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Effective-medium approximation for composite media:
Realizable single-scale dispersions
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~Received 21 September 2000; accepted for publication 6 November 2000!

It is known that the popular effective medium approximation~EMA! for the effective conductivity
se of a composite is exactly realizable by certain multiscale hierarchical microstructures. We have
found a class of periodic, single-scale dispersions that achieve the EMA function at a given phase
conductivity ratio for a two-phase, two-dimensional composite over all volume fractions. Moreover,
to an excellent approximation~but not exactly!, the same structures realize the EMA for almost the
entire range of phase conductivities and volume fractions. The inclusion shapes are given
analytically by the generalizedhypocycloid, which in general has a nonsmooth interface. To find
these structures, we utilized target optimization techniques and a theorem concerning the spectral
function. © 2001 American Institute of Physics.@DOI: 10.1063/1.1336523#
os
re
t

or

a

p-
ec
.
om

f

os
d
n
lu
n
-

to
ca
as
tio
r

is
s

th

ical

-
ith
ged.
o-

A
gth
da-
il-
f
2

res
res

res
wo
-

ive

n-
n-
is

ns
oal

goal
I. INTRODUCTION

The determination of the effective properties of comp
ites continues to be an active area of research. There a
variety of techniques that have been used to estimate
effective properties, including approximate methods, rig
ous bounding techniques, and numerical methods.

Bruggeman’s symmetric effective-medium approxim
tion ~EMA! for the effective conductivityse of an isotropic
two-phase composite1 remains a popular self-consistent a
proximation. Analogous expressions also exist for the eff
tive elastic moduli of composites2 and are equally popular
For the case of a two-phase, two-dimensional, isotropic c
posite, the EMA formula forse is given by

f1S se2s1

se1s1
D1f2S se2s2

se1s2
D50, ~1!

wheref i ands i are the volume fraction and conductivity o
phasei, respectively. Note that relation~1! is invariant to the
simultaneous interchanges1↔s2 andf1↔f2 .

The EMA expression~1! is derived by embedding a
single circular inclusion in a homogeneous medium wh
effective conductivityse is the unknown to be calculate
and determiningse in a self-consistent fashion. This relatio
is analytical because it relies on the known exact field so
tion for a single circular inclusion of one conductivity in a
infinite matrix of another conductivity. Because of its sim
plicity, it tends to be liberally and often incorrectly applied
various microstructures, including dispersions of identi
circular disks at arbitrary volume fractions. Moreover, it h
been criticized because it predicts a spurious percola
threshold (f251/2) for dispersions of identical circula
disks.

Interestingly, Milton showed that the EMA expression
exactly realized by granular aggregates of the two pha
such that spherical grains~in any dimension! of comparable
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size are well separated with self-similarity on all leng
scales.3 In light of this result, it is clear why the EMA for-
mula breaks down when applied to dispersions of ident
circular inclusions. Since the EMA formula~1! is realizable,
it must satisfy the general phase–interchange relation4

se~s1 ,s2!se~s2 ,s1!5s1s2 , ~2!

wherese(s1 ,s2) andse(s2 ,s1) are the effective conduc
tivities of the original isotropic composite and the one w
the same microstructure but with the phases interchan
Relation~2! applies to any two-phase, two-dimensional is
tropic composite.

An interesting question is the following: Can the EM
formula be realized by simple structures with a single len
scale? The discovery of such structures would be of fun
mental value and would lend new insight into the applicab
ity of the EMA formulation. We know from the derivation o
~1! that dilute distributions of circular inclusions of phase
~phase 1! in a matrix of phase 1~phase 2! realize the EMA
formula whenf2→0 (f1→1). However, at arbitrary vol-
ume fractions, it is not known whether single-scale structu
achieve~1! and, if so, whether one can find such structu
that are independent of the phase contrast ratios2 /s1 .

In determining whether there are single-scale structu
that achieve an effective conductivity function, there are t
different levels of realizability, in increasing levels of diffi
culty in realization:

~1! Finding a microstructure that matches the effect
conductivity for a given phase contrast ratios2 /s1 for all
volume fractions; and

~2! finding a microstructure that matches the entire co
ductivity function, i.e., with a microstructure that is indepe
dent of s2 /s1 ~or independent of the frequency if one
considering the quasistatic response!.

In this article, we show that for the EMA formula~1!,
there is a special two-dimensional dispersion of inclusio
characterized by a single length that achieves the first g
and, to an excellent approximation, achieves the second
5 © 2001 American Institute of Physics
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for almost all phase conductivities and volume fractions. T
inclusion shapes are given analytically by the generali
hypocycloid. We arrive at this result by formulating the tas
as a target optimization problem and then solving it by
two-step process. In the first step, we utilize the topolo
optimization method to suggest the basic topological a
geometrical features of the dispersions. This process a
theorem leads to a proposed analytical shape~generalized
hypocycloid! for the inclusions whose free parameters a
found to match the EMA effective conductivity function~1!
via shape optimization.

II. TARGET OPTIMIZATION

We will restrict ourselves to periodic media. Howeve
for such composites, there are no exact techniques that
yield closed-form analytical solutions of the effective co
ductivity for inclusions of simple shape~e.g., circles! at ar-
bitrary volume fractions, let alone inclusions of arbitra
shape. Thus, the search for single-scale structures that a
~1! at arbitrary volume fractions must ultimately be carri
out numerically.

The target optimization procedure introduced by
recently5 is a means of finding composite microstructur
with targeted properties under specified constraints. For
problem at hand, the objective functionF for the target op-
timization problem is given by a least-squares form invo
ing the effective propertyse and a target propertys0 , which
we take to be given by the EMA relation~1!. Thus, the
optimization problem is defined as follows:

minimize: F5~se2s0!2 ~3!

subject to: fixed volume fraction

and prescribed symmetries.

An initial microstructure is allowed to evolve to the target
state by minimizing the objective functionF. Various exist-
ing optimization procedures can be used to solve the ab
target problem, including the topology optimization
method6,7 andshapeoptimization procedure.6

To begin, we use an adaptation of the topology optim
zation procedure for target optimization5 to determine:~i!
whether single-scale structures that realize~1! can be found
and ~ii ! if so, what are the topologies and geometries of
structures suggested by the technique. The design doma
the periodic square unit cell and is initialized by discretizi
it into 14 400 square finite elements. The optimization p
cedure proceeds sequentially. At each step in the evolu
of the target optimization procedure, the local fields a
found using finite elements and then averaged to yield
effective conductivity. This is followed by changes in mat
rial type of each of the finite elements, based on sensitivi
of the objective function and constraints. This process c
tinues until the objective function is minimized.

We simulated a very wide range of volume fractio
(f250.1– 0.9) starting from random initial guesses. We i
posed reflection symmetry about the horizontal and vert
axes and studied a wide range of values of the phase con
ratio s2 /s1 . Indeed, the algorithm finds single-scale stru
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
e
d

a
y
d
a

e

an

ain

s

e

-

ve

-

e
is

-
n

e
e

-
s
-

-
al
ast
-

tures with targeted effective conductivities that are in ve
good agreement with the EMA values that~within the nu-
merical accuracy of the topology optimization method! are
independent of the ratios2 /s1 . These structures posse
phase-inversion symmetry, i.e., the morphology of phase
volume fractionf1 is the same as the morphology of phase
when the volume fraction of phase 1 is 12f1 . Thus, we
need only focus on the range 0<f2<1/2.

We verified that asf2 approaches zero, phase 2 a
proaches a circular inclusion. On the other hand, atf15f2

51/2, the EMA formula reduces to the geometric-me
formula

se5As1s2, ~4!

and our algorithm finds the regular checkerboard arran
ment. Thus, atf15f251/2, the square unit cell contains
smaller square~phase 2!, rotated at 45°, whose corners ju
touch the sides of the unit cell. The regular checkerboar
known to be one of the structures that exactly achieves~4!,
independent of the ratios2 /s1 . From the phase–
interchange relation~2!, it is seen that the geometric-mea
formula se5As1s2 is exact for any two phase, two
dimensional composite whose phase topologies are sta
cally equivalent. This class encompasses a variety of dif
ent composites, including the regular checkerboard, o
regular arrangements and the random checkerboard.
regular checkerboard is found because of the symmetries
we impose, unit cell that we employ, and the size of t
‘‘filter’’ that we use to avoid local minima.7 Note that con-
duction is dominated by transport through the ‘‘neck
~corner points! connecting the conducting phase. Indee
this is consistent with the fact that EMA structures have
percolation thresholdf251/2 in the limits s2 /s1→` or
s2 /s1→0.

Therefore, for our special dispersions that realize
EMA formula, phase 2 deforms from a very small circul
inclusion arranged in a regular checkerboard pattern in a
trix of phase 1 whenf2→0 to large conducting and noncon
ducting square inclusions of identical sizes arranged o
regular checkerboard whenf251/2. At intermediate volume
fractions, the inclusion shapes are quite interesting. Atf2

'0.1, the inclusions are square-like in shape. At still high
values off2 , the inclusions are star shaped with four poin
For example, Fig. 1 shows a 232 cell at f250.3 and
s2 /s15100. The inclusion eventually becomes a square
f251/2.

III. SHAPE OPTIMIZATION

Although the topology optimization technique captur
the salient topological and geometrical features of the mic
structures, it is difficult for this method to yield nonsmoo
interfaces~hinted at in Fig. 1! when using square finite ele
ments in the digitization process. However, a theorem du
Bergman8 states that the interface of a periodic compos
~not at percolation! must be nonsmooth if the spectrum of th
conductivity function is continuous. Now since it is know
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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that the EMA relation~1! has a continuous~branch cut!
spectrum,9 then, for volume fractions in the range 0<f2

,1, the interfaces must be nonsmooth.
An inclusion shape that satisfies the above mentio

basic topological and geometrical features of the target o
mization results but whose boundary is nonsmooth fo
<f2,1 is the generalized hypocycloid. This shape is d
fined in thex-y plane by the equation

x2/b1y2/b5a2/b, ~5!

wherea andb are dimensionless parameters and all distan
~x, y, anda! are given in units of the cell length. The spec
casesb51, 2, and 3 specifies the circle, square, and fo
cusped hypocycloid,10 respectively. The volume fraction o
this periodic composite is given by

f25E
0

a

~a2/b2x2/b!b/2dx. ~6!

To examine whether this proposed shape realizes
EMA formula, we use the shape optimization procedure,
cept here we utilize the boundary-element method11 to deter-
mine the effective conductivity. The boundary-eleme
method is highly accurate, even for nonsmooth boundar
because the interface is discretized into line elements.

Before determining the optimum values ofa andb, we
first checked the accuracy of boundary-element method
cedure against known results for the conductivityse of
square inclusions. Mortola and Steffe12 have conjectured tha
a square array of oriented square inclusions~whose principal
axes coincide with the coordinate frame! at an inclusion vol-
ume fractionf251/4 is exactly given by

se

s1
5As113s2

3s11s2
. ~7!

Subsequently, Obnosov13 proved this conjecture to be rigor
ously true. We carried out boundary-element calculations
this special case for a number of phase contrast ratios
cluding the infinite-contrast casess2 /s150 and s2 /s1

5`, and found agreement with the exact result@Eq. ~7!# up
to five significant figures for the typical resolutions used. W
also computedse for periodic arrays of square inclusion

FIG. 1. Periodic medium~232 unit cells! that realizes the EMA relation~1!
for f250.3 ands2 /s15100 as suggested by the target optimization p
cedure. Phases 1 and 2 are the white and black phase, respectively.
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
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arranged in a checkerboard pattern~whose principal axes are
oriented at 45° with respect to the coordinate frame! for a
wide range of volume fractions and phase contrast ratios.
compared these results to corresponding results of Hui
Ke-da14 who computedse by solving numerically the trun-
cated set of linear equations for the potential. Our res
agree with their results up to at least four significant figu
for all volume fractions. The accuracy of our estimates ofse

for all of the previous examples are consistent with an in
pendent error analysis which we will discuss.

We now return to the determination of the parametera
andb that specify the generalized hypocycloid shape~5!. For
constant values of the volume fractionf2 , we see from Eq.
~6! that the parametera uniquely determinesb and vice
versa. By moving along lines of constantf2 by varying a,
we seek to ascertain whether the effective conductivity fu
tion so determined intersects the EMA value for a fix
phase contrast ratios2 /s1 . Thus, the problem is reduced t
determine whether the objective function~2! can be made to
be exactly zero, i.e.,se is given by the EMA formula~1!.
For the boundary element calculation, we used at least 3
boundary elements. However, we refined the elements
the cusps for the generalized hypocycloids. This was es
cially necessary for the casesf2>0.4 in which extremely
narrow necks existed between neighboring cusps. For
ample, atf250.45, the size of refined elements near t
cusps is less than 1027 of the domain size. This refinemen
of the elements enhanced the accuracy significantly in
region.

We first examined the infinite phase-contrast ca
s2 /s150 for f2,1/2.15 We found that, within the accurac
of the BEM technique, the generalized hypocycloids real
the EMA function~1!. The resulting EMA values ofa andb
are plotted in Fig. 2 as a function of the volume fraction f
0<f2<1/2. Table I gives the numerical values fora andb
as well as the corresponding effective conductivities alo
with conservative error estimates based on many differ
boundary-element meshes. The values ofa and b for 1/2
<f2<1, are obtained from Fig. 2~or Table I! and the rela-

FIG. 2. The dimensionless parametersa andb vs the volume fractionf2 of
phase 2 in the range 0<f2<1/2 for the EMA relation~1!. The filled circles
and squares are computed data and the solid curves are spline fits o
data. Because of phase-inversion symmetry, the values ofa and b for 1/2
<f2<1 are obtained from the above curves and the relationsa(f2)
5a(12f2) andb(f2)5b(12f2).
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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tionsa(f2)5a(12f2) andb(f2)5b(12f2), by virtue of
phase-inversion symmetry. As expected,a50 andb51 for
f250 andf251, since the circle is recovered in these lim
its. The special cases of square inclusions occur at three
ferent volume fractions:f250.088 78~a50.421 37,b52!,
f251/2 ~a51, b52! andf250.9112~a50.421 37,b52!.

The corresponding unit cells of inclusions in a matrix f
selected values of the volume fraction in the range 0,f2

,1 are shown in Fig. 3. We can now see precisely how
circle at f250 transforms to a small square atf250.089,
which in turn transforms to the large square atf251/2. The
nonsmoothness of the interface is apparent for virtually
volume fractions and explains why the EMA formula cann
be applied to dispersions of identical circular inclusions u
der general conditions.

To determine whether the generalized hypocycloidal d
persions realized the EMA formula independent of t
phase-contrast ratio, we carried out two different studies
the first study, we computed the effective conductivity us
the microstructure~Table I! for different finite phase contras
ratios ~s2 /s150.9, 0.5, 0.2, 1021, 1022, 1024, and 1026!
and compared the results to the EMA values. We found t
to an excellent approximation, the computed effective c
ductivities matched the EMA values, except for the case
f250.45 ands2 /s151022. At the smallest volume frac
tion (f250.025), we found perfect agreement~within nu-
merical accuracy!, independent ofs2 /s1 . The error in-
creases as the volume fraction is increased up tof250.45
and eventually goes to zero atf251/2, where of course ou
dispersion exactly achieves the EMA formula. Forf2

50.088 78, 0.2, and 0.3, the largest errors~occurring at
s2 /s151021! are 0.015%, 0.11%, and 0.83%, respective
For f250.4 andf250.45, the largest errors~occurring at
s2 /s151022! are 2.9% and 8.3%, respectively. However,
these two cases, the errors for other phase contrasts a
ciably smaller than their maximum values.

In the second study, we carried out calculations to as
tain the best values of the parametersa andb for other phase
contrast ratios. Importantly, we found that we were alwa
able to find generalized hypocycloidal shapes for all volu
fractions, regardless of the ratios2 /s1 and with the same
accuracy reported above fors2 /s150. However, we found

TABLE I. Values of the hypocycloid parametersa andb corresponding to
the EMA formula ~1! for infinite-contrast cases2 /s150 for different in-
clusion volume fractions. The computed effective conductivities~along with
error bars! are compared to the values given by the EMA formula~1!.

f2 a b se /s1 ~hypocycloid! se /s1 ~EMA!

0.02500 0.20063 1.54968 0.949966531025 0.95000
0.05000 0.29844 1.76404 0.899976531025 0.90000
0.08878 0.42137 2.00000 0.822426531025 0.82245
0.10000 0.45352 2.05581 0.799976531025 0.80000
0.15000 0.58555 2.26236 0.699986531025 0.70000
0.20000 0.70373 2.41572 0.599986531025 0.60000
0.25000 0.80895 2.52076 0.500016531025 0.50000
0.30000 0.89740 2.56810 0.400026531025 0.40000
0.35000 0.96156 2.53804 0.299986131024 0.30000
0.40000 0.99383 2.41045 0.20006131024 0.20000
0.45000 0.99996 2.20761 0.10016531024 0.10000
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that the parametersa andb changed slightly from the value
reported in Table I with errors comparable to those found
the first study.

Another way to show that the generalized hypocycloid
dispersions cannot exactly realize the EMA relation for
f2 and s2 /s1 is to appeal to the spectral properties of t
conductivity function. Hetherington and Thorpe16 have stud-
ied the spectral properties of the effective conductivity
dilute dispersions of regular polygonal inclusions to first o
der in f2 . Specifically, they determined that a polygon
corner having an included angle ofu will produce a branch
cut of the conductivity function extending between condu
tivity ratios of u/(u22p) and (u22p)/u. However, this
result extends to nondilute concentrations of arrays of
lygonal inclusions because near the branch cut all the po
dissipation essentially occurs within an infinitesimal distan
away from the corner point.17 For the case of a square (u
5p/2), the branch cut occurs between21/3 and23. In-
deed, we see that the Mortola–Steffe analytical formula~7!
for periodic arrays of squares atf251/4 has such a branc
cut between these two points.

For the generalized hypocycloidal dispersion, the spe
case of square inclusion occurs, among other volume f
tions, atf250.088 78. We can check whether the branch
between21/3 and23 for this volume fraction is consisten
with the branch cut of the EMA conductivity function~1!
which extends between the following two points:9

FIG. 3. Unit cells of generalized hypocycloidal inclusions in a matrix th
realize the EMA relation~1! for selected values of the volume fraction in th
range 0,f2,1. Phases 1 and 2 are the white and black phase, respecti
To emphasize the phase-inversion symmetry property, we have shifted
locations of the unit cells forf2.1/2.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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~f12f2!22264Af1f2

~f12f2!2 . ~8!

At f250.088 78, this relation predicts a branch cut betwe
20.274 82 and23.6388, which we see is inconsistent wi
the branch cut for square inclusions.

IV. DISCUSSION AND CONCLUSIONS

To summarize, periodic arrays of generalized hypoc
loidal inclusions arranged in a checkerboard pattern ach
~within numerical accuracy! the EMA formula ~1! for all
volume fractions for a given ratios2 /s1 . Moreover, the
same structures achieve this conductivity function, to an
cellent approximation, for almost all phase conductivit
and volume fractions. At dilute inclusion concentrations, o
single-scale structures appear to correspond exactly to
EMA formula for anys2 /s1 .

If the last point is true, then the nonsmoothness of
generalized hypocycloidal inclusions is already reflected
the expansion of the EMA relation through second or
in f2 :

se

s1
5112S s22s1

s21s1
Df21

4s2

s11s2
S s22s1

s21s1
D 2

f2
21O~f2

3!.

~9!

This is to be contrasted with the corresponding expansion
periodic arrays of circles:18

se

s1
5112S s22s1

s21s1
Df212S s22s1

s21s1
D 2

f2
21O~f2

3!. ~10!

Through first order inf2 , both expressions agree since
each case this corresponds to noninteracting circular in
sions. The two expansions differ at the second order t
because the inclusion~presumably corresponding to the h
pocycloid! is already noncircular.

The fact that the EMA relation is realizable~albeit ap-
proximately! by single-scale structures raises many intere
ing questions and issues. Are the generalized hypocyclo
inclusions that we have found to attain the EMA relati
unique? We believe the answer to this question is in
negative. For example, if we had chosen a different unde
ing lattice~e.g., triangular or hexagonal!, we suspect that the
EMA relation would be realizable by different inclusio
shapes. The question of the realizability by single-sc
structures of the corresponding EMA expression in three
mensions and of the EMA formulas for the effective elas
moduli is clearly fertile ground. The three-dimensional pro
lems, however, are much more challenging because
phases can be connected.
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Our work raises a more general question in the theory
composites: Canany admissibleeffective conductivity func-
tion be realized by single-scale structures? It is known t
certain multiscale laminates can realize any conductiv
function of two-dimensional, two-phase composites.19 Our
work suggests that single-scale structures cannot exa
match any conductivity function. However, finding singl
scale structures that approximately realize an effective pr
erty function is practically important since such structur
can be fabricated and therefore this less ambitious goa
still very attractive. All of these questions and issues will
addressed in future studies.
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