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Abstract

The competition between local and global driving forces is signi,cant in a wide variety of
naturally occurring branched networks. We have investigated the impact of a global minimization
criterion versus a local one on the structure of spanning trees. To do so, we consider two
spanning tree structures—the generalized minimal spanning tree (GMST) de,ned by Dror et al.
(Eur. J. Oper. Res. 120 (2000) 583) and an analogous structure based on the invasion percolation
network, which we term the generalized invasive spanning tree (GIST). In general, these two
structures represent extremes of global and local optimality, respectively. Structural characteristics
are compared between the GMST and GIST for a ,xed lattice. In addition, we demonstrate a
method for creating a series of structures which enable one to span the range between these two
extremes. Two structural characterizations, the occupied edge density (i.e., the fraction of edges
in the graph that are included in the tree) and the tortuosity of the arcs in the trees, are shown
to correlate well with the degree to which an intermediate structure resembles the GMST or
GIST. Both characterizations are straightforward to determine from an image and are potentially
useful tools in the analysis of the formation of network structures. c© 2001 Published by Elsevier
Science B.V.

1. Introduction

The purpose of the present research is to detail a new method by which informa-
tion extracted from a single, ,xed network structure can be utilized to understand the
physical processes which guided the formation of that structure. There are a variety
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of structures in nature and biology whose temporal development is diCcult to observe.
Accordingly, the principal data from which to understand the physics that drove the
formation of these structures is the ,nal structure itself.
An excellent example of the use of a ,nal network structure to study the underlying

physics is the work of Rodriguez–Iturbe and Rinaldo on river basins [2]. Detailed
investigations of the structure of river basins combined with a variety of simulation
and theoretical analysis support the conclusion that minimal energy dissipation is the
driving force (both global and local) in the structure of river basins [3–5]. Similarly,
natural complex branching patterns are observed in systems as diverse as retinal neurons
[6], dielectric breakdown [7] and human vasculature [8]. Another recent example is the
network of invading cells in malignant brain tumors observed in vitro [9].
All of these problems can be mapped to the language of spanning trees. For example,

in the case of invading tumor cells, the tumor cells form branched chains, i.e., tree
structures. The brain oGers these invading cells a variety of pathways they can invade
along (such as blood vessel and white ,ber tracts) which may be interpreted as the
edges of an underlying graph, with the various resistances along these pathways playing
the role of edge weights. In many of these cases, the underlying physics behind the
formation of the observed patterns are only beginning to be understood. The work
presented here oGers a useful tool in studying the driving forces in the formation of
these structures.
Here we consider the class of structures called spanning trees. Formally, spanning

trees are de,ned on graphs and, in the most basic de,nition, are a loopless, connected
set of edges that connect all of the nodes in the underlying graph (see Fig. 1). Many
diGerent spanning trees can be generated for any given graph. Therefore, it is possible
to introduce minimization criteria on the spanning-tree problem and select only those
trees which satisfy the criteria. Thus, spanning trees represent an excellent test case for
investigating the relation between individual structures and the minimization criteria
that govern their formation.
A broadly useful class of spanning trees (for examples see Refs. [10–12]), is the

minimal weight spanning tree (MST) [13,14]. The MST is de,ned on an underlying
graph whose edges each have some weight assigned to them. The MST is then the
spanning tree (a subset of the edges in the underlying graph) that minimizes the total
weight of the edges it includes. The minimal weight spanning tree represents a structure
whose formation is guided by a global optimization principle. It is also possible to
de,ne other types of criteria for spanning trees. For example, it is possible to de,ne a
spanning tree such that only the lowest weight edges at each node are used (a detailed
discussion of such a class of structures follows), giving a system with purely local
criteria. Other types of criteria can also be imposed, such as the degree-constrained
minimum spanning tree [15,16], but they are not considered here.
One of the structures we study in this paper is the generalized minimal spanning

tree (GMST), proposed by Dror et al. [1]. The GMST is useful in considering prob-
lems in which there are relevant length scales longer than a single edge. For example,
a biological system is characterized by the diameter of a cell (mapped to a graph
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Fig. 1. Example of a weighted graph and the resulting minimal spanning tree. (a) Shows all of the edges
and nodes in a graph, with the weight of each edge indicated next to the edge. Graph edges are depicted by
broken lines. (b) Shows the minimal spanning tree for this graph, which is the set of edges that connects
every node in the graph in the tree with the lowest total weight. Edges included in the tree are shown
as solid lines, while edges not included remain broken lines. The total weight of the tree in (b) is 40,
and the occupied edge density (number of edges included in the tree divided by total number of edges
in the graph) is 15

25 = 0:6. (c) Shows the invasion percolation network for the same graph. Note that the
invasion percolation network may have loops and in this case there are two closed loops. If loop formation
is prevented (resulting in the highest weight edge in any loop remaining unoccupied) the result is the acyclic
invasion percolation network. As can be readily seen by comparing ,gures (b) and (c) the acyclic invasion
percolation network is identical to the MST.

edge) as well as the length scale of diGusion in the system, which might be several
cell diameters. As the name suggests, the GMST is a generalization of the MST. The
GMST is de,ned on a graph in which the nodes have been partitioned into groups.
The spanning condition for the GMST is rede,ned (relative to the MST) such that
instead of requiring that every node in the graph be included in the tree, the in-
clusion of at least one node from each group is required. The GMST structure is
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the tree that meets this de,nition of spanning and minimizes the total weight of the
edges it includes. When each group contains only one node, the GMST reduces to the
MST.
The second class of trees considered in the present work is our generalization of the

invasion percolation network [17] that we call the generalized invasive spanning tree
(GIST). The invasion percolation network begins with a connected cluster of edges (in
the simplest case, this could be just one edge). This cluster then “invades” the remain-
ing edges by taking one edge from the boundary of the cluster and including it in the
cluster. The edge that is included is the single edge, of those on the cluster boundary,
with the lowest weight. Additional edges are then included, one at a time, in the same
fashion until the cluster percolates (spans) across the system. The generalization of the
invasion percolation network to the GIST, in analogy to that of the GMST, partitions
the nodes into groups and modi,es the percolation condition, such that one node from
each group must be spanned.
For graphs in which each group is a single node (i.e., those graphs for which the

GMST reduces to the MST), the GIST reduces to an acyclic invasion percolation
network (i.e., an invasion percolation network without loops). It has been shown that
the acyclic invasion percolation network is identical to the MST [19,18]. Thus for
graphs in which each group is a single node, the GMST and GIST are equivalent
structures. Because of this equivalence, it is necessary to consider the GMST and
GIST with groups of more than one node, rather than only the MST and invasion
percolation, to understand the relation between local and global minimization criteria
on tree structures.
The GMST and GIST structures were chosen because they generally oGer extremes of

global and local criteria. Both classes of trees have criteria which dictate the weight of
edges chosen. The GMST structures choose the edges that minimize the total weight
of the structure, even if that forces a higher weight edge to be chosen locally. In
contrast, the GIST structures include the lowest weight edge locally, even if this results
in a higher total weight for the entire tree. Except in the case of single-node groups
noted above, each criterion results in a diGerent ,nal structure (though by de,nition
both yield spanning trees). By comparing these structures, the eGect of each type of
criteria can be identi,ed. Moreover, we provide a method to change a GIST structure
incrementally into a more globally optimal GMST-like structure. This allows various
structural features to be observed as a function of the degree to which either criterion
is imposed. These intermediate structures can then serve as benchmarks for comparison
when a real image is analyzed.
This paper is organized as follows. Section 2 is comprised of a description of the

GMST and GIST structures. It also contains brief summaries of the protocols used
to form these trees, as well as methods for transitioning from the GIST towards the
GMST. Section 3 contains basic statistical descriptions of the structures generated for a
given set of graph realizations. Section 4 introduces the statistical measurements of edge
density and tortuosity and outlines how they may be used to study an experimentally
observed image. Finally, Section 5 has some concluding remarks.



A.R. Kansal, S. Torquato / Physica A 301 (2001) 601–619 605

2. Models and algorithms

Spanning trees were generated for graphs with 250,000 nodes arrayed on a square
lattice connected by 500,000 edges. The nodes were divided into groups of 64 nodes
each, with each group containing the nodes within an 8 × 8 square. The size of the
groups was chosen such that the groups were large enough to allow many possible
subtrees within a group, but still small enough to allow many groups within the graph.
Each edge was randomly assigned a weight uniformly distributed between 0 and 1.
Twenty graph realizations were generated using a diGerent random seed for each (i.e.,
a diGerent set of edge weights). The choice of an underlying graph that conforms to the
square lattice and groups that were spatially compact was made to allow the resulting
trees to be visualized readily. The methods presented here, however, are general to any
type of graph.
We have employed one of the heuristics developed by Dror et al. [1] for generation

of the GMST structures. A brief summary of the algorithm that we have used is
given below. The interested reader is referred to the original paper for a more detailed
discussion of several possible protocols for producing GMSTs. We have chosen to use
heuristic H1 given by Dror et al. For any given graph (generally containing many
loops), this method begins with a small tree (initially comprised of a single edge)
connecting two groups via the most eCcient path possible. The tree is then “grown”
by adding the shortest path that enables the tree to span a new group (i.e., one not
already spanned by the tree). This step is repeated until the tree spans all of the groups
in the system.

GMST algorithm

(1) Initialize the tree by choosing a group randomly and connecting it to the closest
neighboring group. Here closest means the group containing the node which can
be added to the existing tree by the lowest weight path.

(2) Find the group closest to the tree not already included in the tree and connect it
to the tree.

(3) If all of the groups are now spanned, terminate the algorithm, otherwise return to
step 2.

This algorithm was chosen because the speci,c details of our application allow it to be
implemented eCciently. For example, because the graph we use has a straightforward
geometric interpretation, it is simple to determine which group may be closest to the
existing tree and what nodes within the tree are likely to be close to these groups. Thus,
rather than identifying the minimum path to each region at each step, the distance to
the majority of regions need not be calculated and further, for the regions that are
checked, the distance from only a limited number of the nodes included within the
tree must be calculated. Finally, as is discussed below, the size and regularity of the
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graph make it unnecessary to generate a distinct tree starting from each group and then
,nd the tree with minimum total weight among these. Instead, a very small sample of
groups is used as possible starting points and the minimum of these is designated the
GMST.
As a basis of comparison for the globally minimized structure that the GMST pro-

tocol generates, we have de,ned a class of structures which we term GISTs. GIST
structures meet the same spanning conditions as GMST structures, but include local
minimization in place of the GMST requirement of minimum total weight. The GIST
structures are “grown” one edge at a time, analogously to the process of invasion
percolation.

GIST protocol

(1) Begin with a tree comprised of the lowest weight edge in the underlying graph.
(2) Add to the tree the lowest weight edge remaining that adjoins the existing tree.
(3) If the newly added edge forms a loop with the edges already in the tree, delete it

from the tree and from further possible additions.
(4) If the tree now spans at least one node from each group, it is the GIST. Otherwise,

return to step 2.

The third step in the GIST protocol is included to ensure that a loop-less, tree struc-
ture is obtained, which is analogous to the creation of “trapped” regions in the trapping
invasion percolation algorithm. With this exception, the protocol outlined above is iden-
tical to a standard invasion percolation protocol [17]. The only apparent diGerence is
that standard invasion percolation algorithms terminate once the system is percolated
(i.e., connected) in a few coordinate directions, rather than when it meets the spanning
criterion given here. However, a change of language makes it clear that the span-
ning criterion is equivalent to a percolation condition of a rather unusual structure
in high-dimensional space. Consider a graph consisting of 2K groups. Each group of
nodes can be mapped to one face of a hypercube in K dimensions. A percolating clus-
ter in this arrangement, which includes no internal nodes, is one that connects all of
the faces of the hypercube or, in other words, one which connects at least one node
from each group. Thus, the group spanning requirement for a graph whose nodes are
divided into 2K groups is equivalent to percolation of a hypercube whose nodes are
con,ned to the faces of the cube in K-dimensional space. Note that this equivalence
means that any of the highly re,ned algorithms developed for the generation of inva-
sion percolation networks (e.g., Sheppard et al. [20]) could be modi,ed for use here
aGording tremendous computational speed-ups relative to the simple algorithm currently
employed.
Of importance for the purpose of comparison with GMST structures is that the

criterion for adding an edge to the growing GIST structure is based only upon a local
condition. At every node in the system, the lowest weight edges will be included in
the tree ,rst, independent of which edge is most useful in meeting the “terminating”
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condition that requires all groups to be spanned. Thus, the GIST represents the locally
optimal extreme of all generalized spanning trees, while the GMST represents the
globally optimal extreme. A careful comparison of the GIST and GMST protocols,
however, reveals that under certain conditions the algorithms are identical. Speci,cally,
the GMST protocol reduces to the GIST one for the situation in which each group is of
cardinality 1. In other words, if each group is comprised of a single node, the closest
new group is always connected to the existing tree by the lowest weight edge adjoining
the tree, excluding those edges that would form a loop. For such graphs the GMST and
GIST reduce to the MST and the acyclic invasion percolation network, respectively.
The MST and acyclic invasion percolation structures have previously been shown to
be identical [19,18]. As the groups increase in size, however, the GIST and GMST
structures diverge from one another.
As reported below, the structures generated by the GIST protocol are extremely dense

by comparison to GMST structures and consequently diCcult to compare directly. To
address this issue we have adopted a simple method termed “pruning”, which reduces
the density of the GIST. In the pruning process, the edges comprising the GIST are
sorted in the order of non-increasing weight. Each “redundant” edge is then removed
in turn, beginning with the highest weight edges. Here, redundant is used in the same
sense as in Dror et al., indicating an edge whose deletion leaves a spanning tree [1].
Indeed, this procedure is very similar to Heuristic H2 proposed by Dror et al. for the
generation of a GMST from the MST of the same graph. Because (unlike the heuristic
employed by Dror et al.) the initial tree in our use of the pruning algorithm is not
an MST, the resulting tree is still quite far from the GMST. The result of repeatedly
applying this algorithm to any initial tree is to reduce the density of the tree leading
to a backbone structure. This is similar to the concept of identifying the (elastic or
Now-carrying) backbone of a percolation cluster.
Finally, a second transforming protocol was employed to study structures whose

properties are intermediate between the GMST and the backbone of the GIST. These
intermediate structures serve as useful comparison points for branched networks that are
a mixture of GMST and GIST backbone structures. Furthermore, investigating structures
between the GIST backbone and the GMST allows us to assess the value of diGerent
statistics over a range of structures, rather than only at the extremal structures. This
method is an adaptation of the third heuristic proposed by Dror et al. The procedure
begins with any feasible spanning tree, which is then gradually converted to a more
globally optimal structure.

Conversion protocol

(1) Begin with the backbone of the GIST.
(2) Choose an arc (an unbranched chain of edges) within the tree.
(3) Delete this arc and reconnect its end points with the path of lowest weight.
(4) Return to step 2, until a termination criterion is met.
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There are a few important observation that must be made regarding this protocol.
The most important is that it is not able to transform the tree structure to the same
extent as the heuristic employed by Dror et al. [1]. The main reason for this is that the
reconnection step (step 3) in this protocol ,xes the end points of the new arc, whereas
Dror et al. allow the replacement arcs to begin and end at arbitrary nodes within the
tree. This is a compromise between the time complexity of the code and the eCciency
of the resulting algorithm. Without this simpli,cation, the time scaling of the code
is too slow for use on the graph sizes considered here. In addition, the termination
condition is also chosen to reduce computation time. The exhaustive search proposed
by Dror et al. is more eGective overall, but requires too much computational time to
apply to the graphs used here. Instead, we have used a condition in which arcs are
chosen randomly and replaced until 5000 successive replacements do not reduce the
total weight of the spanning tree.
GMST structures took approximately 3 h to generate on a single node of an IBM

SP2 computer. GIST structures required roughly 4 min each to generate. Because of its
comparative speed, the GIST routine was not optimized for execution time and could
likely be accelerated considerably. The run time of the pruning algorithm depends
directly on the size of the tree in the input. Runs on the initial GIST structures took
approximately 6 min each, while runs on structures close to the GIST backbone took
less than 1 min. Finally, the conversion algorithm required approximately 10 h per total
conversion.

3. Results and standard characterizations

For each graph realization, GMST and GIST structures were generated. The GIST
was then pruned repeatedly yielding a backbone structure, which was in turn reduced to
a more globally minimal structure using the conversion protocol. As noted previously,
the GMST protocol requires choosing a starting group. While the best possible GMST
(within the limits of the heuristic method employed) requires testing every group as a
potential starting point, in practice for our graphs this proved unnecessary. To test the
variation in total weight caused by the choice of starting points, the GMST protocol
was run for a single graph 100 times with a diGerent starting point each time. In all
cases, the ,nal structures were closely related to one another (diGering in less than
10% of included edges). Furthermore, the total weights of the trees were narrowly
distributed, with a relative standard deviation of 0.2%. As such, almost any starting
group will yield a good approximation of the GMST. For the data presented here, we
generated three potential GMST structures and selected the minimum of those as the
GMST. Examples of the GIST and GMST are shown in Fig. 2. The trees depicted
are small samples of the entire tree structure. Also shown in the ,gure are the trees
resulting from the pruning and conversion algorithms, which are labeled backbone and
converted, respectively. Note that the GIST has a much higher density than any of the
other structures, making direct comparisons with it diCcult.
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Fig. 2. Examples of the (a) GIST, (b) GMST, (c) backbone, and (d) converted structures for a single graph.
The backbone structure is the result of repeatedly applying the pruning algorithm to the GIST. The converted
structure is the result of applying the conversion algorithm to the backbone structure. In each case a small,
representative section is shown (not the entire tree). The underlying graph is not shown in these images.

Fig. 3 shows the total weights of several spanning trees for a single graph. Two
features from this ,gure merit special mention. One feature is the gap in total weight
between the result of the conversion protocol and the GMST. This diGerence highlights
the limitations of the conversion protocol as formulated here. In principle, a more
complete conversion could produce trees closer to the GMST, for example by following
the protocol outlined by Dror et al. more faithfully. However, as noted above, the
computational cost of such an approach was prohibitive. While the protocol given
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Fig. 3. The total weight of several types of trees for a single graph realization. Inset is a magni,cation of
the three low weight trees to highlight the relative diGerence. The GIST, backbone, and converted structures
fall along a continuum of structures as indicated by the connecting line. The backbone structure is generated
by repeatedly pruning the GIST. The converted structure is the result of applying the conversion protocol to
the backbone structure. Spanning trees between the converted tree and the GMST have yet to be produced.

above for the conversion of the backbone structure calls for termination after a ,xed
number of consecutive arc replacements leave the structure unchanged, the conversion
process may also be stopped after a ,xed number of attempted replacements or after a
set total weight has been passed. Either of these choices will result in a structure that
is only partially converted. In other words, this will result in a structure that has some
globally dictated characteristics, but still has signi,cant degrees of local minimization
incorporated.
The second notable feature is the large drop-oG in total weight between the GIST

and its backbone. This drop indicates that a signi,cant majority of the edges in the
GIST structure (over 80%) play no role in meeting the spanning requirement. That
many edges in the GIST can be removed is to be expected, in that edges are added
to the GIST with no regard for the utility in creating a spanning tree. However, the
degree to which edges can be removed is surprising. The pruning algorithm considers
only the weight of an edge and its role in maintaining a single, connected spanning
tree. This is a primarily local calculation and so it was originally expected that the
backbone structure would be closely related to the GIST. Instead, the majority of edges
in the GIST are pruned away in creating the backbone.
While the weights shown in Fig. 3 are for a single graph, the variation in the weight

of each tree between graphs is very small. This is not due to similarities in the actual
trees, which display very few common edges. For example, less that 4% of the edges
in the GMST for one graph are present in the GMST for any other graph. Instead, it
suggests that the total weight of a GMST is insensitive to the speci,c details of the
underlying graph. The total weights of each type of tree averaged over 20 diGerent
graph realizations are given in Table 1. Also listed in Table 1 are the average edge
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Table 1
Total weight and edge density of diGerent types of spanning trees aver-
aged over 20 graphsa

Structure Weight Edge density

GIST 54000± 1400 0:4539± 2:1× 10−2

Backbone 8650± 67 0:0766± 4:9× 10−4

Converted 7120± 82 0:0630± 6:2× 10−4

GMST 6350± 35 0:0541± 2:3× 10−4

aAs indicated in Fig. 3, the backbone structures result from pruning the
GIST, and in turn are used to produce the converted trees.

Fig. 4. Plot of the fraction of edges included in each tree as a function of edge weight. The mean weight
of the edges included in each tree is indicated by the circle on each distribution.

densities for each type of graph. The edge density is calculated as the number of
edges included in the spanning tree divided by the number of edges in the complete
graph. As expected, the edge density is strongly correlated with the total weight of
each tree. Because the minimization of the total tree weight is the objective of the
GMST protocol, the total tree weight can serve as an estimator of the degree to which
a tree resembles the GMST.
Fig. 4 shows the inclusion fraction distribution, or more brieNy the inclusion fraction,

which is de,ned as the fraction of edges in the underlying graph of a given weight
included in each tree as a function of edge weight. For the GIST, the inclusion fraction
has a sigmoidal dependence on edge weight. Recalling the previous discussion of the
equivalence between spanning and percolation, it is useful to compare the inclusion
fraction of the GIST to that of invasion percolation networks. The inclusion fraction for
a suCciently large (non-trapping) invasion percolation network is expected to take the
form of a step function, with ,nite-size eGects evidenced by deviations from the ideal
function before and after the step [17,21]. The GIST distribution displays near perfect
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step behavior at high edge weights, (with a vanishingly small number of high weight
edges included) but a much more gradual drop-oG at lower edge weights relative to
an ideal step function. This behavior is reminiscent of an invasion percolation network
with trapping [17,21]. At large sizes, the inclusion fraction for this type of percolation
network drops sharply beyond a critical value of edge weight (like a step function).
At low edge weights, however, the inclusion fraction drops oG gradually as the critical
value is approached. The area between the inclusion fraction for the percolation network
and the step function approaches a non-zero constant for large systems. This same type
of low weight edge behavior is observed in the GIST inclusion fraction. A ,nite fraction
of low weight edges are not included in the GIST because adding them would create
a loop. In addition, there is a small area at the periphery of the graph (comprised of
the most extreme groups) that is rarely visited by the tree. This ,nite-size eGect is the
reason why the inclusion fraction of the GIST does not reach its limiting value of one
at the lowest edge weights.
The inclusion fraction for the backbone structure matches that of the GIST exactly at

high edge weights. The few high weight edges included represent “bottlenecks” in the
GIST, which are essential to the backbone. These bottlenecks should not be confused
with the most vital edge of a spanning tree, which is the edge whose exclusion (and
the subsequent reconnection of its end-points) would cause the greatest increase in
total tree weight for a minimized tree [22], though they are likely to coincide to some
degree. Instead, they occur when, in the course of creating the GIST, the invading
tree reaches a point where all of the edges on the boundary of the current tree are
high weight edges. One of these high weight edges must be included in the GIST and
cannot be removed in the pruning process. Based on our simulations, this situation
arises several times in the typical construction of a GIST. All of these instances are
during the early stages of the tree formation, however, and so a vanishingly small
fraction of the high weight edges is included in the limit of an in,nitely large graph.
It is interesting to note that the inclusion fraction for the backbone structure has an
extended plateau at low edge weights. This suggests that low weight edges are equally
likely to be included in the backbone structure nearly independent of their weight
(below a threshold). This can be contrasted with the curve for the GMST, in which
lower the weight edges are included more frequently than higher weight edges for
all edge weights. The inclusion fraction for the converted structure is intermediate
between the backbone and the GMST. Although the distributions shown in Fig. 4
diGer signi,cantly from one another, the mean weight of the edges included in each
tree are very consistent (varying by a maximum of 0.02).

4. Analysis and discussion

While the diGerences between the various types of trees in standard characterizations
such as total weight or included edge fraction are clear, they are also of little utility in
analyzing a single given structure. These measurements rely on the complete knowledge
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of the graph, including all edge weights. When considering a physical problem such as
the in,ltration of tumor cells into a porous gel, this level of information is generally
diCcult, if not impossible, to obtain. Instead a measurement relying only on the spe-
ci,c details of the observed structure and the most rudimentary information about the
underlying graph is desirable. Furthermore, in such examples the complete structure of
the tree is frequently diCcult to image. Accordingly, a statistical measurement relying
only on local information would be of particular value.
One measurement that meets these criteria is the occupied edge density, which mea-

sures the fraction of edges in the underlying graph that are included in the spanning
tree, a measurement that only requires an estimate of the total number of edges in
the underlying graph (along with the network structure). As shown in Fig. 4, the
mean weight of the edges included in each tree varies little between diGerent types
of structures. Thus, the total weight of a tree correlates strongly with the fraction of
edges in the underlying graph occupied by the tree. Another useful measurement is
the tortuosity, �, of the arcs in the tree. Here, tortuosity takes its common geomet-
ric meaning and is de,ned as an average of the ratio of the path length between
two arbitrary nodes in the tree and the Euclidean distance between them. For a rela-
tively large tree, this measurement can be made by averaging over the nodes included
in the tree (or even a portion of the tree, if the tree is large enough). For small
trees, however, an ensemble of trees would be necessary for an accurate measurement.
This measurement can be made with no information about the underlying graph at
all. For the trees considered here, the tortuosity is an increasing function of the path
length.

�(‘)=
〈
Path length between two arbitrary nodes

Euclidean distance between nodes

〉
: (1)

In this equation, we have explicitly indicated that tortuosity should be measured for a
single path length ‘, hereafter this notation will be suppressed and tortuosity will be
indicated simply as �. The angular brackets indicate an average over pairs of nodes
(and over structures, if more than one is given).
Fig. 5(a) depicts average tortuosity curves for several types of spanning trees.

The variation in the tortuosity curves between graph realizations is extremely small
(the relative standard deviation is ¡ 0:1%) and as such is not indicated on the plot.
Note that the tortuosity curves are ordered such that the GIST tree is the most tortuous,
while the GMST is the least tortuous, with the backbone structure and the converted
structure falling in between. Fig. 5(b) shows the relation between total tree weight and
tortuosity. In this ,gure, the average total weight of each type of tree is plotted against
the average tortuosity at a ,xed path length. The length chosen here was 20 edge
lengths, but similar plots can be made for any path length up to the lengths consid-
ered. Tortuosity and total weight are positively correlated for all of the trees considered.
The tortuosity and total weight of the spanning trees vary almost linearly between the
backbone and GMST structures. The GIST structure, however, has a very high total
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Fig. 5. (a) Tortuosity versus path length for several types of trees averaged over 20 graph realizations.
The variation between graphs is suCciently small that the curve for each graph is indistinguishable from the
averaged curve. Note that the ordering of the curves corresponds to the total tree weights (i.e., high tortuosity
correlates with high total weight). This correlation is explicitly displayed in (b). Inset is a magni,cation
of the low total weight points, emphasizing their relative diGerences. Also included in the inset are several
intermediate structures that are generated during the conversion algorithm.

weight relative to the backbone structure that is not accompanied by a correspondingly
large increase in tortuosity. This suggests that in some respects the structure of the
backbone resembles that of the GIST more closely than is indicated by the diGerence
in total weight. Here, it is simply noted that this resemblance comports with our initial
expectation that the pruning algorithm would not aGect the structure of the GIST to
a very signi,cant degree. Further investigation is necessary to understand the relation
between a GIST and the resulting backbone tree more completely.
Assessing the degree to which a tree has been formed under a global criterion re-

quires more than just measuring the tortuosity (or occupied edge density). In particular,
the measurements presented above are all speci,c to one type of graph—a square lat-
tice with random and uniformly distributed edge weights. Thus, the scale set by the
GIST and GMST structures in this work can only be used to evaluate trees that de-
velop on underlying graphs with similar average coordination and distributions of edge
weights. If a tree develops on a graph that has a diGerent distribution of edge weights
or diGerent coordination number, new standards for the tortuosity (for example) of
the GIST and GMST structures will need to be set. A simple example will serve to
illustrate this point. Table 2 compares the weight and tortuosity of trees generated
on several underlying graphs. The ,rst data set is for the graph used in generating
Fig. 3. The second is for an identical graph except the edge weights are rescaled such
that they span 0.45–0.55, while maintaining the same ordering. Because the GIST
considers only relative weights (i.e., which edge has the lowest weight) this rescaling
does not aGect the structure of the GIST. The GMST, however, is profoundly aGected
producing a tree that is signi,cantly less tortuous at a ,xed path length, though the
total weight increases appreciably. Thus, a tree that developed on the second graph
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Table 2
Comparison of the GIST and GMST on three diGerent graphsa

Weight Tortuosity

Graph 1 GIST 55080 1.9175
GMST 6341 1.3055

Graph 2 GIST 107637 1.9175
GMST 10239 1.1365

Graph 3 GIST 58361 1.9175
GMST 6350 1.3101

aAll three graphs are square lattice, with diGerent edge weight distributions. The tortuosity is measured at a
,xed path length of 20. The second graph is identical to the ,rst, except its edge weights have been rescaled
to lie between 0.45 and 0.55 (versus 0 and 1.0 in the ,rst graph). The edge weights in the third graph
have been converted to follow a Gaussian distribution with the same mean and standard deviation as the
,rst graph. The rescalings do not aGect the structure of the GIST at all, though the total weight can change.
In contrast, the GMST structure is dependent of the edge weight distribution used. However, comparison
of the ,rst and third graphs reveals that there may not be a strong dependence on the exact form of the
distribution.

can have a very diGerent balance of global and local inNuence than one developed on
the ,rst graph even though they both have the same tortuosity. For example, while
a tortuosity of 1.32 would indicate a structure very close to the GMST of the ,rst
underlying graph, the same structure would have developed on the second underlying
graph with a signi,cant degree of local inNuence.
The need for standards (i.e., tortuosity measurements for the GIST and GMST) for

the speci,c type of underlying graph presents a less serious obstacle than appears at ,rst
glance. In particular, it is not necessary to reproduce an exact replica of the real graph.
As discussed above, the variation of tortuosity between diGerent realizations of the same
type of graph is extremely small. Thus, the only knowledge required to measure and
evaluate the tortuosity of a tree is a statistical understanding of the underlying graph.
In addition, computational experiments indicate that the exact form of the edge weight
distribution also does not impact the tortuosity of the GMST signi,cantly. To make this
assessment, we have generated a GMST structure on a graph with edge weights drawn
from a Gaussian distribution with mean 0.5. The Gaussian distribution was scaled such
that the standard deviation matched that of a uniform distribution between 0 and 1,
with values below 0 or above 1 set to the appropriate extreme. The statistical properties
of the GIST and GMST on this graph are listed in Table 2 as Graph 3. The results are
very similar to those for a graph with uniformly distributed edge weights. While it is
necessary to test several other types of edge weight distributions before the claim can
be con,rmed, these results indicate that tortuosity is not sensitive to the exact form of
the edge weight distribution. Recalling that the structure of the GIST is not determined
by the distribution of edge weights, this means that setting the tortuosity standards for
a general class of underlying graphs can be accomplished with very limited information
about the speci,c graph.
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In practical terms, given a single tree structure (or an ensemble of small struc-
tures), a simple procedure can be followed to estimate its relation to the GMST and
GIST.

Evaluation protocol

(1) Measure the tortuosity, �, for the given tree at a ,xed path length.
(2) Generate the GIST and GMST for the underlying graph thought to exist in the

problem being considered and measure their tortuosities.
(a) Estimate the coordination number of the expected underlying graph. Generate

a model underlying graph, with the same type of coordination. For example,
expecting a coordination number of 6, one could use a triangular lattice. Es-
timate the length scale of any long-range eGects in the system and group the
nodes in the underlying graph in accordance with this length scale.

(b) Using any distribution of edge weights, generate the GIST and measure its
tortuosity, �GIST .

(c) Estimate the relative dispersion of the edge weights in the graph. This requires
an approximation of the ratio 
=�, where 
 is the standard deviation and � is
the mean of the edge weights.

(d) For the underlying graph chosen in step 2(a), generate a graph realization
whose edge weights are drawn from a distribution with the relative dispersion
estimated in step 2(c). Generate the GMST for this graph realization and
measure its tortuosity, �GMST .

(3) Evaluate the ratio

Q�=
�− �GMST

�GIST − �GMST ; (2)

which represents the degree to which the given tree resembles the GIST. For
example, a value of 0:1 would indicate a structure that is primarily globally
optimal (GMST-like), while 0:8 would indicate a structure that is dominated
by local eGects (GIST-like).

As an example, consider the problem of cells moving through a porous medium
under the inNuence of a nutrient gradient. The pores in the medium play the role of
edges in the graph and their intersections are the nodes. Assume that we can measure
the coordination number of the pore structure, perhaps by the same imaging technique
that has produced the tree we are analyzing. For a medium with a coordination number
of three, we might choose a hexagonal lattice as our graph. The long-range eGect we
are investigating is the inNuence of the nutrient gradient, so groups in the graph should
be the size of the nutrient diGusion length scale. So our underlying graph would now
be a hexagonal lattice, tiled into groups each of which has the same length scale as
the nutrient diGusion length in the real system. Using this graph, we can use any
edge weight distribution we choose and generate the GIST. To generate the GMST,
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however, it is necessary to make one more estimate—we must decide what type of
resistances are present. For this problem, the resistance might be caused by the cells
squeezing to ,t into the pores. Thus, the weight of an edge would be the inverse of
the pore diameter. After estimating the range of pore diameters in the porous medium,
we can construct an edge weight distribution that matches this estimate. Using this
distribution, we can complete our graph realization and measure the tortuosity of the
GMST. Note that the only information required in this process was very general and
should be relatively easily accessible experimentally.

5. Conclusions

The results described above show that altering the criterion for including edges in
a spanning tree from a global one (the GMST) to a local criterion (the GIST) has a
measurable impact on the statistical characterization of the resulting trees. In particular,
the total weight, occupied edge density, inclusion fraction distribution, and the tortuosity
varied systematically with diGerent types of spanning trees. Of these, however, the
majority require extensive information about the graph under consideration, including
individual edge weights. In contrast, however, measurement of the tortuosity of a tree
only requires information about the structure of the tree. Measurement of the occupied
edge density requires minimal information about the underlying graph, in addition to the
tree structure, but does not require the detailed information necessary for measurements
like the total weight or the inclusion fraction distribution. As noted above, both the
edge density and the tortuosity measurements for a single network must be made in the
context of the type of underlying graph present. We emphasize that while this context
requires some basic knowledge of the characteristics of the underlying graph, this is a
much more accessible level of information than the complete information required for
measurements such as the total weight of the tree.
Using tortuosity to characterize a network has one additional advantage. The tor-

tuosity is measured along individual arcs for relatively small path lengths. Thus, the
tortuosity of a structure can be measured accurately even if only a small portion of the
structure is observed. This is of particular value in assessing systems that are challeng-
ing to image completely. These features make the tortuosity and occupied edge density
promising tools for the investigation of naturally occurring tree structures whose tem-
poral formation cannot be observed directly.
One type of variation that is not addressed in the discussion above is a change in the

coordination number of the graph. It has been shown that changing the coordination
of the underlying graph has a pronounced impact on the percolation threshold in the
invasion percolation system [17]. As such, it is expected that similarly pronounced
impacts would be observed on the structure of any spanning tree. Characterizing the
eGect of diGerent coordination numbers on the structure of the GMST, however, follows
the exact methodology outlined in this paper. In sum, employing the protocols discussed
previously on a graph of interest will yield a set of benchmark tortuosity or occupied
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edge density measurements that may then be used to assess whether global or local
weight criteria played an important role in the development of any given tree structure.
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