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■ Abstract We review progress made in quantitatively ascertaining the various sta-
tistical correlation functions that are fundamental to determining the material properties
of specific classes of disordered materials. Topics covered include the definitions of
the correlation functions, a unified theoretical means of representing and computing
the different statistical descriptors, structural characterization from two-dimensional
and three-dimensional images of materials, scalar order metrics and particle packings,
and reconstruction techniques.

INTRODUCTION

Structure, properties, performance, and processing constitute the key aspects of
materials research. In this review article, we focus on the quantification of statistical
correlation functions that are fundamental to determining the material properties
of classes of disordered materials. Although space requirements prevent us from
delving into the derivation of the structure/property relation themselves, we point
out the connection between a specific correlation function and the macroscopic
properties that depend upon it.

The ensuing analysis applies to several classes of materials, including random
heterogeneous materials, amorphous many-body systems with spherically sym-
metric potentials, and materials with directional bonding (e.g., network glasses).
Much of the discussion centers around the first two classifications.

By a heterogeneous material we mean a material that is composed of domains of
different materials (phases), such as a composite, or the same material in different
states, such as a polycrystal (1). Here the heterogeneity length scale is between
hundreds of nanometers to several hundred microns. Heterogeneous materials
abound in synthetic products and nature. Synthetic examples include aligned and
chopped fiber composites, particulate composites, powders, interpenetrating mul-
tiphase composites cellular solids, colloids, gels, foams, phase-separated metallic
alloys, microemulsions, block copolymers, and fluidized beds. Examples of na-
tural heterogeneous materials are granular media, soils, polycrystals, sandstone,
wood, bone, lungs, blood, animal and plant tissue, cell aggregates, and tumors.
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In many instances, the microstructures can be characterized only statistically,
and therefore such materials are referred to as random heterogeneous materials. A
vast family of random microstructures are possible, ranging from dispersions with
varying degrees of clustering to complex interpenetrating connected multiphase
media, including porous media. Figure 1 shows examples of synthetic and natural
random heterogeneous materials. The first example shows a processed optical
image of a cermet that is primarily composed of boron carbide (black regions)
and aluminum (white regions). Both of these phases are connected across the
sample (interpenetrating) even though, from a planar section, it appears that only
the black phase is connected. The second example shows a planar section through
a Fontainebleau sandstone obtained via X-ray microtomography. As is seen below
this imaging technique enables one to obtain full three-dimensional renderings of
the microstructure, revealing that the void or pore phase (white region) is actually
connected across the sample.

Amorphous many-body systems with spherically symmetric potentials repre-
sent another class of materials that we consider. At the molecular length scale, this
classification includes metallic glasses. At length scales on the order of hundreds
of nanometers and greater, this classification includes the special case of heteroge-
neous materials that consist of many interacting particles (e.g., colloids, powders,
granular media, etc.). Figure 2 shows a random packing of spheres. In this article,
we also remark on statistical descriptions of materials with directional bonding.

Disordered materials exhibit a remarkably broad spectrum of rich and complex
microstructures. The goal is to develop a machinery to characterize statistically this
broad class of microstructures, i.e., to develop a statistical, or stochastic, geometry

Figure 1 Examples of random heterogeneous materials. (Left) An interpenetrating
three-phase cermet composed of boron carbide (black regions), aluminum (white re-
gions), and another ceramic phase (gray regions) (2). (Right) Fontainebleau sandstone
[data taken from (3)].
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Figure 2 A realization of a random packing of 500 identical spheres near the max-
imally random jammed state obtained from the Lubachevsky-Stillinger simulation
protocol.

of disordered materials. How or where does one begin to address this challenging
task? The answer, of course, depends on what is the goal of the statistical char-
acterization. Our goal is ultimately the prediction of the macroscopic or effective
properties of the material, and thus this determines our starting point.

The diverse effective properties that we are concerned with here naturally and
necessarily lead to a wide variety of microstructural descriptors, generically re-
ferred to as microstructural correlation functions. Invariably, such functions arise
inside integrals in structure/property relations; more precisely, structure/property
relations are functionals of the microstructural correlation functions (1).

STATISTICAL CORRELATION FUNCTIONS

We assume that the microstructures are static or can be approximated as static,
and therefore any realizationω of the random material is taken to be independent
of time. We speak in the language of heterogeneous materials because their pos-
sible morphologies and topologies are more general than molecular systems. In
particular, we focus on two-phase heterogeneous materials.

Each realizationω of the two-phase random medium comes from some prob-
ability space and occupies some subsetV of d-dimensional Euclidean space, i.e.,
V ∈ <d. The region of spaceV ∈ <d of volumeV is partitioned into two disjoint
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random sets or phases: phase 1, a regionV1(ω) of volume fractionφ1, and phase
2, a regionV2(ω) of volume fractionφ2. Let ∂V(ω) denote the surface or inter-
face betweenV1(ω) andV2(ω). For a given realizationω, the indicator function
I (i )(x; ω) for phasei for x ∈ V is a random variable defined by

I (i )(x; ω) =
{

1, if x ∈ Vi (ω),

0, otherwise,
1.

for i = 1, 2. The indicator functionM(x; ω) for the interface is defined as

M(x; ω) = ∣∣∇I (1)(x; ω)
∣∣ = ∣∣∇I (2)(x; ω)

∣∣ 2.

and therefore is a generalized function (e.g., a function involving Dirac delta
functions) that is nonzero whenx is on the interface. Depending on the physical
context, phasei can be a solid, fluid, or void characterized by some general tensor
property. Unless otherwise stated, we dropω from the notation and writeI (i )(x)
for I (i )(x; ω) andM(x) forM(x; ω).

In what follows, we define various statistical descriptors, the majority of
which arise in structure/property relations. All of these microstructural functions
have been evaluated for model microstructures and for real materials, some of
which are described below in the sections Unified Theoretical Approach and
Microstructure Characterization from Two-Dimensional and Three-Dimensional
Images. The reader is referred to the book by Torquato (1) for specific references
on such calculations.

n-Point Probability Functions

The so-calledn-point probability function for phasei, S(i )
n , is the the expectation

of the productI (i )(x1) I (i )(x2) · · · I (i )(xn) (5), i.e.,

S(i )
n (x1, x2, . . . , xn) ≡ 〈

I (i )(x1) I (i )(x2) · · · I (i )(xn)
〉
. 3.

This quantity can be interpreted as the probability thatn points at positions
x1, x2, . . . , xn are found in phasei (1). For statistically homogeneous media, the
S(i )

n are translationally invariant and therefore depend only on relative positions of
then points. In particular,S(i )

1 (x1) is just the constant volume fractionφ i of phase
i. If the random medium is also statistically isotropic, theS(i )

n depend only on the
distances between then points. When possible, we suppress the superscript inS(i )

n
that indicates phasei and simply denote the function bySn. In such instances, the
phase to which it refers is specified.

Then-point probability functions were introduced in the context of determining
the effective transport properties of random media by Brown (6). These statisti-
cal descriptors arise in rigorous expressions (i.e., functionals) for the effective
transport, electromagnetic, and mechanical properties of random heterogeneous
media, including (a) effective conductivity, dielectric, magnetic permeability, and
diffusion coefficient (6–10); (b) effective elastic moduli (7, 11–14); (c) trapping
constant or, equivalently, mean survival time (15); and (d) fluid permeability
(16–18).
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The two-point or autocorrelation functionS2(r ) ≡ S(1)
2 (r ) for statistically ho-

mogeneous media can be obtained by randomly tossing line segments of length
r ≡ |r | with a specified orientation and counting the fraction of times the end
points fall in phase 1 (see Figure 3). The functionS2(r ) provides a measure of how
the end points of a vectorr in phase 1 are correlated. For isotropic media,S2(r)
attains its maximum value ofφ1 at r = 0 and eventually decays (usually exponen-
tially fast) to its asymptotic value ofφ2

1. Debye & Bueche (19) showed thatS2(r)
for an isotropic porous solid can also be obtained via the intensity of scattered
radiation.

Surface Correlation Functions

Surface correlation functions contain information about the random interface∂V
and are of basic importance in trapping and flow problems. In this context, we

Figure 3 A schematic depicting events that contribute to lower-order functions for
random media of arbitrary microstructure. Shown is the two-point probability function
S2 ≡ S(1)

2 for phase 1 (white region), surface–void and surface–surface functionsFsv

andFss, lineal-path functionL ≡ L (1), and the pore-size density functionP.
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will let phase 1 denote the fluid or void phase, and phase 2 the solid phase. The
simplest surface correlation function is the specific surfaces(x) (interface area per
unit volume) at pointx, which is a one-point correlation function for statistically
inhomogeneous media, i.e.,

s(x) = 〈M(x)〉, 4.

whereM(x) is the interface indicator function given by Equation 2. The nonnega-
tive specific surface cannot be interpreted as a probability because the chance that
a point atx lands on the interface is zero. For homogeneous media, it is a constant
everywhere, which we denote simply bys.

Two-point surface correlation functions for statistically inhomogeneous media
are defined by

Fsv(x1, x2) = 〈M(x1) I (x2)〉, 5.

Fss(x1, x2) = 〈M(x1)M (x2)〉, 6.

whereI(x) ≡ I (1)(x) is the indicator function for the void phase. These functions
are called the surface—void and surface—surface correlation functions, respec-
tively, and they arise in rigorous bounds on the trapping constant (20, 21) and fluid
permeability (18, 20) associated with fluid-saturated porous media. For statisti-
cally homogeneous media they depend only on the displacementr = x2 − x1, and
for isotropic media they depend only on the distancer = |r |.

Lineal Measures

Another interesting and useful statistical measure is what we call the lineal-path
functionL(i) (22). For statistically isotropic media,L(i)(z) gives the probability that
a line segment of lengthz lies wholly in phasei when randomly thrown into the
sample. Figure 3 shows an event that contributes to the lineal-path function. We
see thatL(i)(z) contains a coarse level of connectedness information about phasei,
albeit only along a lineal path of lengthz in phasei.

A quantity related to the lineal-path functionL(i)(z) is the chord-length proba-
bility density functionp(i)(z) (23, 24). They are related via the formula

p(i )(z) = `C

φi

d2L (i )(z)

dz2 , 7.

where`
(i )
C is the mean chord length for phasei defined by

`
(i )
C =

∫ ∞

0
zp(i )(z) dz. 8.

The quantityp(i)(z) has also been called the chord-length distribution function.
Chords are all of the line segments between intersections of an infinitely long line
with the two-phase interface. For statistically isotropic media, the quantityp(i)(z)
dz is the probability of finding a chord of length betweenz andz+ dz in phasei.
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Because it is a probability density function (having dimensions of inverse length),
p(i)(z) ≥ 0 for all z, and it normalizes to unity.

Knowledge of the chord-length density function is of basic importance in trans-
port problems involving discrete free paths and thus has application in Knudsen
diffusion and radiative transport in porous media (25–27). The functionp(i)(z) has
also been measured for sedimentary rocks (28) for the purpose of studying fluid
flow through such porous media. BothL(i)(z) and p(i)(z) are quantities of great
interest in stereology (29). For example, the mean chord (or intercept) length is
the first moment ofp(i)(z).

Pore-Size Functions

The pore-size probability density functionP(δ) (also referred to as pore-size distri-
bution function) first arose to characterize the void or pore space in porous media
(30). Actually,P(δ) can be used to probe either phase 1 or phase 2 of general ran-
dom media consisting of two material phases. For simplicity, we defineP(δ) for
phase 1, keeping in mind that it is equally well defined for phase 2. The quantity
P(δ) for isotropic media is defined as the probability that a randomly chosen point
in V1(ω) lies at a distance betweenδ andδ + dδ from the nearest point on the pore-
solid interface. Because it is a probability-density function (having dimensions of
inverse length),P(δ) ≥ 0 for all δ and it normalizes to unity. At the extreme values
of P(δ),

P(0) = s

φ1
, P(∞) = 0, 9.

wheres/φ1 is the interfacial area per unit pore volume. The associated complemen-
tary cumulative distribution functionF(δ) = P{1 ≥ δ} (where1 is the associated
continuous random variable)

F(δ) =
∫ ∞

δ

P(r ) dr 10.

is a nonincreasing function ofδ such that

F(0) = 1, F(∞) = 0. 11.

Thus,F(δ) is the fraction of pore space that has a pore radius larger thanδ.

Two-Point Cluster Function

Perhaps the most promising two-point descriptor identified to date is the two-point
cluster functionC(i )

2 (x1, x2) (31). The quantityC(i )
2 (x1, x2) gives the probability of

finding two points atx1 andx2 in the same cluster of phasei. The formation of very
large clusters of a phase in a heterogeneous material (on the order of the system
size) can have a dramatic influence on its macroscopic properties. A cluster of
phasei is defined as the part of phasei that can be reached from a point in phase
i without passing through phasej 6= i . A critical point, known as the percolation
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threshold, is reached when a sample-spanning cluster first appears. Thus,C(i )
2 is

the analogue of the two-point probability functionS(i )
2 , but unlike its predeces-

sor, it contains nontrivial topological “connectedness” information. Indeed, it is
a useful signature of clustering in the system since it becomes longer ranged as
the percolation threshold is approached from below. The measurement ofC(i )

2
for a three-dimensional material sample cannot be made from a two-dimensional
cross-section of the material because it is an intrinsically three-dimensional mi-
crostructural function. The remaining challenge is to be able to incorporateC(i )

2
into a theory to predict macroscopic properties for a wide range of conditions,
even near the threshold.

Nearest-Neighbor Functions

All of the aforementioned statistical descriptors are defined for disordered mate-
rials of arbitrary microstructure. In the special case of random media composed
of particles (phase 2) distributed randomly throughout another material (phase 1)
or simple atomic systems, there is a variety of natural morphological descriptors.
The description of the well-knownn-particle probability density functionρn is dis-
cussed below in Unified Theoretical Approach. We describe some other functions
below for systems of identical spherical particles of diameterD (or radiusR= D/2)
at number densityρ.

In considering a many-body system of interacting particles, a fundamental
question is, What is the effect of the nearest neighbor on some reference particle
in the system? The answer to this query requires knowledge of the probability
associated with finding the nearest neighbor at some given distance from a reference
particle, i.e., the particle nearest-neighbor probability-density functionHP. (This
has been also called the nearest-neighbor distribution function.) KnowingHP is of
importance in a host of problems in the physical and biological sciences, including
transport processes in heterogeneous materials (18, 21, 32), stellar dynamics (33),
spatial patterns in biological systems (34), and the molecular physics of liquids and
amorphous solids (35–39). Hertz (40) was the first to consider its evaluation for a
system of spatially uncorrelated “point” particles, i.e., particles whose centers are
Poisson distributed. The generalization of his result tod dimensions is given by

HP(r ) = ρs1(r ) exp[−ρv1(r )]. 12.

Here,v1(r) ands1(r) = dv1/dr are the volume and surface area of ad-dimensional
sphere of radiusr, respectively (1). The calculation ofHP for spatially interacting
particles is nontrivial.

A different nearest-neighbor function,HV, arises in the scaled-particle theory
of liquids (35, 41). This quantity (defined more precisely below) essentially char-
acterizes the probability of finding a nearest-neighbor particle center at a given
distance from an arbitrary point in the system. SinceHV is nontrivial when the
point is located in the space exterior to the particles, we refer to it as the void
nearest-neighbor probability-density function.
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The quantityHV(r) dr gives the probability that at an arbitrary point in the sys-
tem the center of the nearest particle lies at a distance betweenr and r + dr.
Similarly, HP(r) dr gives the probability that at an arbitrary particle center in the
system the center of the nearest particle lies at a distance betweenr andr + dr.
Because bothHV(r) and HP(r) are probability density functions, they are non-
negative for allr, normalize to unity, and have dimensions of inverse length. For
statistically inhomogeneous media,HV(r) andHP(r) will depend also upon the
position of the arbitrary point and the location of the central particle, respectively.
Figure 4 shows an event that contributes toHP(r).

There are other nearest-neighbor quantities closely related toHV andHP that
have been considered. These are the so-called exclusion probabilitiesEV and
EP and the conditional pair distributionsGV and GP. The interested reader is
referred to the book by Torquato (1) for a detailed discussion of such related
quantities.

Figure 4 A schematic showing events that contribute to lower-order functions for
random arrays of spheres (phase 2). Shown is the particle nearest-neighbor probability
densityHP, point/particle functionG2 ≡ G(1)

2 , and the surface-particle functionFsp.
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Point/q-Particle Correlation Functions

Consider statistically inhomogeneous media composed ofN identical spherical
particles of radiusR (phase 2) distributed throughout another phase (phase 1).
Let r q ≡ {r 1, . . . , r q} denote the positions ofq sphere centers and let
dr q ≡ dr 1dr 2 · · · dr q. The point/q-particle correlation (or distribution) function
G(i)

n (x; rq) is defined such thatG(i)
n (x; rq) dr q gives the probability of finding a point

in phasei atx and the center of a sphere in volume elementdr 1 aboutr1, the center
of another sphere in volume elementdr 2 aboutr2, . . . , and the center of another
sphere in volume elementdr q aboutrq, wheren= 1 + q. The point/q-particle
correlation function arises in bounds on the effective conductivity (42), effective
elastic moduli (43), trapping constant (21), and fluid permeability (18).

Surface-Particle Correlation Function

The surface/particle correlation functionFsp(x; r1) for statistically inhomogeneous
systems ofN identical spheres is the correlation function associated with a point
being on the interface atx and the probability of finding the center of a sphere in
volume elementdr 1 aboutr1. The surface/particle functionFsp arises in rigorous
bounds on the fluid permeability of random beds of spheres (44) and the effective
thermal conductivity of composites with imperfect interfaces (45).

UNIFIED THEORETICAL APPROACH

The previous section described some of the different types of statistical correla-
tion functions that have arisen in rigorous structure/property relations (1). Until
recently, application of such structure/property relations (although in existence for
approximately 40 years in some cases) was virtually nonexistent because of the
difficulty involved in ascertaining the correlation functions. Are these different
functions related to one another? Can one write down a single expression that
contains complete statistical information and thereby compute any specific corre-
lation function? The key quantity that enables one to answer these two queries in
the affirmative is the canonicaln-point correlation functionHn (1, 46).

Canonical n-Point Correlation Function

For simplicity, we begin by considering a classical, closed system ofN interacting
identical spherical particles of radiusR in volumeV, keeping in mind that we can
generalize the ensuing discussion to treat spheres with a polydispersivity in size,
oriented nonspherical particles, and nonparticulate models such as cell models.
We focus on microstructures that can be taken to be independent of time. In
practice, this requirement restricts us to equilibrium systems or, more generally,
quenched nonequilibrium systems. Any ensemble of many-particle systems is
completely spatially characterized classically by then-particle probability density
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functionρn(r n). The quantityρn(r n) dr n is proportional to the probability of finding
any subset ofn particles with configurationr n in volume elementdr n. Although
ρn is not normalized to unity but rather∫

ρn(r n) dr n = N!

(N − n)!
, 13.

it is still commonly referred to as a probability density function because it can be
made so trivially by dividing it by the normalization constantN!/(N− n)! The two-
particle probability densityρ2 can be ascertained from a scattering experiment via
the structure factor (38). In general,ρn(r n) dr n depends on theN-particle potential
8N(r N) and the particular dynamical process involved to create the system. In
many instances, the total potential energy (in the absence of external fields) is well
approximated by pairwise additivity, i.e.,

8N(r N) =
N∑

i < j

ϕ2(ri j ), 14.

whereϕ2(r ) is the pair potential.
The key idea employed by Torquato (46) to define and derive series represen-

tations of the canonicaln-point correlation functionHn is the available space and
available surface to theith test particle of radiusbi that is inserted into the sys-
tem of spheres of radiusR. The available space and surface concepts go back to
Boltzmann (47); see also (48), (49), and (50). The reader is referred to (46) and
(1) for derivation of the series representations.

One representation of theHn is given by

Hn(xm; xp−m; r q) =
∞∑

s=0

(−1)sH (s)
n (xm; xp−m; r q), n = p + q, 15.

where

H (s)
n (xm; xp−m; r q) = (−1)m

∂

∂a1
· · · ∂

∂am
G(s)

n (xp; r q),

Gn(xp; r q) =
∞∑

s=0

(−1)sG(s)
n (xp; r q), n = p + q,

G(s)
n (xp; r q) =

q∏
l=1

p∏
k=1

e(ykl ; ak)

s!

∫
ρq+s(r q+s)

q+s∏
j =q+1

m(p)(xp; r j ) dr j ,

m(p)(xp; r j ) = 1 −
p∏

i =1

[1 − m(yi j ; ai )],

e(r ; a) = 1 − m(r ; a) = 2(r − a) =
{

0, r < a,

1, r ≥ a,

ai = bi + R and yi j = |xi − r j |.
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In many applications, we are interested inHn in the limit that the radii of the
test particles become zero so thatai = R for all i. For example, in this limit, the
n-point matrix probability function is given by

Sn(xn) = lim
ai →R,∀i

Hn(Ø;xn; Ø). 16.

Similarly, the lower-order surface correlation functions are given by

s = lim
a1→R

H1(x1; Ø; Ø), 17.

Fsv(x1, x2) = lim
ai →R,∀i

H2(x1; x2; Ø), 18.

Fss(x1, x2) = lim
ai →R,∀i

H2(x1, x2; Ø; Ø), 19.

Fsp(x1, r 1) = lim
a1→R

H2(x1; Ø; r 1). 20.

Three-point surface correlation functions (e.g.,Fssv, Fssp, Fsvp) and theirn-point
generalizations can be obtained from theHn in a similar fashion. The point/q-
particle correlation function is expressible as

Gn(x1; r q) = lim
a1→R

Hn(Ø; x1; r q). 21.

Using the formula forHn, one can also establish relationships between these dif-
ferent types of correlation functions (46).

The void nearest-neighbor density functionHV(r) (defined above in Nearest-
Neighbor Functions) is a special case ofHn with n= 1, namely,

HV (r ) = H1(x1; Ø; Ø), 22.

wherea1= r. Moreover, the particle nearest-neighbor density functionHP(r) is
given by

HP(r ) = −∂EP

∂r
, 23.

where

EP(r ) = lim
|x1−r 1|→0

H2(Ø; x1; r 1)

ρ1(r 1)
24.

anda1= r.

Other Model Microstructures

Representations of theHn for dispersions of spheres with a size distribution have
also been obtained (51). The formal results described above extend to statistically
anisotropic models consisting of inclusions whose configuration is fully specified
by center-of-mass coordinates (e.g., oriented ellipsoids, cubes, cylinders, squares,
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Figure 5 Two-dimensional overlapping-particle systems at a low density with
at most three particle overlaps (left) and at a high density above the percolation
threshold (right).

etc.) (52), as well as to statistically anisotropic laminates (53). The formalism also
extends to nonparticulate systems, such as cell or lattice models (1, 54).

Model Pair Potentials

For a system of noninteracting particles, we have thatϕ2 = 0 and thus8N= 0. In so
far as statistical thermodynamics is concerned, this is the trivial case of an ideal gas.
However, this is also a nontrivial model of a heterogeneous material because the
lack of spatial correlation implies that the particles may overlap to form complex
clusters, as shown in Figure 5. At low-sphere densities, the particle phase is a
dispersed, disconnected phase, but above a critical value, called the percolation
threshold, the particle phase becomes connected. Ford= 2 andd= 3, this threshold
occurs at a sphere volume fraction of approximately 0.68 and 0.29, respectively
(1). We refer to this model as overlapping spheres. Interpenetrable-sphere systems
in general are useful models of consolidated media, such as sandstones and other
rocks, and sintered materials.

In the hard-sphere pair potential, the particles do not interact for interparticle
separation distances greater than the sphere diameterD but experience an infinite
repulsive force for distances less than or equal toD, i.e.,

ϕ2(r ) =
{

+∞, r ≤ D,

0, r > D.
25.

Hard-sphere systems have received considerable attention because they serve as a
useful model for a number of physical systems, such as simple liquids (35, 55, 56),
glasses (38), colloidal dispersions (57), fiber-reinforced composites (58), partic-
ulate composites (59), and granular media (60). The hard-sphere model approxi-
mates well the structure of dense-particle systems with more complicated potentials
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Figure 6 Snapshot of an equilibrium system of hard particles (left) and a realization
of hard particles assembled according to an RSA process (right). In the former, the
particles are free to sample the configuration space subject to impenetrability of the
other particles, but in the latter the particles are frozen at their initial positions.

(e.g., the Lennard–Jones model discussed below) because short-range repulsion
between the particles is the primary factor in determining the spatial arrangement
of the particles.

For hard-sphere systems, the impenetrability constraint does not uniquely spec-
ify the statistical ensemble. The hard-sphere system can be in thermal equilibrium
or in one of the infinitely many nonequilibrium states, such as the random sequen-
tial addition (or adsorption) (RSA) process (see Figure 6). The latter is produced
by randomly, irreversibly, and sequentially placing nonoverlapping objects into a
volume (61). For identicald-dimensional RSA spheres, the filling process termi-
nates at the saturation limit, which is substantially lower than the maximum density
for random hard spheres in equilibrium. Denoting the maximum sphere volume
fraction byφmax

2 , it turns out that for identical hard spheres in an RSA process in the
thermodynamic limit,φmax

2 ≈ 0.75, 0.55, and 0.38 ford= 1, 2, and 3, respectively
(62–64). In contrast, for identical disordered hard spheres in equilibrium,φmax

2 is
exactly unity ford= 1, and ford= 2 and 3,φmax

2 ≈ 0.83 and 0.64, respectively (1).
Unlike what we see in the case of overlapping spheres, then-particle probability
density functionρn for general ensembles of hard spheres is nontrivial.

Interpenetrable-sphere models enable one to define systems that are intermedi-
ate between overlapping spheres and impenetrable spheres, thereby allowing one
to vary degree of connectivity of the particle phase. A popular interpenetrable-
sphere model is the penetrable-concentric-shell model or, more colloquially, the
cherry-pit model. The pair potential is given by

ϕ2(r ) =
{

+∞, r ≤ λD,

0, r > λD.
26.

When 0≤ λ ≤ 1, each sphere of diameterD may be thought of as being composed
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of an impenetrable core of diameterλD encompassed by a perfectly penetrable
concentric shell of thickness (1− λ)D/2. By varying the impenetrability parameter
λ between 0 and 1, one can continuously pass between fully penetrable (overlap-
ping) spheres and totally impenetrable spheres, respectively.

Well-known models that incorporate attractive interactions include the square-
well potential and the Lennard-Jones potential (55). A special limit of the square-
well potential that reduces attractive interactions to a delta function at contact
is referred to as the sticky hard-sphere potential proposed by Baxter (65). This
potential provides a simple means of modeling aggregation processes in particle
systems.

Illustrative Calculations

Given the series representation of the canonicaln-point correlation functionHn, one
can compute (using statistical-mechanical techniques) specific statistical descrip-
tors as special limiting cases as outlined above. Here we report a few illustrative
calculations of correlation functions. The reader is referred to Torquato (1) for
computational details.

Figure 7 shows the matrix two-point probability functionS2 for three-dimensio-
nal overlapping spheres (phase 2) at a sphere volume fractionφ2= 0.5. Included in

Figure 7 The matrix two-point probability functionS2(r) versus the dimen-
sionless distancer/D for two models of isotropic distributions of spheres of
diameterD = 2Rat a sphere volume fractionφ2= 0.5 (66, 67).
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Figure 8 The pore-size density functionP(δ) versus the dimensionless dis-
tanceδ/D for equilibrium spheres of radiusR= D/2 in the cherry-pit model
for three different values of the impenetrability parameterλ (68).

the figure is the corresponding plot ofS2 for equilibrium hard (totally impenetrable)
spheres, which, unlike overlapping spheres, exhibit short-range order.

Figure 8 shows the pore-size density functionP(δ) for in the cherry-pit model
for three different values of the impenetrability parameterλ: λ = 0 (overlapping
spheres),λ = 0.8, andλ = 1 (totally impenetrable spheres). Consistent with the
fact that there are greater spatial fluctuations in the pore size asλ is made smaller,
we see that the “tail” ofP(δ) increases with decreasingλ.

Figure 9 shows the two-point cluster functionC2 for sticky hard spheres. The
key point is thatC2 becomes longer ranged as the percolation thresholdφ2c= 0.297
is approached from below.

MICROSTRUCTURE CHARACTERIZATION
FROM TWO-DIMENSIONAL AND
THREE-DIMENSIONAL IMAGES

The measurement of correlation functions from images of real materials has
evolved considerably since the work of Corson (69, 70), who used an unauto-
mated painstaking procedure to compute three-point functions from photographs
of cross-sections of heterogenous materials. There now exist a variety of methods to
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Figure 9 Two-point cluster functionC2(r) versus the dimensionless distancer/D for
sticky hard spheres of diameterD at several values of the sphere volume fractionφ2.
Hereτ = 0.35 is the dimensionless stickiness parameter andφ2c= 0.297.

obtain two- and three-dimensional images of heterogeneous materials, including
transmission electron microscopy (71), scanning tunneling electron microscopy
(72), synchrotron-based tomography (73), magnetic resonance imaging (74), and
confocal microscopy (75). Although electron-microscopic techniques only provide
two-dimensional images, X-ray–tomographic, magnetic-resonance-imaging, and
confocal-microscopic techniques provide full three-dimensional images of mate-
rials. All of these imaging methods are nonintrusive, leaving the sample intact and
unaltered.

Figure 10 shows two different representations of the same three-dimensional
digitized data set (128× 128 × 128 pixels) of a portion of a Fontainebleau sand-
stone (76). Each pixel is a cubic region of size 7.5× 7.5 × 7.5 µm3. The full
data set (512× 512 × 512 pixels) was obtained via X-ray microtomography (3).
The figure depicts the complex three-dimensional pore space as well as a three-
dimensional perspective of corresponding surface cuts through the sample.

Digitized representations of the samples are utilized to analyze images on the
computer. One must analyze two- or three-dimensional arrays of gray values span-
ning the finite system, typically subjected to periodic boundary conditions. For a
two-phase material, the gray-scale image can be reduced to a binary image by op-
erations such as thresholding, in which gray values lighter than a chosen threshold
are set to white and the others set to black. The image is thus reduced to an array of
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Figure 10 (Left) The pore space of a 128× 128 × 128 pixel subregion of a
Fontainebleau sandstone obtained via X-ray microtomography (each pixel has vol-
ume 7.5× 7.5 × 7.5 µm3) (76). The pore space is white and opaque, and the grain
phase is black and transparent. (Right) Three-dimensional perspective of surface cuts
of the same subregion.
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bits or pixels (voxels). The same procedure can be applied to multiphase media. In
practice, one often has only a single digitized image to analyze (not an ensemble
of them). In such instances, the system size must be sufficiently larger than the
correlation length of interest in order for meaningful statistics to be extracted.

The two-point probability functionS2(r) can be computed using a sampling
template (77). Figure 11 shows this function for the aforementioned sandstone. For

Figure 11 Some statistical descriptors of the for Fontainebleau sandstone shown in
Figure 10. (Left) Two-point probability functionS2(r) for the void phase. (Right) Pore-
size density functionP(δ) and complementary cumulative distribution functionF(δ).
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statistically isotropic samples, both the two- and three-point probability functions,
S2 andS3, respectively can be computed from a planar section through the material.
For an isotropic digitized system, there is a superior way to computeS2(r) (78),
namely, to sample in only a few select directions. Another way to computeS2(r) is
to utilize its spectral representation and efficient fast Fourier transform techniques
(79). Berryman has used image processing techniques to obtainS2 of synthetic
and real porous materials (80, 81). Specifically, he measuredS2 and estimatedsof
glass-bead samples and of sandstones. Moreover, he has devised an efficient means
of obtaining and visualizing the three-point probability functionS3 (82). Similar
techniques have been used to calculate lineal measures, such as the lineal-path
functionL(z) and chord-length density functionp(z) (3).

Unlike many of the previous quantities, the pore-size density functionP(δ) is
an intrinsically three-dimensional microstructural function and hence cannot be
obtained from a two-dimensional slice. Therefore, it must be determined from a full
three-dimensional digitized sample. The pore-size density function is obtained by
binning the sphere radii found in the second step and dividing by the total number
of radii. Figure 11 shows bothP(δ) andF(δ) for the void phase of the Fontainebleau
sandstone (3).

The two-point cluster functionC2(r) is computed in the same manner asS2(r),
except that one must determine when the end points of the line segment of length
r fall in the same cluster of phase 1 (phase 2). First, one must establish a criterion
that defines when two pixels are connected (e.g., a nearest-neighbor connectivity
rule), and then cluster identification algorithms (83, 84) can be used. Armed with
such information, one could also compute other cluster statistics (1).

SCALAR ORDER METRICS AND PARTICLE PACKINGS

There is a well-developed theoretical and experimental framework available for
characterizing the structure of regular crystalline solids (85). By contrast, the quan-
tification of the structure of amorphous materials is much less well understood,
despite the fact that many natural and synthetic materials exhibit disorder on a vari-
ety of different length scales. Examples range from liquids, gases, and amorphous
solids to porous rocks, dispersions, soil, and biological materials such as tissue.
In such systems, it is natural to ask the following question: To what extent can
we quantify the degree of order (or disorder) present in the sample? Clearly, the
aforementioned statistical correlation functions contain the information required
to answer this question. However, for pragmatic purposes, it is desirable to develop
sensitive scalar measures of order that we refer to as order metrics.

Central to the notion of characterizing disorder is understanding the relative
placement of different materials in some relevant order parameter space. At one
extreme, a truly random system should exhibit no positional, orientational, or con-
formational correlations; i.e., its structure is that of an ideal gas. At the opposite
extreme, a regular crystalline array is a manifestation of perfect order. Between
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the ideal gas and the perfect crystal lie imperfect gases, liquids (both stable and
metastable), glasses, defective crystals, and structures that evolve from nonequi-
librium processes, such as irreversible adsorption onto a surface. All such systems
exhibit a certain degree of order (or disorder), and the differences between them
can be quite subtle. For instance, the classic problem of distinguishing between
the structures of dense glasses and polycrystalline materials remains a significant
challenge to materials scientists and engineers (38, 86).

Maximally Random Jammed State

Bernal (87) has remarked that “heaps (random close-packed arrangements of par-
ticles) were the first things that were ever measured in the form of basketfuls of
grain for the purpose of trading or of collection of taxes.” Random packings of
hard spheres serve as the starting point to understand the structure of living cells,
liquids, granular media, and glasses, to mention but a few examples. Despite the
apparent simplicity of the hard-sphere model, there exist subtle fundamental con-
cepts concerning its structure that remain to be elucidated. One of these came to
light explicitly in a recent paper by Torquato et al. (4). Those authors showed that
the venerable concept of the random close packed state (RCP) is mathematically
ill-defined. This explains why, to this day, there is no rigorous prediction of the RCP
density, although such attempts have been made (88, 89). The old idea of the RCP
state was based upon the notion that there should be a randomly arranged analog
of the crystalline closed-packed state. Accordingly, the RCP density was thought
to be the highest density that a random packing of particles could attain. The term
close packed implies maximal coordination throughout the system, i.e., an ordered
lattice, which clearly is in conflict with the notion of randomness. The exact propor-
tion of these two competing effects is not well-defined, and therein lies the problem.
Finally, the notion of the randomness was never quantified, nor even clearly defined.

To quantify the order (or disorder) in jammed sphere systems, Torquato et al. (4)
chose to examine two simple but fundamentally important measures of order: bond-
orientational order and translational order. The first is obtainable in part from the
metricQ6, and the second is obtainable in part from the radial distribution function
g2(r). To each nearest-neighbor bond emanating from a sphere ford= 3, one can
associate the spherical harmonicsYlm(θ , ϕ) using the bond angles as arguments.
ThenQ6 is defined by (90)

Q6 ≡
(

4π

13

6∑
m=−6

∣∣Y6m

∣∣2)1/2

, 27.

whereY6m denotes an average over all bonds. For a completely disordered system
in the infinite-volume limit,Q6 equals zero, whereasQ6 attains its maximum
value for space-filling structures (QFCC

6 ≈ 0.575) in the perfect FCC crystal. Thus,
Q6 provides a global measure of FCC crystallite formation in the system. For
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convenience, we normalize the orientational order metric by its value in the perfect
FCC crystal, i.e.,Q ≡ Q6/QFCC

6 .
Scalar measures of translational order have not been well studied. Torquato

et al. (4) have introduced a simple translational order metricT that measures the
degree of spatial ordering relative to the perfect FCC lattice at the same volume
fraction. Specifically,

T =
∣∣∣∣∣

∑NC
i =1

(
ni − nideal

i

)∑NC
i =1

(
nFCC

i − nideal
i

) ∣∣∣∣∣ , 28.

whereni, for the system of interest, denotes the average occupation number for the
shell of widthaδ centered at a distance from a reference sphere that equals theith
nearest-neighbor separation for the open FCC lattice at that density. Moreover,a is
the first nearest-neighbor distance for that FCC lattice, andNC is the total number
of shells. Similarly,ni

idealandni
FCCare the corresponding shell occupation numbers

for an ideal gas (spatially uncorrelated spheres) and the open FCC lattice. Observe
thatT= 0 for an ideal gas (perfect randomness), andT= 1 for perfect FCC spatial
ordering.

Both Q andT are crystal-dependent measures in that they measure order with
respect to the FCC lattice. Other reasonable choices for order metrics have been
tested, including crystal-independent ones, such as an information-theoretic en-
tropy and another translational-order metric. Importantly, the evaluations of these
order metrics resulted in the same qualitative behavior as that given byQ andT
for the configurations discussed immediately below. All of these results, as well
as the utility of other, more sophisticated order metrics for many-particle systems
in general, have been described elsewhere (91–93).

To assess the validity of the RCP state, Torquato et al. (4) carried out molecular
dynamics simulations using systems of 500 identical hard spheres with periodic
boundary conditions. Starting from an equilibrium liquid configuration at a packing
fractionη ≡ φ2 equal to 0.3, they compressed the system to a jammed state by
the well-known method of Lubachevsky & Stillinger (94), which allows the dia-
meter of the particles to grow linearly in time with a dimensionless rate0. The
jammed state occurs when the diameters can no longer increase in time, the sphere
collision rate diverges, and no further compression can be achieved after relaxing
the configuration at the jammed packing fraction. Figure 12 shows that the packing
fraction of the final jammed states is inversely proportional to the compression
rate0. A linear extrapolation of the data to the infinite compression rate limit
yieldsη ≈ 0.64, which is close to the supposed RCP value reported by Scott &
Kilgour.

Figure 12 also shows their results for the aforementioned jammed structures
in the Q-T plane. The key point is that the degree of order increases monoton-
ically with the jammed packing fraction. These results demonstrate that the no-
tion of RCP as the highest possible density that a random sphere packing can
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Figure 12 (Left) The reciprocal compression rate0−1 versus the packing fractionη
of the final jammed state of hard spheres using the molecular dynamics compression
protocol of Lubachevsky & Stillinger (94). (Right) TheQ-T plane for the hard-sphere
system, whereT andQ are translational and orientational order metrics, respectively.
Shown are the average values for the jammed states, as well as states along the equi-
librium liquid (dotted) and crystal (dashed) branches.
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attain is ill-defined because one can achieve packings with arbitrarily small in-
creases in packing fraction at the expense of small increases in order. Note that
the MRJ packing fractionηM is approximately equal to 0.64 for 500-sphere sys-
tems using the Lubachevsky–Stillinger protocol. However, this cannot be con-
sidered a true estimate ofηM because other protocols may indeed find jammed
states with a lower degree of order as measured byQ or some other order
metric.

To summarize, the notion of the RCP state is not well-defined mathematically.
To replace this idea, a new concept has been introduced: the maximally random
jammed state, which can be defined precisely once an order metricψ is cho-
sen. This lays the mathematical groundwork for studying randomness in packings
of particles and initiates the search for the MRJ state in a quantitative way not
possible before. Nevertheless, significant challenges remain. First, new and effi-
cient protocols (both experimental and computational) that generate jammed states
must be developed. Second, since the characterization of randomness in sphere
packings is in its infancy, the systematic investigation of better order metrics is
crucial. In a recent study (93), a comprehensive set of candidate jammed states
of identical hard spheres (generated via computer simulations) and a variety of
different order metrics have been used to estimate the MRJ packing fraction to
beηM = 0.637 ± 0.0015. The determination of the maximally random jammed
state for systems of spheres with a polydispersivity in size and for systems of
ellipsoids are intriguing open problems, not to mention the determination of MRJ
states for such packings.

Molecular Systems

The quantification of order in terms of scalars enables one to place the equilibrium
and nonequilibrium (or history-dependent) states of molecular systems in order
metric space. This has recently led to valuable insights into the molecular nature
of systems of atoms with spherically symmetric potentials (91) as well as systems
with orientation-dependent interactions, such as water (95). Nonetheless, the use of
order metrics to characterize materials of the latter category (those with directional
bonding) is a fertile area for research. For example, network glasses (see Figure 13)
have not been analyzed in this fashion. One could imagine the development of order
metrics for network glasses that involve ring statistics, the pair correlation function,
and bond-angle distributions (38).

RECONSTRUCTION TECHNIQUES

The reconstruction of realizations of disordered materials from a knowledge of
limited microstructural information (lower-order correlation functions) is an in-
triguing inverse problem. Clearly, one can never reconstruct the original material
perfectly, i.e., such reconstructions are nonunique. Thus, the objective here is not
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Figure 13 A schematic representation of a network glass.

the same as that of data decompression algorithms that efficiently restore complete
information, such as the gray-scale of every pixel in an image.

The generation of realizations of random media with specified lower-order
correlation functions can

1. shed light on the nature of the information contained in the various correlation
functions that are employed;

2. ascertain whether the standard two-point probability functionS2, accessible
experimentally via scattering, can accurately reproduce the material and, if
not, what additional information is required to do so;

3. attempt to reconstruct the full three-dimensional structure of the heteroge-
neous material from lower-order information extracted from two-dimensional
plane cuts through the material: a problem of great practical value, since one
often has only two-dimensional information, such as a micrograph or planar
image;

4. identify the class of microstructures that have exactly the same lower-order
correlation functions but widely different effective properties;

5. probe the interesting issue of nonuniqueness of the generated realizations;
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6. construct structures that correspond to specified correlation functions and
categorize classes of random media; and

7. provide guidance in ascertaining the mathematical properties that physically
realizable correlation functions must possess (96).

The first reconstruction procedures were based on thresholding Gaussian ran-
dom fields. The theory of the statistical topography of Gaussian random fields
was originally established in the work of Rice (97). One approach to reconstruct-
ing random media originated with Joshi (98) and was extended by Quibler (99)
and Adler (100). Another related approach originated with Cahn (101) and was
later extended (102–104). Both approaches are currently limited to the two-point
probability functionS2. In addition, such methods are not suitable for extension
to non-Gaussian statistics, and hence are model dependent, i.e., depend on the
underlying Gaussian statistics.

Optimization Problem

It has recently been suggested that reconstruction problems can pose as opti-
mization problems (78, 105). A set of target correlation functions are prescribed
based upon experiments, theoretical models or some ansatz. Starting from some
initial realization of the random medium, the method proceeds to find a realization
by evolving the microstructure such that the calculated correlation functions best
match the target functions. This is achieved by minimizing an error based upon
the distance between the target and calculated correlation functions. The medium
can be an amorphous system of atoms (105) or, more generally, a digitized image
(78).

For simplicity, we focus on digitized media and consider only a single two-
point correlation functionf2(r) for statistically isotropic two-phase media. (The
generalization to multiple correlation functions is straightforward (78, 105).) It
is desired to generate realizations of two-phase isotropic media that have a target
two-point correlation functionf2(r) associated with phasei, wherer is the distance
between the two points. Let̂f 2(r ) be the corresponding function of the recons-
tructed digitized system (with periodic boundary conditions) at some time step.
It is this system that we attempt to evolve towardf2(r) from an initial guess
of the system realization. Again, for simplicity, we define a fictitious energy
(or norm-2 error)E at any particular stage as

E =
∑

r

[
f̂ 2(r ) − f2(r )

]2
, 29.

where the sum is over all discrete values ofr. Potential candidates for the corre-
lation functions (1) include (a) two-point probability functionS(i )

2 (r), lineal path
functionL(i)(z), pore-size density functionP(i)(δ), and (b) two-point cluster function
C(i )

2 (r).
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Solution of Optimization Problem

The aforementioned optimization problem is very difficult to solve due to the
complicated nature of the objective function, which involves complex microstruc-
tural information in the form of correlation functions of the material, and due to
the combinatorial nature of the feasible set. Standard mathematical programming
techniques are therefore most likely inefficient and likely to get trapped in local
minima. In fact, the complexity and generality of the reconstruction problem make
it difficult to design any deterministic algorithms of wide applicability (for exam-
ple, see (106)). We therefore resort to heuristic techniques for global optimization,
in particular, the simulated annealing method.

Simulated annealing has been applied successfully to many difficult combina-
torial problems, including NP-hard ones such as the “traveling salesman” problem.
The utility of the simulated annealing method stems from its simplicity in that it
only requires “black-box” cost function evaluations, and in its physically designed
ability to escape local minima via accepting locally unfavorable configurations.
In its simplest form, the states of two selected pixels of different phases are inter-
changed, automatically preserving the volume fraction of both phases. The change
in the error (or energy)1E = E′ − E between the two successive states is com-
puted. This phase interchange is then accepted with some probabilityp(1E) that
depends on1E. One reasonable choice is the Metropolis acceptance rule, i.e.,

p(1E) =
{

1, 1E ≤ 0,

exp(−1E/T), 1E > 0,
30.

whereT is a fictitious temperature. The concept of finding the lowest error (lowest
energy) state by simulated annealing is based on a well-known physical fact: If a
system is heated to a high temperatureT and then slowly cooled down to absolute
zero, the system equilibrates to its ground state.

There are various ways of appreciably reducing computational time. For ex-
ample, computational cost can be significantly lowered by using other stochastic
optimization schemes such as the Great Deluge algorithm, which can be adjusted
to accept only downhill energy changes, and the threshold acceptance algorithm
(79). Further savings can be attained by developing strategies that exploit the fact
that pixel interchanges are local and thus one can reuse the correlation functions
measured in the previous time step instead of recomputing them fully at any step
(78). Additional cost savings have been achieved by interchanging pixels only
at the two-phase interface (107). The reader is referred to the aforementioned
references for additional details.

Illustrative Examples

Lower-order correlation functions generally do not contain complete informa-
tion and thus cannot be expected to yield perfect reconstructions. Of course, the
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judicious use of combinations of lower-order correlation functions can yield more
accurate reconstructions than any single function alone. Yeong & Torquato (76,
78) clearly showed that the two-point functionS2 alone is not sufficient to accu-
rately reconstruct random media. By also incorporating the lineal-path function
L, they were able to obtain better reconstructions. They studied one-, two-, and
three-dimensional digitized isotropic media. Each simulation began with an initial
configuration of pixels (white for phase 1 and black for phase 2) in the random
checkerboard arrangement at a prescribed volume fraction.

A two-dimensional example illustrating the insufficiency ofS2 in reconstruc-
tions is a target system of overlapping disks at a disk volume fraction ofφ2= 0.5;
see Figure 14a. Reconstructions that accurately matchS2 alone,L alone, and both
S2 andL are shown in Figure 14. TheS2-reconstruction is not very accurate; the

Figure 14 (a) Target system: a realization of random overlapping disks. System
size = 400 × 400 pixels, disk diameter= 31 pixels, and volume fractionφ2 = 0.5.
(b) S2-reconstruction. (c) CorrespondingL-reconstruction. (d ) Corresponding hybrid
(S2 + L)-reconstruction.
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cluster sizes are too large, and the system actually percolates (note that overlapping
disks percolate at a disk area fraction ofφ2 ≈ 0.68 (1). TheL-reconstruction does a
better job than theS2-reconstruction in capturing the clustering behavior. However,
the hybrid (S2 + L)-reconstruction is the best.

The optimization method can be used in the construction mode to find the spe-
cific structures that realize a specified set of correlation functions. An interesting
question in this regard is the following: Is any correlation function physically re-
alizable or must the function satisfy certain conditions? It turns out that not all
correlation functions are physically realizable. For example, what are the exis-
tence conditions for a valid (i.e., physically realizable) autocovariance function
χ (r ) ≡ S(i )

2 (r ) − φ2
i for statistically homogeneous two-phase media? There are

certain nonnegativity conditions involving the spectral representation of the auto-
covarianceχ (r) that must be obeyed (96). However, it is not well known that these
nonnegativity conditions are necessary but not sufficient conditions that a valid
autocovarianceχ (r) of a statistically homogeneous two-phase random medium
(i.e., a binary stochastic spatial process) must meet. Some of these binary condi-
tions are described by Torquato (1), but the complete characterization is a very
difficult problem. Suffice it to say that the algorithm in the construction mode can
be used to provide guidance on the development of the mathematical conditions
that a valid autocovarianceχ (r) must obey.

Cule & Torquato (79) considered the construction of realizations having the
following autocovariance function:

S2(r ) − φ2
1

φ1φ2
= e−r/a sin (qr)

qr
, 31.

whereq= 2π/b and the positive parameterb is a characteristic length that con-
trols oscillations in the term sin(qr)/(qr), which also decays with increasingr. This
function possesses phase-inversion symmetry and exhibits a considerable degree
of short-range order; it generalizes the purely exponentially decaying function
studied by Debye and coworkers (108). This function satisfies the nonnegativity
condition on the spectral function but may not satisfy the binary conditions, de-
pending on the values ofa,b, andφ1 (96). Two structures possessing the correlation
function (31) are shown in Figure 15 forφ2= 0.2 and 0.5, in whicha= 32 pixels
andb= 8 pixels. For these sets of parameters, all of the aforementioned necessary
conditions on the function are met. Atφ2 = 0.2, the system resembles a dilute
particle suspension with particle diameters of orderb. At φ2 = 0.5, the resulting
pattern is labyrinthine such that the characteristic sizes of the “patches” and “walls”
are of ordera andb, respectively.S2(r) was sampled in all directions during the
annealing process. In all of the previous two-dimensional examples, however, both
S2 andL were sampled along the two principal directions in order to save computa-
tional time. This time-saving step should be implemented only for isotropic media,
provided that there is no appreciable short-range order; otherwise, it leads to un-
wanted anisotropy (79, 109). However, this artificial anisotropy can be significantly
reduced by optimizing along four selected directions on a square lattice (110).
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Figure 15 Structures corresponding to the target correlation function given
by (31) forφ2 = 0.2 and 0.5. Herea = 32 pixels andb = 8 pixels.

To what extent can information extracted from two-dimensional cuts through a
three-dimensional isotropic medium, such asS2 andL, be employed to reproduce
intrinsic three-dimensional information, such as connectedness? This question
was studied in the aforementioned Fontainebleau sandstone for which we know
the full three-dimensional structure via X-ray microtomography (76). The three-
dimensional reconstruction that results by using a single slice of the sample and
matching bothS2andL is shown in Figure 16. The reconstructions accurately repro-
duce certain three-dimensional properties of the pore space, such as the pore-size
functions, the mean survival time of a Brownian particle, and the fluid permeabil-
ity. The degree of connectedness of the pore space also compares remarkably well
with the actual sandstone, although this is not always the case (111).

CONCLUSIONS

A macroscopic or effective property of a material is a function of the relevant
local fields weighted with certain correlation functions that statistically charac-
terize the structure. Generally, the type of correlation function involved depends
on the specific physical problem that one studies. However, for certain classes of
materials, it has been shown that all of the apparently different types of correla-
tion functions can be obtained from a canonical functionHn and, consequently,
can be shown to be related to one another. Such a unified approach to studying
macroscopic properties of disordered materials is both natural and very powerful.
Nonetheless, many challenges remain. For example, the extension of these ideas to
characterize molecular systems with directional bonding has yet to be developed.
A systematic means of incorporating into structure/property relations important
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Figure 16 Hybrid reconstruction of the sandstone shown in Figure 10 using both
S2 and L obtained from a single “slice.” System size is 128× 128 × 128 pixels.
(Top) Pore space is white and opaque, and the grain phase is black and transparent.
(Bottom) Three-dimensional perspective of the surface cuts.
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topological information, such as connectedness, has not been accomplished to
date.

The characterization of disordered materials via order metrics is in its infancy.
The use of scalar order metrics to characterize the degree of randomness in ma-
terials of general structure and composition has heretofore not been investigated.
The appropriate order metrics will depend on the types of material structures of
interest. The successful quantification of structures in order-metric space may po-
tentially be employed to categorize classes of disordered materials. Moreover,
such analyses will enable one to place the equilibrium and nonequilibrium (or
history-dependent) states of molecular systems in order-metric space.

The stochastic optimization technique is a promising new way to reconstruct
or construct disordered materials. However, its full potential and limitations have
yet to be fully explored. Many of the fascinating questions and issues identified
above remain open.

ACKNOWLEDGMENTS

This work has been supported by the Office of Basic Energy Sciences at the U.S.
Department of Energy and the Petroleum Research Fund administered by the
American Chemical Society.

The Annual Review of Materials Researchis online at
http://matsci.annualreviews.org

LITERATURE CITED

1. Torquato S, 2002.Random Heterogeneous
Materials: Microstructure and Macro-
scopic Properties. New York: Springer-
Verlag. 701 pp.

2. Torquato S, Yeong CLY, Rintoul MD, Mil-
ius D, Aksay IA. 1999.J. Am. Ceram. Soc.
82:1263–68

3. Coker DA, Torquato S, Dunsmuir JH.
1996. J. Geophys. Res.101:17497–
506

4. Torquato S, Truskett TM, Debenedetti PG.
2000.Phys. Rev. Lett.84:2064–67

5. Torquato S, Stell G. 1982.J. Chem. Phys.
77:2071–77

6. Brown WF. 1955.J. Chem. Phys.23:
1514–17

7. Beran MJ. 1968.Statistical Continuum
Theories. New York: Wiley. 424 pp.

8. Milton GW. 1981.J. Appl. Phys.52:5294–
304

9. Phan-Thien N, Milton GW. 1982.Proc. R.
Soc. London Ser. A380:333–48

10. Torquato S. 1985.J. Appl. Phys.58:3790–
97

11. Willis JR. 1977.J. Mech. Phys. Solids25:
185–202

12. Milton GW. 1982.J. Mech. Phys. Solids
30:177–91

13. Milton GW, Phan-Thien N. 1982.Proc. R.
Soc. London Ser. A380:305–31

14. Torquato S, 1997.Phys. Rev. Lett.79:681–
84

15. Torquato S, Rubinstein J. 1989.J. Chem.
Phys.90:1644–47

16. Prager S. 1961.Phys. Fluids 4:1477–
82

17. Berryman JG, Milton GW. 1985.J. Chem.
Phys.83:754–60

18. Rubinstein J, Torquato S. 1989.J. Fluid
Mech.206:25–46

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
00

2.
32

:7
7-

11
1.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 P
ri

nc
et

on
 U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

09
/1

7/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



7 Jun 2002 8:2 AR AR162-04.tex AR162-04.SGM LaTeX2e(2002/01/18)P1: IKH

DESCRIPTION OF MICROSTRUCTURES 109

19. Debye P, Bueche AM. 1949.J. Appl.
Phys.20:518–25

20. Doi M. 1976.J. Phys. Soc. Jpn.40:567–
72

21. Rubinstein J, Torquato S. 1988.J. Chem.
Phys.88:6372–80

22. Lu BL, Torquato S. 1992.Phys. Rev. A
45:922–29

23. Matheron G. 1975.Random Sets and In-
tegral Geometry. New York: Wiley

24. Torquato S, Lu B. 1993.Phys. Rev. E47:
2950–53

25. Ho FG, Strieder W. 1979.J. Chem. Phys.
70:5635–39

26. Tokunaga TK. 1985.J. Chem. Phys.82:
5298–99

27. Tassopoulos M, Rosner DE. 1992.Chem.
Eng. Sci.47:421–43

28. Thompson AH, Katz AJ, Krohn CE. 1987.
Adv. Phys.36:625–94

29. Underwood EE. 1970.Quantitative Stere-
ology. Reading, MA: Addison-Wesley.
274 pp.

30. Prager S. 1963.Chem. Eng. Sci.18:227–
31

31. Torquato S, Beasley JD, Chiew YC. 1988.
J. Chem. Phys.88:6540–46

32. Keller JB, Rubenfeld L, Molyneux J.
1967.J. Fluid Mech.30:97–125

33. Chandrasekhar S. 1943.Rev. Mod. Phys.
15:1–89

34. McNally JG, Cox EC. 1989.Development
105:323–33

35. Reiss H, Frisch HL, Lebowitz JL. 1959.J.
Chem. Phys.31:369–80

36. Bernal JD. 1964.Proc. R. Soc. London Ser.
A 280:299–322

37. Finney JL. 1970.Proc. R. Soc. London Ser.
A 319:479–93

38. Zallen R. 1983.The Physics of Amorphous
Solids. New York: Wiley. 304 pp.

39. Torquato S, Lu B, Rubinstein J. 1990.
Phys. Rev. A41:2059–75

40. Hertz P. 1909.Math. Ann.67:387–98
41. Hefland E, Reiss H, Frisch HL, Lebowitz

JL. 1960.J. Chem. Phys.33:1379–85
42. Torquato S. 1986.J. Chem. Phys.84:

6345–59

43. Quintanilla J, Torquato S. 1995.J. Appl.
Phys.77:4361–72

44. Torquato S, Beasley JD. 1987.Phys. Flu-
ids30:633–41

45. Torquato S, Rintoul MD. 1995.Phys. Rev.
Lett. 75:4067–70. Erratum. 1996.Phys.
Rev. Lett.76:3241

46. Torquato S. 1986.J. Stat. Phys.45:843–
73

47. Boltzmann L. 1898.Lectures on Gas The-
ory. Transl. SG Brush, 1964. Berkeley,
CA: Univ. Calif. Press

48. Stell G. 1966. Boltzmann’s method of
evaluating and using molecular distribu-
tion functions.Tech. Rep. Brooklyn Poly-
technic Inst.

49. Torquato S, Stell G. 1983.J. Chem. Phys.
78:3262–72

50. Stell G. 1985. Mayer-Montroll equations
(and some variants) through history for
fun and profit. InThe Wonderful World of
Stochastics: A Tribute to Elliott W. Mon-
troll , ed. MF Shlesinger, GH Weiss. New
York: Amsterdam

51. Lu BL, Torquato S. 1991.Phys. Rev. A
43:2078–80

52. Torquato S, Sen AK. 1990.J. Appl. Phys.
67:1145–55

53. Quintanilla J, Torquato S. 1996.Phys. Rev.
E 53:4368–78

54. Lu BL, Torquato S. 1990.Phys. Rev. B
42:4453–59

55. Hansen JP, McDonald IR. 1986.Theory
of Simple Liquids. New York: Academic.
556 pp.

56. Rintoul MD, Torquato S. 1996.Phys. Rev.
Lett.77:4198–201

57. Russel WB, Saville DA, Schowalter WR.
1989.Colloidal Dispersions. Cambridge,
UK: Cambridge Univ. Press

58. Torquato S, Lado F. 1988.Proc. R. Soc.
London Ser. A417:59–80

59. Torquato S, Lado F. 1986.Phys. Rev. B
33:6428–34

60. Metcalfe G, Shinbrot T, McCarthy JJ,
Ottino JM. 1995.Nature374:39–41

61. Widom B. 1966.J. Chem. Phys.44:3888–
94

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
00

2.
32

:7
7-

11
1.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 P
ri

nc
et

on
 U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

09
/1

7/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



7 Jun 2002 8:2 AR AR162-04.tex AR162-04.SGM LaTeX2e(2002/01/18)P1: IKH

110 TORQUATO
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