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Hard-particle packings have served as useful starting points to study the structure of diverse systems such as
liquids, living cells, granular media, glasses, and amorphous solids. Howard Reiss has played a major role in
helping to illuminate our understanding of hard-particle systems, which still offer scientists many interesting
conundrums. Jammed configurations of hard particles are of great fundamental and practical interest. What
one precisely means by a “jammed” configuration is quite subtle and considerable ambiguity remains in the
literature on this question. We will show that there is a multiplicity of generation, selection, and classification
procedures for jammed configurations of identicald-dimensional spheres. We categorize common ordered
lattices according to our definitions and discuss implications for random disk and sphere packings. We also
show how the concept of rigidity percolation (which has been used to understand the mechanical properties
of network glasses) can be generalized to further characterize hard-sphere packings.

1. Introduction

The problem of packing particles into a container or vessel
of some type is one of the oldest problems known to man.
Bernal1 has remarked that “heaps (close-packed arrangements
of particles) were the first things that were ever measured in
the form of basketfuls of grain for the purpose of trading or the
collection of taxes.” Today scientists study particle packings to
understand the structure of living cells, liquids, granular media,
glasses, and amorphous solids, to mention but a few examples.
Because the structure of such systems is primarily determined
by the repulsive interactions between the particles, the hard-
sphere model serves as a useful idealized starting point for such
an investigation.2-6

Hard spheres interact with each other only when they touch
and then with an infinite repulsion reflecting their impenetrable
physical volume. Despite the simplicity of the hard-sphere
potential, hard-sphere systems offer many conundrums, several
of which we will briefly describe. The first example concerns
the existence of an entropically driven disorder/order phase
transition in hard-sphere and hard-disk (two-dimensional)
systems. Although there is strong numerical evidence to support
the existence of a first-order disorder/order phase transition in
three dimensions, a rigorous proof for such a transformation is
not yet available. In two dimensions, the state of affairs is even
less certain because it is not clear (from numerical simulations)
whether the transition, if it exists, is first-order or a continuous
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
transformation.7-9

Another conundrum involves the determination of the densest
packing of identical hard spheres. It is only recently that a

putative airtight rigorous proof has been devised for Kepler’s
conjecture that the densest possible packing fractionφ for
identical spheres in three dimensions isπ/x18 ≈ 0.7405,
corresponding to the close-packed face-centered cubic (fcc)
lattice or its stacking variants.10 Although the neighborhood
grocer would have given the same solution, proving Kepler’s
conjecture is another matter. The difficulty arises because the
densest local packing is inconsistent with global packing
constraints, i.e., nonoverlapping regular tetrahedra cannot tile
space. This is not true in two dimensions, where the densest
local packing is consistent with the densest global packing.

Yet another example of a conundrum concerns the venerable
notion of “random close packing” (RCP) of hard spheres. The
traditional notion of the RCP state is that it is the maximum
density that a large, irregular arrangement of spheres can attain
and that this density is a well-defined and unique quantity. It
was recently shown that the RCP state is in fact mathematically
ill-defined and must be replaced by a new notion called the
maximally random jammed(MRJ) state, which can be made
precise.11 The identification of the MRJ state rests on the
development of metrics for order (or disorder), a very chal-
lenging problem in condensed-matter theory, and a precise
definition for the term “jammed”. Torquato et al.11 have
suggested and computed several scalar metrics for order in hard-
sphere systems and have introduced a precise definition of
“jammed.” This formalism provides a means of classifying
jammed structures in terms of their degree of order in an
“ordering" phase diagram (perhaps more importantly, the
ordering phase diagram can also serve as a means for mapping
the degree of order in nonequilibrium (or history-dependent)
structures as a function of their processing conditions). For
example, letψ represent a scalar order metric that varies between
unity in the case of perfect order and zero in the case of perfect
disorder, and imagine the set of all jammed structures in the
φ-ψ plane. The MRJ state is simply the configuration of
particles that minimizesψ (maximizes the disorder) among all
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statistically homogeneous and isotropicjammedstructures. More
generally, the identification of the boundaries of the set of all
jammed structures is a problem of great interest. Besides the
MRJ state, for example, one may wish to know the lowest
density jammed structure(s), which is an open problem in two
and three dimensions. We also note that the concept of a jammed
structure is particularly relevant to the flow, or lack thereof, of
granular media.12,13

In this paper, we will focus our attention on the question of
what is really meant by a “jammed” hard-particle system. The
answer to this question is quite subtle, and a failure to appreciate
the nuances involved has resulted in considerable ambiguity in
the literature on this question. Yet a precise definition for the
term “jammed” is a necessary first step before one can undertake
a search for jammed structures in a meaningful way. We will
show that there is a multiplicity of definitions for jammed
structures. For simplicity and definiteness, we will restrict
ourselves to equisizedd-dimensional hard spheres ind-dimen-
sional Euclidean space. Of particular concern will be the cases
of equisized hard circular disks (d ) 2) and equisized hard
spheres (d ) 3).

2. Definitions

We will considerN equisizedd-dimensional hard spheres of
diameterD. To begin, we will assume that theN particles are
confined to a convex region ofd-dimensional Euclidean space
of volume V with impenetrable but possibly deformable
boundaries. The boundaries are assumed to be smooth on the
scale of the particle diameter. Periodic boundary conditions will
be mentioned separately below.

A particle in the system is individually jammed if it cannot
be translated while holding fixed the positions of all of the other
N - 1 particles in the system. This means that a particle in the
bulk must have at leastd + 1 neighbor or wall contacts not all
of which are in the same “hemisphere”. A necessary condition
for the entire system to be jammed is that each of theN particles
is individually jammed. The system of disks shown in Figure 1
meets this necessary condition, but all are in contact with the

impenetrable boundary and consequently leave the interior of
the system entirely vacant. Analogous three-dimensional ex-
amples can also be identified with all spheres jammed against
the boundary, leaving the interior of the system totally unoc-
cupied. While such unusual cases may have some intrinsic
interest, we leave them aside for present purposes by requiring
that at least one particle of the jammed configuration does not
contact the boundary. This leaves open the possibility that the
interior of some disk and sphere packings might display
relatively large voids or cavities surrounded by a “cage” of
jammed particles.

Note that these minimal requirements mean that there can
be no “rattlers” (i.e., movable but caged particles) in the system.
It should be recognized that jammed structures created in
practice via computer algorithms14 or actual experiments may
contain a small concentration of such rattler particles, the precise
concentration of which is protocol-dependent. Nevertheless, it
is the overwhelming majority of spheres that compose the
underlying “jammed” network that confers “rigidity” to the
particle packing, and in any case, the “rattlers” could be removed
without disrupting the jammed remainder.

We are now in a position to state our definitions of jammed
configurations. A system ofN spheres is said to be a

(1) locally jammed configurationif the system boundaries
are nondeformable and each of theN particles is individually
jammed, i.e., it meets the aforementioned necessary condition,

(2) collectiVely jammed configurationif the system boundaries
are nondeformable and it is a locally jammed configuration in
which there can be no collective motion of any contacting subset
of particles that leads to unjamming,

(3) strictly jammed configurationif it is collectively jammed
and the configuration remains fixed under infinitesimal virtual
global deformations of the boundaries. In other words, no global
boundary-shape change accompanied by collective particle
motions can exist that respects the nonoverlap conditions.

We emphasize that our definitions do not exhaust the universe
of possible distinctions, but they appear to span the reasonable
spectrum of possibilities. It is clear that the second definition
is more restrictive than the first and the third definition is the
most restrictive. It is crucial to observe that the above clas-
sification scheme is dependent on the type of boundary
conditions imposed (e.g., impenetrable or periodic boundary
conditions) as well as the shape of the boundary.

The collectively jammed definition was the one used by
Torquato et al.11 in their work on the maximally random jammed
state. Note that overall rotation of configurations in a circular
or spherical boundary can still leave the system collectively
jammed (see, for example, Figure 1).

Observe that the most restrictive definition of a jammed
structure, the strictly jammed configuration, is a purely kinematic
one, i.e., we do not appeal to a description of forces or stresses
on the system. However, one could choose to relate the
concomitant stresses on the boundaries to the deformations via
some appropriate constitutive relation. For example, in the case
that the stresses are linearly related to the strains, Hooke’s law
for linear elasticity would apply and the system would be
characterized generally by 21 elastic moduli in three dimensions.
In the case of an elastically isotropic packing, two elastic moduli
would characterize the system: the bulk modulusK, relating
isotropic compressive stresses to corresponding volumetric
strains (deformations), and the shear modulusG, relating shear
stresses to corresponding volume-preserving strains. Thus, in
this latter instance, a strictly jammed configuration is character-
ized by infinite bulk and shear moduli.

Figure 1. A jammed system in which all of the particles are in contact
with the boundary.
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An interesting characteristic of a jammed packing of spheres
that has not been studied to our knowledge is its “rigidity
percolation threshold”. Rigidity percolation has been studied
on lattice networks to understand the mechanical properties of
network glasses, for example.15-17 Consider a triangular net of
mass points connected by nearest-neighbor central forces. The
system is stable and elastically isotropic and therefore is
characterized by the elastic moduliK and G. If bonds are
randomly removed with probability 1- p, then bothK andG
vanish at some critical valuep* between 0 and 1 called the
rigidity percolation threshold.

The notion of rigidity percolation can be extended to describe
jammed sphere packings. Importantly, in doing so, we do not
have to appeal to notions of elasticity. Consider a jammed
system that meets one of the three aforementioned definitions.
Begin a process whereby spheres are sequentially removed by
some selection process with a random element. The rigidity
percolation threshold is the sphere volume fractionφ* at which
the system ceases to be jammed according to one of our three
definitions. Thus, the value ofφ* will generally vary for a given
structure depending on what is meant by a jammed configura-
tion. For example, for an initial lattice at packing fractionφ,
the value ofφ* will increase as the jamming criterion changes
from the least restrictive (locally jammed) to the most restrictive
(strictly jammed). In general,φ* must lie in the interval (0,φ].
We believe that this generalization of rigidity percolation will
be especially useful in characterizing random jammed packings.

Boundary conditions play an essential role in packing
problems. Although the principal focus of the present exposition
concerns the case of impenetrable boundaries (on account of
their physical significance), we recognize that periodic boundary
conditions are often applied in a wide range of many-particle
theories and numerical simulations. Note that in the present
context periodic boundary conditions are substantially less
confining than are impenetrable-wall boundary conditions, when
either could be applied to a given finite particle packing. Hence,
the classification scheme defined above may have an outcome
that hinges sensitively upon which of these alternatives applies.
The simple cubic lattice offers an example; it is collectively
jammed with rigid walls, but only locally jammed with periodic
boundary conditions.

3. Classification of Some Ordered Lattice Packings

In this section, we categorize some common two- and three-
dimensional lattice packings according to whether they are
locally jammed, collectively jammed, or strictly jammed. In all
cases, we assume impenetrable but possibly deformable system
boundaries. We begin with two-dimensional lattices within
commensurate rectangular boundaries. The 3-fold coordination
of a honeycomb (hexagonal) lattice is necessary to make this
structure locally jammed (see Figure 2a). Note that the graph
that results by drawing lines between nearest-neighbor centers
is a hexagonal tiling of the plane for an infinite system. In the
infinite-volume limit, the packing fractionφ ) π/(3x3) ≈
0.605. However, the honeycomb lattice is not collectively
jammed because an appropriate collective rotation of six
particles that are situated on the sites of any of the hexagons in
the bulk will destabilize the structure. Thus, the honeycomb
lattice is also not strictly jammed. Note that by an appropriate
placement of three circular disks of diameterx3D/4 in each of
the original disks of diameterD in Figure 2a, the packing that
results upon removal of the larger disks is locally jammed at
the packing fractionφ ) 3π/(4x3) ≈ 0.340 in the infinite-
volume limit (see Figure 2b).

The square lattice is both locally and collectively jammed,
but it is not strictly jammed because a shear deformation (not
an isotropic deformation) will destabilize the packing. The
Kagomélattice is not locally jammed in a rectangular container
because certain particles along the vertical walls may be moved,
leading to an instability (see Figure 3). However, the Kagome´
lattice becomes strictly jammed if it is appropriately situated
within a container with either regular triangular-shaped or
regular hexagonal-shaped boundaries. Note that for an infinitely
large system, it has a packing fraction ofφ ) 3π/(8x3) ≈
0.680. The triangular lattice is strictly jammed. It has a packing
fraction ofφ ) π/x12 ≈ 0.907. The classification of all of the
aforementioned lattices is summarized in Table 1. An example
of a two-dimensional collectively jammed lattice with an
appreciably lower packing fraction than the triangular lattice is
shown in Figure 4. This four-coordinated lattice, built from the
triangular lattice with one-fourth of the disks missing, was
considered by Lubachevsky, Stillinger, and Pinson.18

Now let us consider some three-dimensional lattices within
a cubical container. The tetrahedrally coordinated diamond
lattice is the three-dimensional analogue of the honeycomb
lattice. It is locally jammed but is not collectively jammed and

Figure 2. The honeycomb (hexagonal) lattice can be made locally
jammed but not collectively jammed with a hard rectangular boundary
(a). The packing that results by placing within each disk in part (a)
three smaller disks that are locally jammed and then removing the larger
disks (b). This procedure is a means of creating low-density jammed
structures in the infinite-volume limit.
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therefore not strictly jammed. The simple cubic lattice is the
three-dimensional analogue of the square lattice; it is both locally
and collectively jammed, but it is not strictly jammed because
a shear deformation (not an isotropic deformation) in the
(1 0 0) planes will destabilize the packing. The same charac-
terization is true for the body-centered cubic (bcc) lattice as for
the simple-cubic lattice. The bcc lattice is not strictly jammed
because a shear deformation in the (1 1 0) planes will destabilize
the packing. The face-centered cubic lattice is strictly jammed.
The hexagonal close-packed lattice is strictly jammed if the
container boundary is a hexagonal prism, but it is only locally
jammed for a cubical boundary.

4. Discussion and Future Work
Let us now turn our attention to the practical determination

of our three different definitions for jammed configurations. It

is clear that the criteria for a locally jammed configuration will
be the easiest to implement in a computer simulation. In two
dimensions, one must determine whether each disk is locally
jammed, i.e., whether each disk has at least three contacting
neighbors that do not all lie in a semicircle surrounding the
particle of concern. In three dimensions, one must ascertain
whether each sphere has at least four contacting neighbors that
do not all lie in a hemisphere surrounding the particle. Error
enters the search algorithm because one must choose an
acceptable tolerance for the nearest-neighbor distance to deter-
mine whether a neighbor is indeed in contact with the reference
particle.

The determination of whether the system is collectively
jammed is considerably more difficult, especially for a random
system. An approximate means to test that the system is
collectively jammed is to shrink the particle sizes uniformly by
a very small amount, give the particles some random initial
velocities, and follow the system dynamics using a molecular
dynamics simulation technique. If the particle configuration
effectively does not change after a sufficiently long period of
time, the system can be regarded to be collectively jammed.
This procedure has been used by Lubachevsky, Stillinger, and
Pinson18 to ascertain whether their particle systems were
“stable”. Such a stochastic approach is intended to discover
whether the particle configuration considered contains polygons
of contacting neighbors whose simultaneous displacements
initiate local unjamming. A desirable objective for future
research is the design of a more efficient discovery procedure
for these multiparticle unjamming motions.

Interestingly, the determination of whether a particle packing
is strictly jammed may be relatively straightforward given that
it is collectively jammed. The basic idea is to transform the
collectively jammed particle packing into an equivalent De-
launay graph or network. Roughly speaking, the Delaunay
network is the polyhedral graph that results by drawing lines
between nearest-neighbor centers in the packing.19 Once this
equivalent network is determined, one can exploit well-
developed engineering techniques to analyze the stability of
truss-like structures.20 Specifically, overall tractions are imposed
on the boundary of the network, and the stability analysis is
reduced to a well-defined linear algebra problem. If the network

Figure 3. The Kagome´ lattice is not locally jammed with a hard
rectangular boundary. However, when properly situated within a
container with a regular triangular- or hexagonal-shaped boundary, it
can be made to be strictly jammed.

TABLE 1: Classification of some of the common jammed
ordered lattices of equisized spheres in two and three
dimensions, in whichZ denotes the coordination number
and O is the packing fraction for the infinite lattice a

lattice
locally
jammed

collectively
jammed

strictly
jammed

honeycomb (Z ) 3, φ ≈ 0.605) yes no no
Kagomé(Z ) 4, φ ≈ 0.680) nob nob nob

square (Z ) 4, φ ≈ 0.785) yes yes no
triangular (Z ) 6, φ ≈ 0.907) yes yes yes
diamond (Z ) 4, φ ≈ 0.340) yes no no
simple cubic (Z ) 6, φ ≈ 0.524) yes yes no
body-centered cubic

(Z ) 8, φ ≈ 0.680)
yes yes no

face-centered cubic
(Z ) 12,φ ≈ 0.741)

yes yes yes

hexagonal close-packed
(Z ) 12,φ ≈ 0.741)

yes yes yes

a Here hard boundaries are applicable: in two dimensions, we use
commensurate rectangular boundaries, and in three dimensions, we use
a cubical boundary with the exception of the hexagonal close-packed
lattice in which the natural choice is a hexagonal prism.b With
appropriately placed regular triangular- or hexagonal-shaped boundaries,
the Kagome´ lattice is locally, collectively, and strictly jammed.

Figure 4. An example of a two-dimensional packing that is collectively
jammed with a hard rectangular boundary.
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does not deform under these boundary conditions, then it is
stable or, equivalently, the packing is strictly jammed. If the
network deforms, then the packing is not strictly jammed. To
our knowledge, the use of such techniques to characterize
jammed packings would be new.

The classification of random packings ofd-dimensional
spheres according to our criteria defined above possesses direct
relevance to the ongoing search for maximally random jammed
(MRJ) states. Even for a given choice of scalar order parameter
ψ, the maximally random jammed state can be expected to
depend nontrivially on which of the three jamming definitions
(locally, collectively, or strictly jammed) has been imposed. It
seems likely that there is a wide class of random packings that
satisfy both the locally jammed and collectively jammed criteria.
However, it is not clear whether random packings can be strictly
jammed with more than vanishingly small probability. In other
words, it may be very unlikely to find collectively jammed
configurations that are able to resist all shear deformations. As
noted earlier, our suggested generalization of the rigidity
percolation concept may prove valuable in identifying strictly
jammed structures and in characterizing those local geometric
attributes which allow them to resist shear.

5. Concluding Remarks

We have shown that there is a multiplicity of generation,
selection, and classification procedures for jammed configura-
tions of identicald-dimensional hard spheres. In particular, we
have given three different definitions for jammed configura-
tions: (1) locally jammed configuration, (2) collectively jammed
configuration, and (3) strictly jammed configuration. Impor-
tantly, the particular classification of a random packing depends
crucially on the type of boundary conditions imposed as well
as the shape of the boundary. We also have shown how the
concept of rigidity percolation, previously applied to understand
the mechanical properties of network glasses, can be generalized
to characterize hard-sphere packings even further. We have
categorized common ordered lattices according to our definitions
and discussed implications for random disk and sphere packings.
Thus, we see that the characterization of jammed hard-particle

packings is inherently nonunique and that the choice one makes
is ultimately problem-dependent. Finally, we have discussed the
practical implementation of our three different definitions for
jammed configurations.
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