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Realizable single-scale dispersions
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It is known that the popular effective medium approximati&mA) for the effective conductivity

o Of a composite is exactly realizable by certain multiscale hierarchical microstructures. We have
found a class of periodic, single-scale dispersions that achieve the EMA function at a given phase
conductivity ratio for a two-phase, two-dimensional composite over all volume fractions. Moreover,
to an excellent approximatiaibut not exactly, the same structures realize the EMA for almost the
entire range of phase conductivities and volume fractions. The inclusion shapes are given
analytically by the generalizelypocycloid which in general has a nonsmooth interface. To find
these structures, we utilized target optimization techniques and a theorem concerning the spectral
function. © 2001 American Institute of Physic§DOI: 10.1063/1.1336523

I. INTRODUCTION size are well separated with self-similarity on all length
scales’ In light of this result, it is clear why the EMA for-

The determination of the effective properties of COMPOSyy 15 preaks down when applied to dispersions of identical

ites continues to be an active area of research. There are.d.1ar inclusions. Since the EMA formuld) is realizable,

variety of techniques that have been used to estimate the st satisfy the general phase—interchange refation
effective properties, including approximate methods, rigor-

ous bounding techniques, and numerical methods. 0e(01,07)0¢(05,01) =010, (2

Bruggeman’s symmetric effective-medium approxma-whereae(al’gz) and o(0,.01) are the effective conduc-

tion (EMA) for the effective conductivityr, of an isotropic tivities of the original isotropic composite and the one with

two—phas:e compositaemains a popular self-.con5|stent P the same microstructure but with the phases interchanged.
proximation. Analogous expressions also exist for the effec:

. ) ) . Relation(2) applies to any two-phase, two-dimensional iso-
tive elastic moduli of compositésand are equally popular. : ;
For the case of a two-phase, two-dimensional, isotropic comt-rOpIC composite. L _
’ ’ An interesting question is the following: Can the EMA

posite, the EMA formula fowr, is given by formula be realized by simple structures with a single length
scale? The discovery of such structures would be of funda-
=0, @ mental value and would lend new insight into the applicabil-

) o ity of the EMA formulation. We know from the derivation of
whered; ando; are the volume fraction and conductivity of (1) that dilute distributions of circular inclusions of phase 2

p.hasei, respeqtively. Note that relatigi) is invariant to the (phase 1in a matrix of phase Iphase 2 realize the EMA
simultaneous |nterchaqgﬁlqu anq b1 ba. _ formula when¢,—0 (¢,—1). However, at arbitrary vol-

. The'EMA gxpregsmr(l) is derived by embgddmg & ume fractions, it is not known whether single-scale structures
single circular inclusion in a homogeneous medium whose,hieye(1) and, if so, whether one can find such structures
effective co_ngiuctl\{ltycre is the L_mknown tp be c_alculat_ed that are independent of the phase contrast it .
and determiningr, in a self-consistent fashion. This relation |, qetermining whether there are single-scale structures
is analytical because it relies on the known exact field solughat achieve an effective conductivity function, there are two

tion for a single circular inclusion of one conductivity in an iterent levels of realizability, in increasing levels of diffi-
infinite matrix of another conductivity. Because of its sim- culty in realization:

pIic_ity, it te_nds to be Iibera!ly anq ofter_l incor_rectly ap.plied_to (1) Finding a microstructure that matches the effective
various mlcrostructgres, including dl_spersmns of 'de_m'calconductivity for a given phase contrast ratig /o, for all
circular disks at arbitrary volume fractions. Moreover, it hasvolume fractions: and

been criticized because i_t predicts a s_purio_us pe_rcolation (2) finding a microstructure that matches the entire con-
threshold (,=1/2) for dispersions of identical circular g,ctivity function, i.e., with a microstructure that is indepen-

disks. _ _ __ dent of o,/ (or independent of the frequency if one is
Interestingly, Milton showed that the EMA expression is considering the quasistatic response

exactly realized. by gran_ular aggregatgs of the two phases |, this article, we show that for the EMA formuld),

such that spherical grairg any dimensionof comparable  here is a special two-dimensional dispersion of inclusions

characterized by a single length that achieves the first goal
dCorresponding author; Electronic mail: torquato@princeton.edu and, to an excellent approximation, achieves the second goal
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for almost all phase conductivities and volume fractions. Thdures with targeted effective conductivities that are in very
inclusion shapes are given analytically by the generalizedjood agreement with the EMA values thatithin the nu-
hypocycloid We arrive at this result by formulating the task merical accuracy of the topology optimization methade

as a target optimization problem and then solving it by aindependent of the ratier,/o;,. These structures possess
two-step process. In the first step, we utilize the topologyphase-inversion symmetry, i.e., the morphology of phase 1 at
optimization method to suggest the basic topological and/olume fractiong, is the same as the morphology of phase 2
geometrical features of the dispersions. This process andwhen the volume fraction of phase 1 is-%,. Thus, we
theorem leads to a proposed analytical shégeneralized need only focus on the rangesQp,<1/2.

hypocycloid for the inclusions whose free parameters are  We verified that asg, approaches zero, phase 2 ap-
found to match the EMA effective conductivity functidth) proaches a circular inclusion. On the other handp gt ¢,

via shape optimization. =1/2, the EMA formula reduces to the geometric-mean
formula
Il. TARGET OPTIMIZATION
0=\ 0109, (4)

We will restrict ourselves to periodic media. However,
for such composites, there are no exact techniques that camd our algorithm finds the regular checkerboard arrange-
yield closed-form analytical solutions of the effective con-ment. Thus, ath, = ¢,=1/2, the square unit cell contains a
ductivity for inclusions of simple shape.g., circleg at ar-  smaller squaréphase 2, rotated at 45°, whose corners just
bitrary volume fractions, let alone inclusions of arbitrary touch the sides of the unit cell. The regular checkerboard is
shape. Thus, the search for single-scale structures that attainown to be one of the structures that exactly achiedgs
(1) at arbitrary volume fractions must ultimately be carriedindependent of the ratioo,/o,. From the phase—
out numerically. interchange relatiorf2), it is seen that the geometric-mean

The target optimization procedure introduced by usformula o.=+o;0, is exact for any two phase, two-
recently is a means of finding composite microstructuresdimensional composite whose phase topologies are statisti-
with targeted properties under specified constraints. For theally equivalent. This class encompasses a variety of differ-
problem at hand, the objective functidn for the target op- ent composites, including the regular checkerboard, other
timization problem is given by a least-squares form involv-regular arrangements and the random checkerboard. The
ing the effective property, and a target property,, which  regular checkerboard is found because of the symmetries that
we take to be given by the EMA relatiofl). Thus, the we impose, unit cell that we employ, and the size of the
optimization problem is defined as follows: “filter” that we use to avoid local minimd.Note that con-
duction is dominated by transport through the “necks”

minimize: ®=(oe— o) ®) (corner pointy connecting the conducting phase. Indeed,
subject to: fixed volume fraction this is consistent with the fact that EMA structures have a
] . percolation thresholdp,=1/2 in the limits o,/0,—> or
and prescribed symmetries. oylo1—0.

An initial microstructure is allowed to evolve to the targeted ~ Therefore, for our special dispersions that realize the
state by minimizing the objective functich. Various exist- EMA formula, phase 2 deforms from a very small circular
ing optimization procedures can be used to solve the aboviéclusion arranged in a regular checkerboard pattern in a ma-
target problem, including thetopology optimization trix of phase 1 whemp,— 0 to large conducting and noncon-
method’ and shapeoptimization procedur. ducting square inclusions of identical sizes arranged on a
To begin, we use an adaptation of the topology optimi-regular checkerboard whep,=1/2. At intermediate volume
zation procedure for target optimizatioto determine:(i)  fractions, the inclusion shapes are quite interesting $At
whether single-scale structures that realizecan be found =~0.1, the inclusions are square-like in shape. At still higher
and (ii) if so, what are the topologies and geometries of thevalues of¢,, the inclusions are star shaped with four points.
structures suggested by the technique. The design domainf®r example, Fig. 1 shows a>2 cell at ¢,=0.3 and
the periodic square unit cell and is initialized by discretizingo2/01=100. The inclusion eventually becomes a square at
it into 14 400 square finite elements. The optimization pro-¢2= 1/2.
cedure proceeds sequentially. At each step in the evolution
of the target optimization procedure, the local fields are
found_ using finiteT _elements_ and then averaged to_yield th@|. SHAPE OPTIMIZATION
effective conductivity. This is followed by changes in mate-
rial type of each of the finite elements, based on sensitivities  Although the topology optimization technique captures
of the objective function and constraints. This process conthe salient topological and geometrical features of the micro-
tinues until the objective function is minimized. structures, it is difficult for this method to yield nonsmooth
We simulated a very wide range of volume fractionsinterfaces(hinted at in Fig. 1 when using square finite ele-
(¢,=0.1-0.9) starting from random initial guesses. We im-ments in the digitization process. However, a theorem due to
posed reflection symmetry about the horizontal and verticaBergmaf states that the interface of a periodic composite
axes and studied a wide range of values of the phase contrasiot at percolationmust be nonsmooth if the spectrum of the
ratio o, /0. Indeed, the algorithm finds single-scale struc-conductivity function is continuous. Now since it is known
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Parameters a, b

b,

FIG. 2. The dimensionless parametarandb vs the volume fractiorp, of

FIG. 1. Periodic mediuni2 X 2 unit cellg that realizes the EMA relatiofi) phase 2 in the range<0¢,=1/2 for the EMA reI_atior(l). The fiIIed_ circl_es
for ¢,=0.3 ando, /e, =100 as suggested by the target optimization pro- and squares are computed data and the solid curves are spline fits of the

cedure. Phases 1 and 2 are the white and black phase, respectively. data. Because of phase-inversion symmetry, the valuesanid b f_or 1/2
<¢,<1 are obtained from the above curves and the relatiafis,)

=a(1- ) andb(¢z)=b(1—¢,).

that the EMA relation(1) has a continuougbranch cut
spectrun®, then, for volume fractions in the range<Gp,

<1, the interfaces must be nonsmooth. . arranged in a checkerboard pattéwhose principal axes are
An inclusion shape that satisfies the above mentioneq . \taq at 45° with respect to the coordinate frarfee a

basic topological and geometrical features of the target c)pti\'/vide range of volume fractions and phase contrast ratios. We

mization results but whose boundary is nonsmooth for Oy hared these results to corresponding results of Hui and

=¢,<1 is the generalized hypocycloid. This shape is deyg_ 444 \yho computedr, by solving numerically the trun-
fined in thex-y plane by the equation cated set of linear equations for the potential. Our results
X2 4 2o = 52b, (5  agree with their results up to at least four significant figures

wherea andb are dimension! rameters and all distan for all volume fractions. The accuracy of our estimates of
cereaa are dimensioniess parameters and all distanceg, . of e previous examples are consistent with an inde-
(%, y, anda) are given in units of the cell length. The special

D=1 2 d3 ifies the circl df pendent error analysis which we will discuss.
casesh=1, s, an P specities The circle, square, and 1oUr=—yq how return to the determination of the parameters
cu_sped_hy_pocyclm ,_res_pegtwely. The volume fraction of andb that specify the generalized hypocycloid sh&pe For
this periodic composite is given by constant values of the volume fracti@i, we see from Eq.
(2 b abb2 (6) that the parametea uniquely determined and vice
$2= o (@7 =x7")>dx. (6)  versa. By moving along lines of constast by varyinga,
. _ . we seek to ascertain whether the effective conductivity func-
To examine whether this proposed shape realizes thon so determined intersects the EMA value for a fixed
EMA formula, we use the shape optimization procedure, xphase contrast ratio, /o . Thus, the problem is reduced to
cept here we utilize the boundary-element metfioaldeter-  getermine whether the objective functié®) can be made to
mine the effective conductivity. The boundary-elementpg exactly zero, i.e.g, is given by the EMA formula(1).
method is highly accurate, even for nonsmooth boundarieszor the boundary element calculation, we used at least 3000
because the interface is discretized into line elements. boundary elements. However’ we refined the elements near
~ Before determining the optimum values @fandb, we  the cusps for the generalized hypocycloids. This was espe-
first checked the accuracy of boundary-element method Prially necessary for the cases,=0.4 in which extremely
cedure against known results for the conductivity of  narrow necks existed between neighboring cusps. For ex-
square inclusions. Mortola and Stéfténave conjectured that ample, at¢$,=0.45, the size of refined elements near the
a square array of oriented square inclusiomose principal  cysps is less than 16 of the domain size. This refinement
axes coincide with the coordinate frayra an inclusion vol-  of the elements enhanced the accuracy significantly in that

ume fractiong,=1/4 is exactly given by region.
o o +3 We first examined the infinite phase-contrast case
e 1 ) 15 s
— =\ (7) o,lo1=0 for ¢p,<1/2> We found that, within the accuracy
o 301+ 0,

of the BEM technique, the generalized hypocycloids realize
Subsequently, Obnostiproved this conjecture to be rigor- the EMA function(1). The resulting EMA values od andb
ously true. We carried out boundary-element calculations foare plotted in Fig. 2 as a function of the volume fraction for
this special case for a number of phase contrast ratios, i< ¢,=<1/2. Table | gives the numerical values faandb
cluding the infinite-contrast cases,/o;=0 and o,/04 as well as the corresponding effective conductivities along
=00, and found agreement with the exact re$Hl. (7)]up  with conservative error estimates based on many different
to five significant figures for the typical resolutions used. Weboundary-element meshes. The valuesacdnd b for 1/2
also computeds, for periodic arrays of square inclusions < ¢,<1, are obtained from Fig. r Table ) and the rela-
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TABLE |. Values of the hypocycloid parametessand b corresponding to
the EMA formula(1) for infinite-contrast case,/o;=0 for different in-
clusion volume fractions. The computed effective conductiviigdsng with

error barg are compared to the values given by the EMA formdpa ' ‘
b oeloy (EMA)

b, a o.loq (hypocycloid
0.02500 0.20063 1.54968 0.94996x10°° 0.95000
0.05000 0.29844 1.76404 0.89998x 107° 0.90000
0.08878 0.42137 2.00000 0.82248x10°° 0.82245 ¢2 = 0.001 ¢2 =0.05 ¢2 = 0.089
0.10000 0.45352 2.05581 0.79998x 1075 0.80000
0.15000 0.58555 2.26236 0.69998x 10°° 0.70000
0.20000 0.70373 2.41572 0.59998x 10 ° 0.60000
0.25000 0.80895 2.52076 0.50005x 107 0.50000
0.30000 0.89740 2.56810 0.40008x 1073 0.40000
0.35000 0.96156 2.53804 0.29998x 1074 0.30000
0.40000 0.99383 2.41045 0.2000%x 104 0.20000
0.45000 0.99996 2.20761 0.1005x 10" * 0.10000

¢2=0.5
tionsa(¢,)=a(l— ¢,) andb(d,)=b(1— ¢,), by virtue of
phase-inversion symmetry. As expectads 0 andb=1 for
,=0 and¢,=1, since the circle is recovered in these lim-
its. The special cases of square inclusions occur at three dif-
ferent volume fractions#,=0.088 78(a=0.42137,b=2),
¢>=1/2(a=1,b=2) and $,=0.9112(a=0.42137b=2).
The corresponding unit cells of inclusions in a matrix for @2 = 0.911 @2 = 0.95 @2 = 0.999
selected values of the volume fraction in the range &
<1 are shown in Fig. 3. We can now see precisely how th&!G. 3. Unit cells of generalized hypocycloidal inclusions in a matrix that

- _ _ realize the EMA relatiorl) for selected values of the volume fraction in the
circle at b2= 0 transforms to a small square @b= 0.089, range 0< ¢,<1. Phases 1 and 2 are the white and black phase, respectively.

which in turn tranSformS_ to the |a'jge squarefgt= 1/2_- The 1o emphasize the phase-inversion symmetry property, we have shifted the
nonsmoothness of the interface is apparent for virtually allocations of the unit cells for,>1/2.

volume fractions and explains why the EMA formula cannot
be applied to dispersions of identical circular inclusions un-
der general conditions.

To determine whether the generalized hypocycloidal disthat the parametei@andb changed slightly from the values
persions realized the EMA formula independent of thereported in Table | with errors comparable to those found in
phase-contrast ratio, we carried out two different studies. Itthe first study.
the first study, we computed the effective conductivity using  Another way to show that the generalized hypocycloidal
the microstructuréTable |) for different finite phase contrast dispersions cannot exactly realize the EMA relation for all
ratios (o,/0;=0.9, 0.5, 0.2, 10!, 1072, 10 4, and 10% ¢, ando,/0; is to appeal to the spectral properties of the
and compared the results to the EMA values. We found thaonductivity function. Hetherington and Thoffdave stud-
to an excellent approximation, the computed effective conied the spectral properties of the effective conductivity of
ductivities matched the EMA values, except for the case oflilute dispersions of regular polygonal inclusions to first or-
¢$,=0.45 ando,/o;=10"2. At the smallest volume frac- der in ¢,. Specifically, they determined that a polygonal
tion (¢$,=0.025), we found perfect agreememtithin nu-  corner having an included angle éfwill produce a branch
merical accuracy independent ofo,/o;. The error in- cut of the conductivity function extending between conduc-
creases as the volume fraction is increased up4e-0.45  tivity ratios of 6/(6—2#) and (#—2)/ 6. However, this
and eventually goes to zero é,=1/2, where of course our result extends to nondilute concentrations of arrays of po-
dispersion exactly achieves the EMA formula. F@r,  lygonal inclusions because near the branch cut all the power
=0.08878, 0.2, and 0.3, the largest errdozcurring at dissipation essentially occurs within an infinitesimal distance
o,l0,=10"1) are 0.015%, 0.11%, and 0.83%, respectively.away from the corner poirlt. For the case of a squard (
For ¢,=0.4 and¢,=0.45, the largest error®ccurring at = «/2), the branch cut occurs betweeril/3 and —-3. In-
o,/0,=102) are 2.9% and 8.3%, respectively. However, indeed, we see that the Mortola—Steffe analytical form@a
these two cases, the errors for other phase contrasts appfer periodic arrays of squares &t =1/4 has such a branch
ciably smaller than their maximum values. cut between these two points.

In the second study, we carried out calculations to ascer- For the generalized hypocycloidal dispersion, the special
tain the best values of the parametamndb for other phase case of square inclusion occurs, among other volume frac-
contrast ratios. Importantly, we found that we were alwaysgtions, at¢,=0.088 78. We can check whether the branch cut
able to find generalized hypocycloidal shapes for all volumebetween—1/3 and—3 for this volume fraction is consistent
fractions, regardless of the rati®, /oy and with the same with the branch cut of the EMA conductivity functiofi)
accuracy reported above for,/o;=0. However, we found which extends between the following two poiits:
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(p1— py)2—2+4 /¢1¢2 Our work raises a more general question in the theory of
(b1=d)? : (8)  composites: Caany admissibleffective conductivity func-
rore tion be realized by single-scale structures? It is known that

At ¢,=0.088 78, this relation predicts a branch cut betweercertain multiscale laminates can realize any conductivity
—0.274 82 and-3.6388, which we see is inconsistent with function of two-dimensional, two-phase Composﬁ%@ur

the branch cut for square inclusions. work suggests that single-scale structures cannot exactly
match any conductivity function. However, finding single-
IV. DISCUSSION AND CONCLUSIONS scale structures that approximately realize an effective prop-

To summarize, periodic arrays of generalized hypocyc-erty function is practically important since such structures
loidal inclusions arranged in a checkerboard pattern achieve®n be fabricated and therefore this less ambitious goal is
(within numerical accuradythe EMA formula (1) for all still very attractive. All of these questions and issues will be
volume fractions for a given ratio,/o,. Moreover, the @addressed in future studies.
same structures achieve this conductivity function, to an ex-
cellent approxm_atlon, for. aIm_ost aI.I phase CondPCt'V't'eSACKNOWLEDGMENTS
and volume fractions. At dilute inclusion concentrations, our
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the expansion of the EMA relation through second order
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_ _ 2 5S. Hyun and S. Torquato, J. Mater. R&8, 280 (2007).
O¢ Oy~ 0 Oy~ 01 2 3 6 L .
— =142 ——| ¢+ 2| —— ¢2+ O( ¢2) (10) M. P. Bendge, Methods for the Optimization of Structural Topology
g, oyt oy oyt oy (Springer, Berlin, 1996
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sions. The two expansions differ at the second order termrolles, Paris, 1985

. : : °D. J. Bergman, Phys. Repo#$8, 377 (1979.
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. . . . . Mortola an . e endiconti/o, .
|nc_Iu5|ons that we have found to attal_n the EMA _rel_atlon 13y V. Obnosov, SIAM J. Appl. Matf9, 1267(1999.
unique? We believe the answer to this question is in the4_ Hui and B. Ke-da, Phys. Rev. B6, 9209(1992.
negative. For example, if we had chosen a different underlylSThe casep,=1/2 does not have to be considered since we already know
ing lattice (e.g., triangular or hexagonalve suspect that the 16the regular c-heckerboard exactly achieves o,, independent ofr, /oy .
EMA relation would be realizable by different inclusion éé?'(l';‘;tge””gm” and M. F. Thorpe, Proc. R. Soc. London, Set3a
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