ~i.e., k5`) was also tested
These simulations yielded trapping rates that agreed with
results of Torquato and Kim19 to within less than 1% devia
tions ~data not shown!.

The low k limit corresponds to a system in which tra
ping is slow relative to diffusion. An optimized lower boun
on mean survival time has been given by Torquato and A
laneda as

t>
^d&2

D
1

12f

2kR
, ~10!

in which ^d& is the mean pore size.22 The data shown in Fig
2 always respect this bound~which becomes an upper boun
on the trapping rate,k). Furthermore, fork<10, for all val-
ues of f, the bound and simulation data agree very w
This is a very stringent test of relation~7!, because in the low
k limit, each walker samples the trap surface many times
any error in the calculation ofPk will be reflected in the
mean survival time.

IV. MULTIPLE k SYSTEMS

A problem of significant biological interest is the case
which each trap has a surface rate constant assigned to
principle, each trap could have a uniquek value, but a more
realistic scenario would be one in which a limited number
surface rate constants are present in the system. While t
are many systems that can be modeled in this manner~par-
ticularly in biology!, the prediction of trapping rates for mix
tures of partial absorbers remains a challenging problem
particular, mixtures of partial absorbers are characterized
a potentially large number of variables~two for each type of
trap!, making analytical predictions difficult.

To study this problem it is useful to begin with the sim
plest case—a binary system. One can envision two limit
cases for a binary system: one in which the two surface
constants are close to one another and a second in whic
two values are widely separated. In keeping with previo
work on effective properties of heterogeneous media, i
reasonable to expect that the first limiting case would
somewhat easier to solve than the second. Indeed, it has
shown~albeit for a somewhat different system than cons
ered here!, that for a binary mixture of traps with two value
of k that are relatively similar, a simple arithmetic average
Downloaded 12 Jul 2002 to 128.112.82.136. Redistribution subject to A
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the trapping rate for two systems~weighted by volume frac-
tion! each with a single surface rate constant yields a g
estimate of the trapping rate of the mixed system.4

As the values ofk become increasingly distinct, how
ever, the arithmetic average begins to produce poorer res
In the limit of a mixture of perfectly absorbers and reflecto
very poor predictions should result.4 Shown in Fig. 3 is the
trapping rate~scaled as above! for systems of perfect absorb
ers and perfect reflectors as a function of trap volume fr
tion, f, and the fraction of traps that are perfect absorbe
f` . Configurations of traps are generated using the R
algorithm and then each trap is randomly assigned to be
absorber or a reflector independently. We consider system
which the fraction of absorbers is uniform in space. T
curves in Fig. 3 are simple cubic curve fits with fixed e
points. The simulation data presented is for systems with
traps within a periodic box. Simulations with larger numbe
of traps, however, show that the scaled trapping rate,kR2/D,
is independent of the number of traps in the system at a fi
volume fraction.

One trend that can be seen from the figure is that as
overall trap volume fraction drops, the relation between
trapping rate and fraction of absorbers becomes more lin
This behavior results from the decreasing interaction
tween traps as the volume fraction decreases. In the limi
infinite dilution (f→0), each trap is independent of all oth
ers and linear behavior should be observed. While the refl
tors do not trap any particles, their presence affects the t
ping rate of the system as a whole. They do this
obstructing the paths between the absorbing traps. T
forces diffusing particles to take longer paths~on average!
before they encounter a trap, which reduces the trapping
relative to a system with the same absorbing traps, bu
which the reflectors have been removed.

While the investigation of a binary system of absorbe
and reflectors demonstrates the type of behavior expe
from a mixedk system, it does not provide a direct metho
of understanding a system of traps witharbitrary surface
rate constants. Even in the binary case, the behavior of mi
tures of traps with intermediate surface rate constants ca

FIG. 3. The trapping rate for binary systems of perfect absorbers and pe
reflectors as a function of the fraction of absorbers. Traps are RSA dis
uted, monodisperse spheres. The symbols are simulation data and the
are cubic fits to the simulation data.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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be predicted simply from the extreme case. However,
aspect of these simulations does indicate that they may
useful in predicting the behavior of arbitrary mixtures—t
simple monotonic relationship between fraction of absorb
and trapping rate. This means that for any system of trap
arbitrary k, there is some binary mixture of absorbers a
reflectors at the same volume fraction with the same trapp
rate.

This observation suggests a path for estimating the t
ping rate of a mixture of traps of arbitrary values ofk based
on simulations of binary systems of perfect absorbers
reflectors. Consider a binary system of traps with surface
constantska andkb , which we will denote as traps of typea
and typeb, respectively. They occupy volume fractionsfa

and fb , respectively, such thatfa1fb5f. Considering
only traps of typea, there is some binary system of perfe
absorbers and reflectors at a volume fractionfa with the
same trapping rate as the traps of typea. The same holds true
for the traps of typeb. We hypothesize that the mixture of th
two binary systems of absorbers and reflectors approxim
the trapping rate of the mixture of the typea and typeb traps
well. A schematic illustrating this hypothesis is shown in F
4. While this hypothesis certainly does not hold for all cas

FIG. 4. Diagrammatic illustration of the mixing hypothesis underlying th
work. A mixture of partially absorbing traps~at the top of the figure! may be
decomposed into two systems each with a single type of partially absor
traps. For each of these systems, a mixture of perfect absorbers and r
tors with the same trapping rate can be found. The two mixtures of abso
and reflectors may then be combined into a third mixture of absorbers
reflectors~at the bottom of the figure!. We hypothesize that the trapping ra
of the original mixture of partially absorbing traps is well approximated
that of the final mixture of perfect absorbers and reflectors.
Downloaded 12 Jul 2002 to 128.112.82.136. Redistribution subject to A
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we will show that it is an excellent approximation in man
circumstances. Note that the original mixture was charac
ized by four variables (ka , kb , fa , andfb), but the final
binary system requires only two variables. Further, additio
components in the original mixture increase the number
variables required to describe that system, the final bin
system still will only require two variables to characteriz
Another appealing aspect of this formulation is that it can
implemented in a straightforward manner. A single set
curves is sufficient to find the ratio of absorbers to reflect
that corresponds to a given surface rate constant in a sy
of partially absorbing traps. The same set of curves can t
be used to find thekeff value that corresponds to the com
bined system of absorbers and reflectors. Finally, a se
data such as that presented in Fig. 2 can be used to pr
the trapping rate based on the calculatedkeff .

All of the data required to construct the plot relating
binary system of perfect absorbers and reflectors to
equivalent system with a singlek value is contained in Figs
2 and 3. Because the curves in Fig. 3 are somewhat sim
~i.e., easier to fit well!, the data points from Fig. 2 were use
explicitly, while we interpolated between data points in F
3. Shown in Fig. 5 is the effective surface rate constant fo
binary mixture of perfect absorbers and reflectors withf`

absorber fraction.
What stands out immediately from Fig. 5 is the ve

weak dependence on the trap volume fraction. In additi
the ordering with respect to the trap volume fraction is n
consistent between different values ofkeff , suggesting that
random variations between the simulations may play a r
in the scatter that is present. The significance of the sca
between the data points will be investigated in more de
below.

An intuitive understanding of the weak dependence
the trap volume fraction can be obtained from a simple
ample. Consider two binary systems of perfect absorbers
reflectors, with the fraction of absorbers set tof`,a and
f`,b . There are singlek systems with the same trappin

ng
ec-
rs

nd

FIG. 5. The effective surface rate constant,keff , of a binary system of
perfect absorbers and reflectors, for RSA distributed traps. The fractio
absorbers in the binary system is denoted asf` . The trap volume fraction
f includes both absorbers and reflectors. Note that over the range of vo
fractions considered here, the dependence on volume fraction is very w
The line is a spline fit to the data.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rates, with surface rate constantska andkb , respectively. We
have hypothesized that the trapping rate of the mixture of
two binary systems is well approximated by the trapping r
of a mixture of the singlek systems. If we now let the two
binary systems be identical~i.e.,f`,a5f`,b), the two single
k systems will also be identical. A mixture of the two bina
systems, yields a binary system at the same absorber
tion, but a higher trap volume fraction. The mixture of t
two singlek systems similarly yields a higher trap volum
fraction with the same singlek value. By hypothesis, the two
high volume fraction systems have very similar trappi
rates. Because the trap volume fractions are arbitrary in
example, this suggests that the relation between the sc
trapping rate and effective surface rate constant should
independent of the trap volume fraction.

We have run several tests to assess how well this me
can predict the effective trapping rate of a mixture of p
tially absorbing traps. First, the trap volume fraction and
set of surface rate constants for the mixed system were
sen. Based on Fig. 5, an effective surface rate constant
predicted. For this prediction, we used the spline cu
shown in Fig. 5 for all trap volume fractions. We then sim
lated the mixed system and the effective system predic
and compared the resulting trapping rates. We have chos
directly measure the trapping rate of the predicted effec
system by simulation, rather than using the data presente
Fig. 2. In other words, we compare the trapping ratekmix

measured in a simulation of the mixture of partially abso
ing spheres with the ratekeff measured in a second simul
tion in which all spheres have a surface rate constant ofkeff .
This reduces the possible sources of inaccuracy in the c
parisons.

The results for several tests are given in Table I. In
cases, excellent agreement was obtained between the
systems. This strongly suggests that using Fig. 2 and Fig
the trapping rate for a uniform mixture of partially absorbi
traps can be accurately predicted, without direct simulatio
It is interesting to note that good agreement is obtained f
trap volume fraction off50.05, even though this volum
fraction is outside the range used to create Fig. 5.

To illustrate the procedure for predicting the trappi
rate for a mixture of partially absorbing spheres, consider
second test case listed in Table I (f50.30,Ntrap51500).
There are three types of traps in this mixture in equal p

TABLE I. A comparison of directly measured (kmix) and predicted (keff)
trapping rates for mixtures of partially absorbing traps. Properties s
scripted with ‘‘mix’’ refer to the actual mixture, while those with ‘‘eff’’ refer
to the predicted single surface rate constant system. The traps in the a
mixture are equally divided between the set ofkmix values, though in gen-
eral this is not necessary.Ntrap gives the number of traps in the system.

f Ntrap kmix kmix keff keff keff /kmix

0.30 500 $25, 100% 753 49 773 1.03
0.30 1500 $10, 25, 50% 796 23 794 0.99
0.20 2000 $25, 100, 250% 1183 77 1198 1.01
0.15 750 $100, 250, 500% 710 220 727 1.02
0.15 1500 $10, 250, 500% 774 72 750 0.97
0.05 500 $10, 50, 250% 139 47 143 1.03
0.30 3000 $15, 20, 75, 150, 1000% 2091 59 2034 0.97
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portion:ka510, kb525, andkc550. Each of these subse
of traps is equivalent~in terms of trapping rate! to a binary
system of perfect absorbers and reflectors, with the frac
of absorbers beingf`,a , f`,b , f`,c , respectively. Reading
from Fig. 5,f`,a50.25, f`,b50.45, andf`,c50.6. Com-
bining these three sets of binary mixtures into a single m
ture yields a mixture in which the fraction of perfect absor
ers is f`50.43. This is the arithmetic average of th
fractions for each subset of traps, weighted by the propor
of that type of trap in the original mixture. Reading from Fi
5 again,f`50.43 yieldskeff523.

There are several caveats to the tests made above.
first is that because no good functional form has been fo
to fit the data points in Fig. 5, the values have been r
directly from the plot, resulting in possible measurement
rors. In addition, each type of trap in the mixture must
present in sufficient number to allow it to be approximat
by a binary system. For example, if only one trap has a gi
surface rate constant, its contribution to the trapping r
cannot be replaced by a combination of perfect absorbers
reflectors. This is essentially a finite size effect. Finally, it
important to reiterate the assumption that the different ty
of traps are all distributed uniformly throughout the syste
If traps tend to cluster by type, markedly different behav
is expected. In this scenario, however, the majority of diffu
ing particles will only see traps of a single type, meaning
simple weighted average of the trapping rates for each t
of trap would give a good approximation of the overall ra

V. OTHER TRAP DISTRIBUTIONS

Noting that the effective surface rate constant for ve
low trap volume fractions is predicted accurately~and rely-
ing on the apparent volume fraction independence!, it is
natural to ask if high volume fraction systems can also
treated using this method. However, as discussed previou
trap configurations generated using the RSA protocol hav
maximum volume fraction off50.38. In order to test
higher volume fractions it is necessary to employ a differ
method of generating trap distributions. The simplest meth
is to generate configurations of traps which are allowed
overlap. The volume fraction occupied by overlappi
spheres may be calculated as

f512expS 2r
4p

3
R3D , ~11!

wherer is the number density of traps in the system. Wh
the motivation behind using the overlapping sphere system
to investigate higher trap volume fractions, several ot
structural features are affected. The most important is
the pore size distribution function becomes significantly
tered from that of an RSA configuration. Pore size play
key role in determining the trapping rate of a heterogene
system in the diffusion-controlled limit.22,26 In addition, the
relationship between trap volume fraction and specific s
face is different in overlapping sphere systems than in n
overlapping systems.

The results of several test cases for overlapping traps
listed in Table II. From the table it is clear that despite t

-
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significant structural differences between overlapping tr
and RSA distributed traps, reasonably accurate predict
for trapping rates can be made in the case of overlapp
traps with mixed surface rate constants, using the res
from the RSA systems. Note that it is necessary to explic
measure trapping rates for singlek systems of overlapping
traps as a function of the surface rate constant to quan
tively predict the trapping rate~i.e., an overlapping trap
equivalent of Fig. 2 is needed!, though prediction of the ef-
fective surface rate constant does not requireany data spe-
cific to the overlapping trap system.

In order to further explore the predictive power of o
method at high trap volume fractions, we have also tes
nonoverlapping traps in equilibrium configurations. As t
volume fraction of nonoverlapping spheres increases~at
equilibrium!, the system undergoes a thermodynamic ph
transition. At low volume fractions, the trap distribution
liquid-like ~below f50.49), while at higher volume frac
tions ~abovef50.55) the traps form a solid-like packing
that eventually reaches the FCC crystal. As such, by incr
ing the trap volume fraction, we can generate two m
qualitatively different trap distributions~equilibrium liquid
and solid, in addition to RSA distributed and overlappi
traps!. Again, we see that the effective trapping rate of mix
systems of partially absorbing traps can be predicted q
accurately.

One trend that stands out from Table II is that as the t
volume fraction increases, the predicted trapping rate ge
ally becomes less accurate. Further, the predicted rate is
tematically lower that the directly measured rate in each c
in which there is a difference of 5% or more~although these
cases represent a very small sample!. In some regards, it is
reasonable to expect that the predictions would beco
worse as the trap volume fraction increases. The data use
making the predictions is taken from simulations at trap v
ume fraction off50.3 and below. As predictions are mad
farther away from that range, they are likely to become m
inaccurate. Furthermore, the structural characteristics
overlapping traps and equilibrium traps become increasin
pronounced as the trap volume fraction increases. This e

TABLE II. A comparison of predicted trapping rates with direct simulatio
for partially absorbing traps using different trap distributions.

Overlapping traps

f Ntrap kmix kmix keff keff keff /kmix

0.26 1500 $20, 100, 500% 830 73 819 0.99
0.39 1250 $10, 25, 50% 571 23 556 0.97
0.50 1750 $10, 20, 1000% 1130 37 1093 0.97
0.63 5000 $10, 25, 50% 1700 23 1622 0.95

Equilibrated traps

f Ntrap kmix kmix keff keff keff /kmix

0.30 500 $10, 50, 200, 500% 808 62 828 1.02
0.40 1372 $10, 20, 1000% 1515 37 1504 0.99
0.50 500 $10, 250, 500% 2230 72 2281 1.02
0.60 1372 $10, 100, 1000% 5455 62 5172 0.95
0.72 1372 $100, 250, 500% 16 760 210 16 900 1.01
0.72 1372 $10, 25, 50% 8889 23 8163 0.92
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could also explain the reduced predictive power at high t
volume fractions.

In order to examine the flaws in the high volume fracti
predictions in greater detail, we have studied trapping
which the traps are arrayed in an FCC lattice. By fixing t
position of the traps, the variations caused by different t
configurations is eliminated. As such, the FCC lattice w
also provide additional insight regarding the scatter betw
data points in Fig. 5 at different trap volume fractions. F
this part of the study, the centers of the traps were fixed at
sites of the FCC lattice, while the size was varied to stu
different trap volume fractions. Trapping rates were found
be independent of the number of traps included, so all of
data presented below is obtained from simulations of 13
traps. We repeated the methodology described above to
erate a set of data analogous to Fig. 5 for FCC trap distri
tions. Specifically, trapping rates were calculated for a ra
of trap volume fractions and surface rate constants. Trapp
rates were then calculated for binary systems of perfect
sorbers and reflectors over the same range of trap vol
fractions, for different proportions of absorbers. For ea
trap volume fraction, the surface rate constant was plo
against the absorber fractions that produced the same
ping rate. The resultant plot is shown in Fig. 6.

It is immediately apparent from Fig. 6 that the wea
dependence on the trap volume fraction breaks down in
case of a high volume fraction and low surface rate const
The range of volume fractions accessible using the RSA
gorithm is entirely within the regime in which the volum
fraction dependence is very weak. However, even for h
trap volume fractions, for values ofk greater than 30 all
volume fractions lie within a very narrow band. This obse
vation suggests that trap volume fraction is responsible
some of the scatter in Fig. 5, especially at low surface r
constants. Examining the test cases in Table II, each cas
which significant errors were present in the predicted tr
ping rate was at high volume fraction and had at least
group of traps with smallk.

FIG. 6. A comparison of the effective surface rate constant for mixtures
perfect absorbers and reflectors between RSA distributed traps and
arrayed on the FCC lattice. The solid symbols are data of the RSA distr
tion, while the open symbols correspond to the FCC lattice.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VI. CONCLUSIONS

The problem of diffusing species which are trapped
the surface of a heterogeneous media has a broad ran
applications. These range from heterogeneous catalys
magnetic relaxation in NMR experiments. To date, howev
the properties of systems of partially absorbing traps are o
beginning to be understood in detail. Correspondingly les
known about the properties of mixed systems of partia
absorbing traps.

We have adapted the first-passage sphere method
simulating diffusion among traps to treat the case of partia
absorbing traps. Calibration against analytically tracta
trapping problems has yielded a simple expression rela
the surface rate constant,k, in the boundary conditions o
the diffusion equations and the probability that a walker
trapped in a simulation of a random walk. This modifi
first-passage method allows the efficient simulation of
trapping problem with partially absorbing traps. Utilizin
this method, we have plotted the trapping rate for monod
perse~in both size and surface rate constant! spherical traps,
versus the surface rate constant over a range of volume
tions. We chose to generate our trap configurations using
RSA protocol, which confined the trap volume fractions
be below 0.38.

In considering the overall trapping rate of binary mi
tures of perfect absorbers and reflectors, a method for
prediction of the trapping rate for general mixtures was
veloped. This method relies on the hypothesis that the t
ping rate of a mixture of several types of traps can be w
approximated by a different, well-defined system of tra
This second system is comprised of subsets of traps, eac
which individually displays the same trapping rate as o
type of trap in the original mixture. Figure 4 shows a sch
matic of this hypothesis. In practice, a mixture of partia
absorbing traps is decomposed into several subsets in w
the surface rate constant is uniform. Each of these subse
then approximated by a mixture of perfect absorbers
reflectors, and these mixtures are in turn combined toge
to yield a system whose trapping rate is approximately
same as that of the original, partially absorbing mixture. T
method allows us to reduce the potentially large dimensi
ality of the space of variables describing a mixture of traps
only two variables. This reduction then allows for an acc
rate analytical estimation of the mean trapping rate.

In implementing this method, it has been found that
trap volume fraction dependence is very weak and tha
single curve allows an effective surface rate constant to
predicted for an arbitrary mixture of RSA distributed, pa
tially absorbing traps. This can in turn be used to predict
trapping rate of the original mixture. Several test cases h
shown that predictions of trapping rate accurate to within
of the directly simulated value can be made over a br
range of trap volume fractions and surface rate consta
This includes cases in which the surface rate constants
widely separated, which is expected to be the more diffic
scenario. Further trials revealed that the effective surface
constant for other trap distributions could also be accura
predicted using the same curve. The trapping rate for syst
with trap volume fractions as high asf50.5 can be pre-
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dicted with errors of 3% or less. The traps in these syste
were distributed in a variety of ways, but this did not affe
the predictive power. Above these trap volume fractions, p
dictions became somewhat less accurate.

In summary, a nearly universal curve has been fou
relating the fraction of absorbers in a mixture of perfect a
sorbers and reflectors to the effective surface rate cons
for RSA distributed traps. Using this curve, it is possible
predict the effective surface rate constant for an arbitr
mixture of partially absorbing traps. Surprisingly, the effe
tive surface rate constant for other types of trap distributio
can also be predicted accurately, despite significant struct
differences. Only in the limit of a high trap fraction an
small surface rate constant were predictions significantly
error.

Several questions remain open regarding the predic
of an effective surface rate constant for mixtures of tra
The most fundamental is if an analytical relation can
found for the effective surface rate constant for a mixture
perfectly absorbing and reflecting traps. This would elim
nate the need to rely on tabulated relations. It also remain
be determined why the spatial distribution of the traps see
to have very little effect. It has been previously shown tha
universal scaling exists for a variety of different tra
geometries,26 which may offer insight into the weak depen
dence of the trapping rate on spatial distribution. Mo
broadly, one can ask what other classes of heterogen
trapping systems could be treated using this method.
example, can an analogous analysis be found for c
shaped traps? Perfectly absorbing traps in other shapes
been studied previously,26–28suggesting that an extension o
the methods shown here to nonspherical geometries is a
table problem.
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