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Thermodynamic implications of confinement for a waterlike fluid
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A theoretical framework is introduced for studying the thermodynamics and phase behavior of a
‘‘waterlike’’ fluid film confined between hydrophobic plane surfaces. To describe the
hydrogen-bonding interactions in the fluid film, an earlier analytical theory for uniform associating
fluids is generalized. Two levels of approximation are presented. In the first, the reference fluid is
assumed to be homogeneous. Here, the primary effect of the confining walls is to reduce the average
number of favorable fluid–fluid interactions relative to the bulk fluid. The implications of this
energetic penalty for the phase behavior and, in particular, the low-temperature waterlike anomalies
of the fluid are examined. It is shown that the reduction of favorable fluid–fluid interactions can
promote strong hydrophobic interactions between the confining surfaces at nanometer length scales,
induced by the evaporation of the fluid film. In the second level of approximation, the
inhomogeneous nature of the reference fluid is accounted for by a density functional theory. The
primary effect of the density modulations is to promote or disrupt hydrogen bonding in distinct
layers within the pore. Interestingly, when the reference fluid is treated as inhomogeneous, the
theory predicts the possibility of a new low-temperature phase transition in the strongly confined
fluid. © 2001 American Institute of Physics.@DOI: 10.1063/1.1336569#
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I. INTRODUCTION

Restricted geometries that contain thin films of water
common in engineering practice, geology, and biology. E
amples include zeolites and clays,1 minerals,2 biological
hydrogels,3 vesicles,4 mesoscopic surfactant assemblie5

ionic channels,6 and even interstellar bodies.7 Consequently,
the modification of water’s behavior due to interaction with
solid surface has great scientific and technologi
significance,8–11 bearing relevance to corrosion inhibition
heterogeneous catalysis, the ascent of sap in plants, the
bility and enzymatic activity of globular proteins, and th
function of biological membranes. The recent drive to m
iaturize and integrate chemical and physical processes
wet ‘‘lab-on-a-chip’’ technologies12 further highlights the
need to understand the effects of nanoscale confinemen
water and aqueous solutions.

Although many valuable insights into the physics of co
fined phases have resulted from experiments, molec
simulations, and microscopic theories,13–15 predicting the
properties of even ‘‘simple’’ nonassociating fluids und
confinement remains a daunting theoretical task. This is d
at least in part, to the sheer number of factors that can c
tribute to the modification of a fluid’s bulk thermodynam
and transport properties, including: the size distribution,
ometry, and connectivity of the confining pores in theadsor-
bent; the molecular size and architecture of theadsorbate;
and the competition between adsorbate–adsorbate
adsorbate–adsorbent interactions. As a result of these a

a!Electronic mail: pdebene@princeton.edu
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tional considerations, materials in confined spaces can
hibit rich physical behaviors that are absent in the bulk.

From a thermodynamic perspective, the possibility ari
for surface-driven phenomena~e.g., wetting, layering, and
commensurate–incommensurate transitions! and pronounced
shifts in the ‘‘bulk’’ phase transitions~i.e., vapor–liquid,
vapor–solid, liquid–solid, and liquid–liquid!.13,15 Moreover,
confinement can severely alter the dynamics of the liq
state. One intriguing example is the apparent formation
two distinct dynamical regions in confined fluids: an interf
cial layer with decreased mobility close to the substrate
a ‘‘core’’ region farther from the substrate that exhibits fas
relaxation processes.16–20As a result, the fluid in the interfa
cial layer vitrifies at a higher temperature than the fluid in t
core.

The case of water under confinement is especially in
esting, given that bulk water exhibits a number of unus
physical properties. The bulk liquid anomalies include ne
tive thermal expansion coefficient (aP,0) over a broad
range of temperature and pressure,9,21–23strongly increasing
isobaric heat capacity (cP) and isothermal compressibility
(kT) upon isobaric cooling,9,24–26 and increasing mobility
upon isothermal compression.9,27,28Crystalline water is also
complex,29,30 exhibiting 13 distinct ice polymorphs in which
each molecule is hydrogen-bonded to four neighbors i
nearly tetrahedral arrangement.

The anomalous properties of bulk water are enhance
low temperature. In fact, below its glass transition tempe
ture ~'130 K at 1 bar!, bulk glassy water~also calledamor-
phous ice! is known to exhibit a phenomenon known a
polyamorphism31–33 in which two different forms, termed
1 © 2001 American Institute of Physics
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low-density amorphous ice~LDA ! and high-density amor
phous ice~HDA!, are separated by a seemingly first-ord
transition. Evidence suggests that liquid water and its gla
phases are both thermodynamically and structur
continuous,34–36 implying that the sharp changes in dens
that accompany the transformation from LDA into HDA a
the structurally arrested manifestation of an underly
liquid–liquid transition. This interpretation is commonly re
ferred to as thetwo-critical-point scenario because it a
tributes the anomalies of supercooled water to the prese
of a second~metastable! critical point, where the first-orde
phase transition between LDA and HDA terminates. A
though the two-critical-point scenario is not the on
thermodynamically-consistent explanation for supercoo
water’s anomalies,37–42the experimentally measured meltin
curves of high-pressure forms of ice,43,44 as well as the re-
sults from numerous computer simulations and theoret
calculations for model ‘‘waterlike’’ fluids,42,45–49,43,50,51sug-
gest the possibility of a low-temperature liquid–liquid im
miscibility.

Since bulk liquid water cannot be studied experimenta
below its homogeneous nucleation temperature~'231 K at 1
bar!, the hypothesis of a liquid–liquid transition has not be
unambiguously verified. However, confinement may prov
an alternative avenue for testing the two-critical-point h
pothesis for water. In particular, recent neutron diffracti
experiments on water confined in Vycor glass52–54 and car-
bon powder,55 as well as molecular dynamics simulations
confined waterlike fluids,56,54,57indicate that the presence o
a solid interface severely distorts water’s hydrogen-bond
work, possibly inhibiting crystal nucleation. This conclusio
is consistent with the fact that liquid water confined in ve
miculite clays,58,59 sequestered in polymer matrices,35 and
adsorbed on the surface of globular proteins60 can be super-
cooled to temperatures far below its bulk freezing poi
Thus, it is logical to suspect that confinement may permit
investigation of supercooled liquid water in the temperat
range where the liquid–liquid phase transition is propose
occur in the bulk. However, since the global phase beha
of water ~including the location of the proposed liquid
liquid phase transition! will in turn be affected by confine-
ment, it is important to develop theoretical tools that perm
the investigation of the global phase behavior of water
restricted geometries.

As a first step in this direction, we present a simp
theory for studying the thermodynamics and fluid-pha
equilibria of an associating fluid film confined between tw
parallel hydrophobic substrates. The approach we us
based on a perturbation theory introduced by Schoen
Diestler61 to study the thermodynamic behavior of a simp
nonassociating fluid confined to a slit-pore. We extend th
original approach to include fluid–fluid hydrogen-bondi
interactions. The contribution to the free energy from t
hydrogen bonds is determined from a generalization o
recently introduced analytical theory42 that is able to repro-
duce bulk water’s distinctive thermodynamic behavior~in-
cluding anomalies incP , aP , andkT , as well as the possi
bility of a polyamorphic phase transition!. The thermo-
dynamics and global phase behavior of the fluid film are th
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
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determined by solving the resulting perturbation theory us
two different levels of approximation for the reference flui
The first level is a mean-field theory that assumes the re
ence confined fluid to be homogeneous. In the second, m
refined level of approximation, a density functional theory
used to account for the inhomogeneous nature of the re
ence fluid.

The theoretical investigation presented in this pa
highlights two physically-intuitive confinement effects. Th
first can be summarized as follows: The introduction of tw
hydrophobic confining walls reduces the average numbe
favorable hydrogen-bonding interactions per molecule re
tive to the bulk fluid at the same density. This feature, wh
is captured by the theory at the mean-field level, causes
liquid–liquid critical point to shift to lower temperature
higher density, and higher pressure as the degree of con
ment is increased. The reduction of favorable fluid–fluid
teractions also promotes strong hydrophobic interactions
tween the confining walls at nanometer length scales,62–67

induced by the evaporation of the intervening fluid film.
The second confinement effect is the introduction

density modulations into the fluid film. These modulatio
~accounted for in the second level of the theory! can promote
or disrupt hydrogen bonding in distinct ‘‘layers,’’ modifying
the dependence of the hydrogen-bonding energy on the
erage pore density. Interestingly, when the density mod
tions are incorporated into the perturbation theory, a th
fluid–fluid transition emerges in the strongly confined flu
The appearance of this third phase transition is discusse
terms of recent computer simulation results of water-like fl
ids confined between hydrophobic walls.56,68

For convenience, the predicted effects of confinement
the thermodynamics of the waterlike fluid film are summ
rized below.

Level 1 Theory: Homogeneous reference fluid:

~1! The liquid–vapor critical point shifts to lower tempera
ture, lower pressure, and higher density relative to
bulk;

~2! The low-temperature liquid–liquid critical point shifts t
lower temperature, higher pressure, and higher pore d
sity relative to the bulk;

~3! For weakly attractive substrates, confinement-induc
evaporation of the fluid film occurs at room temperatu
and nanoscale wall separations.

Level 2 Theory: Inhomogeneous reference fluid:

~1! The liquid–vapor critical point shifts to lower tempera
ture, lower pressure, and higher density relative to
bulk;

~2! The low-temperature liquid–liquid critical point shifts t
lower temperature and higher density relative to t
bulk. The critical pressure exhibits a nonmonotonic d
pendence on pore width;

~3! A third fluid–fluid phase transition appears in th
strongly confined film.

The paper is organized as follows. In Sec. II, we outli
the continuum, thermodynamic description of a thin flu
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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film confined between parallel substrates. The microsco
perturbation approach for an associating fluid film confin
between hydrophobic planar substrates is given in Sec. II
Sec. IV, the thermodynamics and global phase behavio
the film are presented for the two levels of approximation
the perturbation theory. Finally, in Sec. V, we present so
concluding remarks.

II. THERMODYNAMICS OF THIN-FILM CONFINEMENT

To set the stage for presenting a microscopic theory
association in a slit-pore, it is useful to first develop t
thermodynamics of thin-film confinement. In this section,
present a simple physical derivation of the fundamental r
tion governing changes in the internal energy of the fl
film U in terms of the natural independent variables~the
entropyS, the pore widthL, the fluid–solid interfacial areaA
at one of the confining walls, and the number of molecu
N!. Alternative thermodynamic potentials can then be o
tained from the fundamental relationship through Legen
transforms. For a more comprehensive discussion of the t
modynamics of confined thin films, the reader is referred
the work of Diestler and Schoen.69

In what follows, we adopt the ‘‘lamellar’’ picture70,69

illustrated in Fig. 1. Specifically, the system is defined
include the finite lamella of fluid bounded by imagina
planes atx50, x5sx , y50, y5sy , z50, andz5L. The
remainder of the fluid film~which is infinite in the transverse
directions! and the confining walls constitute the surroun
ings. We focus on the case where the upper and lower w
are molecularly smooth, identical and rigid. The descript
molecularly smooth, in this context, implies that the confin
ing plates lack structure and, consequently, cannot be use
shear the fluid film. The independent variables describing
finite lamella are thus in principleS, N, sx , sy , andL.

The differential form of the fundamental equation for t
finite lamella is given by

dU5TdS2dWmech1mdN, ~2.1!

whereT is the temperature,m is the chemical potential, an
dWmechrepresents the mechanical work done by the lame
system on its surroundings. From Fig. 1, it can be dedu
that this work can be expressed in terms of normal stres

dWmech52sxxsyLdsx2syysxLdsy2szzsxsydL. ~2.2!

Here s i j is the ij component of the total stress tensor (i , j
5x,y,z) and dsj is a displacement in thej direction. Note
thats i j is simply the average of thej component of the stres

FIG. 1. Cross section of the finite ‘‘lamella’’ of fluid confined between rig
walls discussed in the text~adapted from Ref. 69!. Note that the lower wall
is stationary in the laboratory reference frame.
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applied to thei-directed face. The sign convention is su
that if the force exerted by the lamella on thei-directed face
points outward,s i j is negative, or, equivalently, the work i
positive if doneby the lamellaon the surroundings.

Substituting Eq.~2.2! into Eq. ~2.1! yields

dU5TdS1sxxsyLdsx1syysxLdsy

1szzsxsydL1mdN. ~2.3!

Since the lamella is homogeneous and isotropic in anyx–y
plane, the transverse components of the stress tenso
identical~i.e.,sxx5syy!. Thus, upon introduction of the are
A5sxsy ~of the z-directed face! as an independent variabl
and the transverse and normal components of the pres
tensor ~Pi52sxx52syy , Pzz52szz!, the fundamental
equation becomes

dU5TdS2PiLdA2PzzAdL1mdN. ~2.4!

As one might expect, in the limitL→`, we havePi , Pzz

→Pbulk, wherePbulk is the bulk pressure.
Alternative thermodynamic potentials can be deriv

from the fundamental equation~2.4! in the usual way via
Legendre transforms. For instance, the Helmholtz free
ergy F is given by

dF5d~U2TS!52SdT2PiLdA2PzzAdL1mdN.
~2.5!

Similarly, we can derive relationships for the generaliz
enthalpyH,

dH5d~U1PiAL!

5TdS1ALdPi2~Pzz2Pi!AdL1mdN, ~2.6!

the generalized Gibbs free energyG,

dG5d~F1PiAL!

52SdT1ALdPi

2~Pzz2Pi!AdL1mdN, ~2.7!

and the grand potentialV,

dV5d~F2mN!52SdT2PiLdA2PzzAdL2Ndm.
~2.8!

The uniformity of the film in the transverse directions al
implies thatPi is independent ofA for fixed pore widthL,
temperatureT, and chemical potentialm. Hence, it can be
seen from Eq.~2.4! that U is a homogeneous function o
degree one inS, N, and A. Euler’s theorem allows direc
integration of Eq.~2.4! to yield

U5TS1mN2PiLA. ~2.9!

From Eq.~2.9!, expressions for the Helmholtz free energyF,

F5U2TS5mN2PiLA, ~2.10!

the enthalpyH,

H5U1PiAL5mN1TS, ~2.11!

the Gibbs free energyG,

G5F1PiAL5mN, ~2.12!

and the grand potentialV,

V5F2mN52PiLA ~2.13!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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follow.
Response functions71 can be obtained by differentiatio

of the thermodynamic potentials presented above. We
have the mixed stress–strain expansivitya i ,

a i5
1

AL F]~]G/]Pi!T,N,L

]T G
Pi ,N,L

52S ] ln rp

]T D
Pi ,L

,

~2.14!

the mixed stress-strain isothermal compressibilityk i ,

k i52
1

AL S ]2G

]Pi
2D

T,N,L

5S ] ln rp

]Pi
D

T,L

, ~2.15!

and the isostress molar heat capacityci ,

ci5S ]~H/N!

]T D
Pi ,L

5TS ]~S/N!

]T D
Pi ,L

, ~2.16!

whererp5N/AL is the overall number density in the por
In taking the limit L→`, we recover the bulk thermody
namic response functions~a i→aP , k i→kT , andci→cP!.

In order to investigate the effect of confinement on t
phase behavior of a fluid film, it is useful to develop t
thermodynamic criteria for equilibrium of coexisting flui
phases. In Appendix A it is shown that the appropriate c
ditions for coexistence of two fluid phases denoted b~1!

and~2! in a slit-pore of fixed widthL that is in equilibrium
with a bulk fluid ~at Tbulk,mbulk! are given by

Tbulk5T~1!5T~2!,

mbulk5m~1!5m~2!, ~2.17!

Pi
~1!5Pi

~2! .

In Sec. III, the above relations are used to investigate
thermodynamics of a waterlike model fluid in thin-film co
finement.

III. MICROSCOPIC FORMULATION

In this section, we develop a microscopic perturbat
theory for an associating fluid that is confined between t
parallel substrates. Our approach is based on the wor
Schoen and Diestler,61 which we extend to include hydroge
bonding interactions between fluid molecules. The total
tential energy in this systemF is given by the sum of the
contributions from the fluid–wall and fluid–fluid interac
tions,F f w andF f ,

F5F f w1F f . ~3.1!

As is standard of perturbation theories for the liquid state72

the fluid–fluid and fluid–wall interactions are divided in
repulsive~R! and attractive~A! contributions,

F f5F f
R1F f

A ,
~3.2!

F f w5F f w
R 1F f w

A .

We treat the short-ranged repulsive fluid–fluid and flui
wall contributions as hard-sphere interactions, i.e.,
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
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R5 (

i 51

N21

(
j 5 i 11

N

uf
HS~r i j !,

~3.3!

F f w
R 5(

j 51

N

(
k51

Nsub

uf w
HS~r jk!,

whereuf
HS(r i j ) is given by

uf
HS~r i j !5H 0 r i j .df

` r i j <df
, ~3.4!

anduf w
HS(r jk) is given by

uf w
HS~r jk!5H 0 r jk.df w

` r jk<df w
. ~3.5!

Here, r i j is the distance between the centers of fluid m
eculesi and j, r jk is the distance between the centers o
fluid molecule j and a substrate moleculek, N is the total
number of molecules in the fluid,Nsub is the total number of
molecules in the substrates,df is the diameter of a fluid
molecule,dw is the diameter of a substrate molecule, a
df w5(df1dw)/2.

As a useful simplification61 consistent with the thermo
dynamic formalism developed in the previous section,
choose to ‘‘smear’’ the repulsive interaction in the surfa
layer of the confining substrates to generate two smooth h
walls ~see Fig. 2!. These hard walls bound a rectangular s
of width L5sz22df w that is ‘‘accessible’’ to the centers o
the fluid molecules. The modified fluid–wall repulsive inte
actionuf w

HS is thus

uf w
HS~zi !5H 0 df w,zi,sz2df w

` otherwise
. ~3.6!

Here,zi is thez-coordinate of thei th fluid molecule. For the
attractive interactions between molecules in the fluid~j! and
molecules in the substrate (k), we use

F f w
A 5F f w

disp5(
j 51

N

(
k51

Nsub

uf w
disp~r jk!, ~3.7!

FIG. 2. Schematic of an associating fluid~white molecules! confined be-
tween parallel crystalline substrates~dark molecules!. The bonding arms
extending from the fluid molecules indicate the orientation-dependent na
of the fluid-fluid interactions. Although only two crystalline planes of mo
ecules are shown in each substrate, the substrates actually compris
infinite half-spaces~z<0 andz>sz! of such molecular planes.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where F f w
disp is the fluid–wall dispersion interaction

uf w
disp(r jk) is given by

uf w
disp~r jk!524e f wS df w

r jk
D 6

, ~3.8!

and e f w is the familiar Lennard-Jones energetic parame
Note that even though the substrate has attractive inte
tions with the fluid, it is hydrophobic in the sense that
cannot participate in hydrogen bonds with the fluid m
ecules.

Consistent with the ‘‘smearing’’ of the repulsive fluid
substrate interactions, we average the attractive contribu
of the fluid–substrate interaction24e f w(df w /r jk)6 over the
~x,y! positions of substrate molecules in the planes in wh
they lie. If we then treat each substrate as an infinite h
space of molecular planes and approximate the sum
planes by the Euler–Maclaurin formula,73 we obtain a fluid–
wall potential that depends only on thez-coordinates of the
fluid molecules,61

F f w5(
i 51

N

uf w
HS~zi !1uf w

disp~zi !, ~3.9!

where

uf w
disp~zi !52

2prwe f wdf w
6

3dlat
@zi

231~sz2zi !
23#. ~3.10!

In the above equation,rw is the areal number density in
plane of the substrate anddlat is the spacing between neigh
boring substrate planes~Fig. 2!. For the purposes of this
study, we take the substrate to be a close-packed fcc lat
i.e., rwdw

2 52/) anddlat5dw /&.
For the attractive fluid–fluid interactions, we use

F f
A5F f

HB1F f
disp, ~3.11!

whereF f
disp is the dispersion contribution,

F f
disp5 (

i 51

N21

(
j 5 i 11

N

uf
disp~r i j !, ~3.12!

anduf
disp(r i j ) is given by

uf
disp~r i j !524e f S df

r i j
D 6

. ~3.13!

Here,e f is the fluid–fluid Lennard-Jones energetic parame
and F f

HB is the energy associated with hydrogen bon
formed between fluid molecules, which will be discuss
shortly.

The combination of Eqs.~3.1!, ~3.2!, ~3.3!, ~3.6!, ~3.9!,
and ~3.11! yields the following expression for the potenti
energyF;

F5Fp
HS1F f

HB1F f
disp1F f w

disp, ~3.14!

whereFp
HS represents the potential energy of a fluid of ha

spheres with diameterdf whose centers are confined by pa
allel hard walls to a slit of widthL5sz22df w , i.e.,

Fp
HS5 (

i 51

N21

(
j 5 i 11

N

uf
HS~r i j !1(

i 51

N

uf w
HS~zi !. ~3.15!
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This confined hard-sphere system will serve as the refere
fluid for the perturbation analysis presented below.

The connection between microscopic interactions a
equilibrium thermodynamics is established through the
nonical partition functionQ,74

Q5S 1

N!L3ND E E drNdvN exp~2bF!, ~3.16!

from which the Helmholtz free energy is obtained,F
52b21 ln Q. Here,b51/kBT, kB is Boltzmann’s constant
T is the temperature, andN is the number of molecules. Th
integration in Eq.~3.16! is carried out over the vector o
accessible positionsrN5$r1 ,r2 ,...,rN% and molecular orien-
tationsvN5$v1 ,v2 ,...,vN% in the pore. For a monatomic
species,L is the familiar thermal wavelength. For poly
atomic molecules,L is generalized to include contribution
from relevant internal degrees of freedom; however, it exh
its no pressure or density dependence.

Substitution of Eq.~3.14! into Eq. ~3.16! yields

Q5S 1

N!L3ND E E drNdvN

3exp@2b~Fp
HS1F f

HB1F f
disp1F f w

disp!#. ~3.17!

Multiplying and dividing by the configurational partition
function for the confined hard sphere fluidZp

HS, which is
given by

Zp
HS5E drN exp~2bFp

HS!, ~3.18!

allows the integrals appearing in Eq.~3.17! to be rewritten as

E drN exp~2bFp
HS!

3
**drNdvN exp@2b~Fp

HS1F f
HB1F f

disp1F f w
disp!#

*drN exp~2bFp
HS!

5Zp
HS
•E dvN^exp@2b~F f

HB1F f
disp1F f w

disp!#&p
HS.

~3.19!

Note that this transformation is exact. The notation^¯&p
HS in

the right-hand member of Eq.~3.19! indicates that the aver
age is to be taken in the ‘‘confined hard-sphere’’ ensemb
This implies sampling all possible configurations ofN hard
spheres with diameterdf whose centers are confined to a s
of width L5sz22df w , and calculating, for each such con
figuration, the value of exp(2b@Ff

HB1F f
disp1F f w

disp#) by
‘‘turning on’’ the dispersion attractions and hydrogen bon
with fixed molecular orientation. The integral is then tak
over all possible sets of orientations.

The combination of Eqs.~3.17! and ~3.19! allows the
Helmholtz free energyF to be expressed as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F52b21 lnF Zp
HS

N!l3NG2b21

3 lnF E dvN^exp~2b@F f
HB1F f

disp1F f w
disp# !&p

HSG .
~3.20!

To evaluate the integrand, we recall the cumula
expansion75 for a general random variablex,

^exp~cx!&5expFc^x&1
c2

2!
~^x2&2^x&2!1¯G . ~3.21!

We determine the average in Eq.~3.20! approximately by
neglecting fluctuations. Explicitly, we neglect second and
higher order cumulants

^exp~2b@F f
HB1F f

disp1F f w
disp# !&p

HS

'exp̂ 2b@F f
HB1F f

disp1F f w
disp#&p

HS. ~3.22!

Substituting Eq.~3.22! into Eq. ~3.20! yields the following
expression for the Helmholtz free energyF,

F52b21 lnF Zp
HS

N!l3NG1^F f
disp&p

HS1^F f w
disp&p

HS

2b21 lnF E dvN exp̂ 2bF f
HB&p

HSG . ~3.23!

The dispersion interactions are expected to play onl
minor role in the structuring of molecules in the dense flu
and, consequently, are often modeled as uniform, attrac
background potentials. In fact, Schoen and Diestler61 have
demonstrated that mean-field approximations of this na
can be computed for the dispersion interactions in the
geometry shown in Fig. 2. Specifically, by assuming that
fluid-fluid radial distribution functiong(r1 ,r2) has the form,

g~r1 ,r2!5H 0 ur22r1u,df

1 ur22r1u>df
, ~3.24!

the energetic contributions from the dispersion interacti
can be obtained by integrating Eq.~3.10! with respect tozi

and Eq.~3.13! with respect tor i j and the lamellar volume
The resulting mean-field averages are61

^F f w
disp&p

HS5K (
i 51

N

uf w
disp~zi !L

p

HS

~3.25!

52
2Nprwe f wdf w

3

3dlat
F1

z
2

1

z~z11!2G
52NC0F1

z
2

1

z~z11!2G
52NCp~z!, z.0, ~3.26!

and
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
t

ll

a

ve

re
lit
e

s

^F f
disp&p

HS5K (
i 51

N21

(
j 5 i 11

N

uf
disp~r i j !L

p

HS

~3.27!

52
8Npe fdf

3

3 F12
3~df /df w!

4z
1

~df /df w!3

8z3 Grp

52NabulkF12
3~df /df w!

4z
1

~df /df w!3

8z3 Grp

52Nap~z!rp , z.2df /df w , ~3.28!

where z5L/df w5(sz22df w)/df w is a dimensionless pore
width, rp5N/AL5N/(Adf wz) is the mean number densit
in the pore, andabulk is the dispersion interaction paramet
for the bulk van der Waals fluid.

To model the hydrogen-bonding interactions in the flu
F f

HB , we appeal to a recently introduced model f
association42 that is able to capture the distinctive thermod
namic properties of bulk liquid water, including densi
maxima, compressibility and specific heat minima, sharp
creases in the response functions at low temperatures,
the possibility of a polyamorphic phase transition betwee
high-density and a low-density fluid. Within the context
this model, a hydrogen bond may form between two m
ecules if several geometric criteria42 are met. These criteria
are designed to capture the minimal features of hydrog
bond interactions in liquid water; namely, the molecules
volved must possess mutually favorable orientation~low ori-
entational entropy!, and an open, low-density environme
must exist in the vicinity of the bond. These basic physi
attributes of the hydrogen bond are modeled as follows~see
Fig. 3!:

FIG. 3. Microscopic model of a fluid with orientation-dependent intera
tions. ~a! Molecules have a hard core of diameterdf , and are therefore
surrounded by an exclusion sphere of radiusdf , within which the center of
no other molecule can penetrate. In order to form a hydrogen bond, a ce
molecule must be surrounded by an empty cavity of radiusr i ~herer i'df!,
and a second molecule must be inside its hydrogen bonding shellr i<r
<r o . ~b! In addition, the two participating molecules must be prope
oriented, with their bonding directions pointing towards each ot
(f1 ,f2<f* ), regardless of the value ofu1 andu2 . The presence of addi-
tional molecules inside the hydrogen bonding shell weakens an exis
bond.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~1! One of the two participating molecules must have a c
ity of radius r i , empty of any molecular centers, su
rounding it ~we term this thecentral moleculeof the
pair!;

~2! The pair must be separated by a distancer that lies
within the hydrogen-bonding shellof the central mol-
ecule, withr i<r<r o ;

~3! The pair must exhibit mutually favorable orientatio
f1 , f2<f* ;

~4! The presence of additional molecules in the hydrog
bonding shell ‘‘crowds’’ and thereby weakens the exi
ing bond. We assign a strength2emax to a hydrogen
bond and a penaltyepen for each nonbonding molecule i
the hydrogen-bonding shell.

In this study, we take2emax5223 kJ/mol andepen

53 kJ/mol. It follows that if more than seven nonbondin
molecules are contained in the hydrogen-bonding shell,
central molecule is not available for bonding.

These geometric criteria are designed to model, albe
a rudimentary fashion, specific features of the hydrog
bond interaction. For instance, the requirement of a cavity
radiusr i surrounding the central molecule promotes a lo
density, open environment in the vicinity of the bonded pa
Criterion ~2! defines the largest allowable separationr o for
molecular centers participating in a hydrogen bond. Inde
the shell (r i<r<r o) physically represents the width of th
distribution of bond lengths in the model substance. For p
spective, typical bond lengths in~H2O!2 measured in the va
por phase~2.98 Å! are roughly 8% larger than the observ
distance in ice.76 Criterion~3! constrains the bonding sites o
each molecule to lie within an anglef* of the line connect-
ing molecular centers. The magnitude off* determines the
freedom of alignment between molecular sites, and thu
necessarily related to the reduction of orientational entr
upon bonding. As has been demonstrated,42 minor alterations
in the geometric ‘‘librational’’ and ‘‘vibrational’’ bonding
constraints, as defined by (r i ,r o ,f* ), can result in dramatic
changes in the macroscopic phase behavior of the sys
Criterion ~4! prescribes the dependence of the hydrog
bond energy2e j on its local structural environment,

2e j52emax1~ j 21!epen, ~3.29!

where j 21 is the number of nonbonded molecules in t
hydrogen-bonding shell of the central molecule. This crow
ing rule is a simple model for the fact that hydrogen bond
is a many-body interaction, i.e., the presence of nonbond
neighbors can severely disrupt the electronic structure of
bonded pair.

Clearly, these criteria oversimplify the microscopic d
tails of the hydrogen bond. For instance, this coarse desc
tion will not promote many of the microscopic, structur
details characteristic of liquid water that distinguish its b
havior from that of ‘‘simple’’ fluids, e.g., the interplay in
water between translational and tetrahedral ordering.77 Nev-
ertheless, the model is able to capture the highly nontri
thermodynamic consequences of directional bonding.42

An expression for the hydrogen-bonding contribution
the Helmholtz free energyF has been derived42 for this
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model in the bulk, uniform fluid. The appropriate referen
fluid for that system is the uniform hard-sphere fluid. In co
trast, the appropriate reference fluid for the present thin-fi
confinement model is an inhomogeneous hard-sphere
confined between hard walls. Noting this difference in ref
ence system, the derivation of hydrogen-bonding contri
tion to F @i.e., the last term of Eq.~3.23!# follows directly
from the original treatment,42 and we arrive at

2b21 lnF E dvN exp̂ 2bF f
HB&p

HSG
'2Nb21F ln~4p!1(

j 51

8

pj
pore~rp ,z!ln f j G . ~3.30!

The reader is referred to that paper for a more detailed
cussion. Here,f j is given by

f j5F11
j

4
~12cosf* !2~exp$be j%21!G . ~3.31!

The functionpj
pore(rp ,z) represents the probability that, in

confined hard-sphere fluid at a densityrp , a given hard
sphere has a cavity of radiusr i surrounding it and thatj other
sphere centers lie within its hydrogen-bonding shell~see Fig.
3!. This is tantamount to stating that a hard sphere meets
positional ~if not the orientational! requirements for
hydrogen-bonding to one of itsj neighbors. We note tha
pj

pore(rp ,z) generally depends on all of then-body molecular
correlation functionsg(n)(rn) for the confined hard-spher
fluid. Indeed, the method for determiningpj

pore(rp ,z) will
determine the ‘‘level’’ of the theory and will be discussed
detail in the next section.

If we assume the simplest approximation for the co
figurational partition function of the confined hard-sphe
fluid Zp

HS5@Adf wz2Nbp(z)#N, exact only in one dimen-
sion, then the Helmholtz free energyF given by Eqs.~3.23!,
~3.26!, ~3.28!, and~3.30! becomes

F52Nb21F lnS 12rpbp~z!

rpl3 D11G2Nap~z!rp

2NCp~z!2Nb21F ln~4p!1(
j 51

8

pj
pore~rp ,z!ln f j G .

~3.32!

Here,bp(z) is the familiar van der Waals excluded-volum
parameter that sets the maximum number densityrp

max(z)
that the hard-sphere reference fluid can attain in the slit p

To ensure that the slit-pore free energyF matches, in the
limit z→`, the previously derived expression for the fre
energy of the bulk associating fluid,42 we set

bp~z!5
1

rp
max~z!

5
1

rp@hp50.64#
, ~3.33!

whererp@hp50.64# is the pore density at which the mea
packing fractionhp in the pore attains the valuehp50.64,
historically termed the random close-packed state.78 In the
slit-pore geometry, the mean packing fractionhp can be re-
lated to the density profiler(z), the form of which is gener-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ally determined from a molecular simulation or a dens
functional theory ~see Appendix B!. That relationship is
shown in Appendix C to be given by

hp5~sz22df w!21E
df w

sz2df w
dzE

z2df /2

z1df /2

dz8r~z8!p

3F S df

2 D 2

2~z2z8!2G , ~3.34!

and the average pore densityrp is simply

rp5~sz22df w!21E
df w

sz2df w
dzr~z!5N/AL5N/@Azdf w#.

~3.35!

In this investigation, we examine two approximate me
ods for determining the relationship betweenrp and the
mean packing fractionhp for the confined~hard-sphere! ref-
erence fluid. The first method is a mean-field approa
which assumes that the fluid film is homogeneous@i.e.,
r(z)5rp for df w,z,sz2df w andr(z)50 otherwise#. Sub-
stituting this density profile into Eq.~3.34! yields the simple
result

hp5
pdf

3rp

6 F12
3

16zG , ~3.36!

which implies,

bp~z!5
pdf

3

6~0.64! F12
3

16zG5bbulkF12
3

16zG . ~3.37!

The second method that we examine for determininghp ac-
counts for the structure of the inhomogeneous reference
by employing a density functional theory~DFT! for hard
spheres in confinement~outlined in Appendix B!. The den-
sity profile r(z) generated by the DFT is then substitut
into Eq. ~3.34! to determinehp , and the excluded-volume
parameterbp(z) can be determined from Eq.~3.33!. Figure 4
compares the dependence of the ratiobp(z)/bbulk upon the
inverse pore width, as calculated via the mean-field exp
sion ~3.36! and by density functional theory~Appendix B!.

FIG. 4. Normalized excluded-volume parameterbp(z)/bbulk plotted vs in-
verse pore widthz21. Shown are the quantities as determined by the me
field expression in Eq.~3.36! ~solid line! and the density functional theory
outlined in Appendix B~dashed line!.
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The important point is that both approaches predict t
bp(z) decreases with increasing confinement. This indica
that the parallel confining walls have the effect of reduci
the local packing fraction~and hence the average coordin
tion number! in the film relative to the bulk fluid at the sam
number density. This can be easily understood, given that
fraction of molecules whose coordination numbers
‘‘sterically-hindered’’ by their proximity to the wall in-
creases with decreasingz. The implications of this purely
geometrical effect for the thermodynamics of an associa
fluid are investigated in the mean-field theory presented
the next section.

From Eqs.~2.5! and~3.32!, we see that differentiation o
F yields the transverse component of the pressure tensorPi ,

Pi5rp
2S ]F/N

]rp
D

T,N,L

5
rp

b@12rpbp~z!#
2ap~z!rp

2

2
rp

2

b (
j 51

8 S ]pj
pore~rp!

]rp
D

T,z

ln f j . ~3.38!

Here, it is useful to note that the transverse pressurePi ,
unlike F, is independent of the strength of the fluid–wa
dispersion interactionCp(z).

To complete the theory we need a strategy for analyz
the probability functionspj

pore(rp ,z) for the hard-sphere ref
erence fluid in confinement. In Sec. IV, the hard-sphere
tistics are examined with two different levels of approxim
tion, a homogeneous~mean-field! theory and an inhomo-
geneous~DFT! approach.

IV. RESULTS AND DISCUSSION

In order to analyze the thermodynamics and phase
havior of the thin film, we need to obtain an expression
the hard-sphere probability functionpj

pore(rp ,z). Recall that
pj

pore(rp ,z) represents the probability that, in a confine
hard-sphere fluid at a densityrp , a given sphere center has
cavity of radiusr i surrounding it and thatj other sphere
centers lie within its hydrogen-bonding shell~shown in Fig.
3!.

Using statistical geometric arguments, the following a
proximate relationship for the probability function that d
scribes the bulk fluidpj

bulk has been derived,42

pj
bulk5expF2

24h

df
3 E

df

r i
r 2G~r !drG

3
1

j ! S 24h

df
3 E

df

r o
r 2G~r !dr D j

3expF2
24h

df
3 E

df

r o
r 2G~r !drG , ~4.1!

where h5pdf
3r/6 represents the bulk packing fraction.

Eq. ~4.1!, the quantity G(r ) is the conditional pair-
distribution function, defined such that the productrG(r )
yields the concentration of sphere centers located a distanr
away from a hard-sphere center, given that there are
sphere centers closer thanr. This quantity plays an importan

-
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role in the scaled-particle theory79 and, more generally, in
thestatistical geometryof liquids.80–85In the spirit of scaled-
particle theory, Torquato83 derived the following analytica
approximation forG(r ):

G~r !50 r ,df ,
~4.2!

G~r !5a01
a1

~r /df !
1

a2

~r /df !
2 r>df ,

with

a05114hG~df !,

a15
3h24

2~12h!
12~123h!G~df !,

~4.3!

a25
22h

2~12h!
1~2h21!G~df !,

G~df !5
12h/2

~12h!3 ,

which can be directly substituted into Eq.~4.1!. The analyti-
cal expression forpj

bulk given by Eq.~4.1! is appealing be-
cause it approaches the exact result in the dilute limit w
the cavity surrounding the central molecule is small~h→0,
r i→df!. Furthermore, we have found that the expressi
while quantitatively accurate at low density, can captu
many qualitative features of bulk hard-sphere statistics
higher packing fractions.

Below, we outline two approximate methods for dete
mining the pore probability functionpj

pore(rp ,z), both of
which utilize the analytical expression given in Eq.~4.1! for
the bulk hard-sphere statistics.

A. Level 1: Homogeneous reference fluid

In the first level of approximation, we assume that t
reference hard-sphere system confined between parallel w
is homogeneous@i.e., r(z)5rp for df w,z,sz2df w and
r(z)50 otherwise#. From Eq. ~3.36!, we see that this as
sumption implies that the mean packing fraction in the p
hp is given by

hp5
pdf

3rp

6 F12
3

16zG . ~4.4!

We further assume that bulk hard-sphere statistics@as de-
scribed by Eq.~4.1!# apply when evaluated athp , i.e.,

pj
pore'pj

bulk~hp!. ~4.5!

This expression, together with Eqs.~3.32!, ~3.29!, ~3.31!,
~3.26!, ~3.28!, ~3.37!, ~4.1!, ~4.2!, ~4.3!, and~4.4! completes
the mean-field associating fluid film theory.

Before analyzing the phase behavior of the associa
fluid film in the mean-field theory, it is useful to consider th
case where the hydrogen bonds are effectively ‘‘turned o
~i.e., e j50,; j !. In this limit, the model reduces to a simp
van der Waals~vdW! fluid confined between two paralle
substrates, and the original perturbation theory of Sch
and Diestler61 is recovered. This model, as is discussed
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tensively elsewhere,61 qualitatively reproduces much of th
phenomenology associated with sorption in mesoscopic
rous materials.

The location of the critical point for the vdW pore flui
at a given pore widthL can be determined analytically vi
the conditions,

1

rp
S ]Pi

]rp
D

L,T5Tc

5
1

rp

]

]rp F 1

rp
S ]Pi

]rp
D

L,T5Tc

G
L,T5Tc

50.

~4.6!

The resulting expressions for the critical temperatureTc , the
critical transverse pressurePi ,c , and the critical pore density
rp,c for the modified vapor–liquid transition in the confine
vdW fluid are given by

Tc5
8ap~z!

27bp~z!kB
<Tc

bulk5
8abulk

27bbulkkB
,

Pi ,c5
ap~z!

27bp
2~z!

<Pc
bulk5

abulk

27~bbulk!2 , ~4.7!

rp,c5
1

3bp~z!
>rc

bulk5
1

3bbulk .

The inequalities in Eq.~4.7! follow directly from Eqs.~3.28!
and ~3.37!. Notice that the model predicts that confineme
has the effect of depressing the critical temperature and c
cal pressure of the bulk ‘‘vapor–liquid’’ transition, while
shifting the critical density to higher values. These results
in qualitative agreement with both experiments86–92and mo-
lecular simulations.13,15

We note that in the original formulation of the theory,61

the excluded-volume parameterbp(z) was taken to be a con
stant bp(z)5bbulk, independent of pore width. This cond
tion implies that the transverse pressurePi diverges at the
same number density 1/bbulk for any degree of confinemen
Unfortunately, it also implies that the critical density is com
pletely unaffected by the pore width, i.e.,rp,c5rc

bulk . Hence,
accounting for the manner in which confinement affects
maximum attainable number density in the fluid, even in
crude mean-field fashion of Eq.~3.37!, is important for gen-
erating qualitatively correct thermodynamic predictions.

In order to analyze the mean-field theory with hydroge
bonding interactions, we must specify a total of seven fl
parameters (r i ,r o ,emax,epen,f* ,df ,abulk) and three sub-
strate parameters (dw ,C0 ,z). In the present work, we set th
fluid parameters to values that reproduce the two-critic
point scenario in the bulk fluid.42 Specifically, the magnitude
of the maximum hydrogen-bond strengthemax and the hard-
core diameterdf are assigned the physically reasonable v
ues of 23 kJ/mol and 3.11 Å, respectively. Recall that
crowding penaltyepen, is taken to be 3 kJ/mol per nonbond
ing molecule in the hydrogen-bonding-shell. The three
rameters which describe the hydrogen-bond geometry are
signed the valuesf* 50.175 radians, r i51.01df , r o

51.04df . Furthermore, the dispersion interactionabulk is se-
lected to be 0.269 Pam6 mol22, which essentially fixes the
bulk vapor-liquid critical point at the correct experiment
value of 647 K. This set of parameters reproduces the fam
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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iar density maximum (r51 g/cm3) in the bulk fluid at 1 bar
and 4 °C. Further details concerning the thermodynamic
the bulk system in the two-critical-point scenario are p
sented elsewhere.42 For simplicity, the effective diameter o
the substrate moleculesdw is taken to be identical to that o
the fluid moleculesdw5df w5df . The effects of the dimen
sionless pore widthz5L/df w and the strength of the fluid
wall attractionC0 @given by Eq.~3.26!# on the phase behav
ior and stability of the fluid film are examined below.

Figure 5 illustrates theT–rp projection of the phase
diagram for the ‘‘waterlike’’ fluid film for various degrees o
confinement, as determined by the mean-field theory.
curves represent loci of phase coexistence for
confinement-modified ‘‘liquid–vapor’’ (L –V) and ‘‘liquid–
liquid’’ ( L –L) transitions in pores of dimensionless wid
z54, 10, 20, and` ~corresponding to dimensional por
widths zdf w'1.2 nm, 3.1 nm, 6.2 nm, and̀, respectively!.
The arrows indicate that confinement shifts both criti
points ~L –V and L –L! to lower temperatureT and higher
pore densityrp . A corresponding shift of the critical point to
lower transverse pressurePi occurs for theL –V transition,
while the L –L critical point occurs at progressively highe
transverse pressures asz is reduced~not shown!. We recall
that the equation of state of the fluid film given by Eq.~3.38!
is independent ofCp(z), rendering the global phase beha
iors shown in Fig. 5 independent of the strength of the flui
wall dispersion interaction.

The confinement-induced shifts in the location of t
L –V critical point for both the vdW fluid and the mean-fie
associating fluid are illustrated in Fig. 6 as a function
inverse pore widthz21. Also shown is the relative shift in
the location of the low-temperatureL –L critical point in the
mean-field associating fluid. In the absence of hydrog
bonding interactions, the analytical form for the critical po
shift in the vdW fluid ~i.e., Tc2Tc

bulk , Pi ,c2Pc
bulk , and

rp,c2rc
bulk! can be deduced from Eq.~4.7!. In the case of the

associating fluid film, the corresponding shifts~L –V and
L –L! are determined numerically by applying the criticali

FIG. 5. TheT–rp projection of the phase diagram for the associating fl
film in the mean-field theory. The curves represent loci of phase coexist
for the confinement-modified ‘‘liquid–vapor’’ (L –V) and ‘‘liquid–liquid’’
(L –L) transitions in pores of dimensionless widthz54 ~long-dashed!, 10
~dotted–dashed!, 20 ~dashed!, and` ~solid!.
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conditions in Eq.~4.6! to the equation of state given by Eq
~3.38!.

By virtue of the slit-pore geometry, molecular correl
tion lengths can grow to infinity only in the transverse~x,y!
directions. This means that while a true phase transition
occur in a slit pore, its criticality will correspond to the two
dimensional Ising universality class.13 Nevertheless, Fishe

ce

FIG. 6. Relative shifts for the liquid–vapor (L –V) and the liquid–liquid
(L –L) critical points in the fluid film vs inverse pore widthz21: ~a! (Tc

2Tc
bulk)/Tc

bulk , ~b! (Pi ,c2Pc
bulk)/Pc

bulk , and ~c! (rp,c2rc
bulk)/rc

bulk . Shown
are results for theL –V transition in the confined vdW fluid~dashed line!
and the mean-field associating fluid~black circles!. The relative shift for the
L –L transition in the associating fluid film~black squares! is also illustrated.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and Nakanishi93 have employed scaling arguments to sh
that the shift in theL –V critical temperature~for large slit
pores! should obey

12Tc /Tc
bulk}z21/n z→`, ~4.8!

where n'0.63 is the bulk three-dimensional correlatio
length exponent. On the other hand, calculations on a c
fined lattice gas model94 have shown that the shift (Tc

bulk

2Tc) varies roughly asz21 in the small-pore limit. As can
be seen in Fig. 6, the magnitudes of the critical-point sh
for the vdW fluid (L –V) and the mean-field associating flu
~L –V andL –L! also exhibit approximately linear variation
with inverse pore widthz21.

Two important points can be deduced from the critic
point shifts shown in Fig. 6. First, the predicted trends for
L –V critical point, while not quantitatively accurate, are
qualitative agreement with experiments and computer si
lations on a number of pore fluids.13,15 Second, the relative
shifts in theL –V critical points for the vdW fluid and the
mean-field associating fluid are nearly identical. Thus,
energetically favorable hydrogen-bonding interactions, wh
important for the low-temperature behavior of the fluid, ha
little effect on the shift of the high-temperatureL –V critical
point. To our knowledge, these are the first theoretical p
dictions for the confinement-induced shift in theL –L critical
point for a ‘‘waterlike’’ model.

To further explore the effects of confinement on the th
modynamics of the associating fluid film, we examine t
behavior of the mixed stress–strain expansivitya i , given by
Eq. ~2.14!. This quantity measures the response of the p
densityrp to changes in temperatureT at constant transvers
pressurePi and pore widthL. Note thata i approaches the
standard coefficient of thermal expansionaP in the limit L
→`. As is well known, bulk water exhibits negative therm
expansion (aP,0) over a large range of pressureP and
temperatureT. The region of the bulk phase diagram wi
aP,0 is enclosed by the locus of extrema in density~com-
monly referred to as the temperature of maximum/minim
density or the TMD!. Figure 7 illustrates that negative the

FIG. 7. The loci of state points for the associating fluid film in thePi –T
plane that satisfya i50 ~i.e. the TMD!. Results are shown for pores o
dimensionless widthz54 ~long-dashed!, 10 ~dotted-dashed!, 20 ~dashed!,
and` ~solid!.
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mal expansivity (a i,0) is also a prominent feature in th
confined fluid film. Interestingly, the shape and extent of
region of negative thermal expansivity~enclosed by the
TMD! remains largely unchanged even for the strongly c
fined fluid.

The confinement-induced reduction of favorable flu
fluid interactions does have important thermodynamic imp
cations for the pore fluid, even at room temperature. To
derstand this, consider a liquid confined betwe
hydrophobic plates with subcritical temperatureT and
chemical potentialm imposed on it by a reservoir. As th
plates are brought close together, a separation can be rea
at which point the energetic penalty of confinement cau
the liquid to become metastable with respect the va
phase.63–67At even closer separations, a limit of mechanic
stability ~i.e., a spinodal! will be reached, where the fluid in
the pore spontaneously evaporates. The resulting pres
imbalance induces a long-ranged attractive interaction
tween the confining walls. It is believed that this solven
induced hydrophobic interaction has implications for the s
bility of mesoscopic biological assemblies and prote
folding.95–99,67 A simple macroscopic scaling argument66

predicts that the evaporation of water confined by hydrop
bic walls should occur atL'100 nm at room temperature.

To analyze the stability of the associating fluid film
the mean-field theory, we focus on the excess grand pote
per unit areaDVs /A,

DVs /A52~Pi2Pbulk!L, ~4.9!

whereL5zdf w for the fluid film. The quantityDVs in Eq.
~4.9! is the difference between the grand potential of the fl
film V52PiLA, given by Eq.~2.13!, and the grand poten
tial 2PbulkLA for a region of the same size in the bulk flu
at the same temperatureT and chemical potentialm. The
equilibrium thermodynamic state for the film is the one f
which DVs /A is minimum69 consistent with its temperatur
T, chemical potentialm, and pore widthL. Figure 8 illus-
trates the pore width dependence of the liquid and va
branches ofDVs /A for the associating fluid between har
plates @Cp(z)50# at room temperatureT5298 K and m
52183.56 kJ/mol. At thisT andm, the bulk fluid pressure
as determined by Eq.~3.38! in the limit z→`, is Pbulk

528.4 bar. This value was selected because it is the pres
at which the boiling temperature is 373 K for the bulk ass
ciating fluid. In satisfying agreement with the simple scali
argument of Lum and Luzar,66 Fig. 8 illustrates that the va
por is indeed the stable thermodynamic phase at separa
smaller thanzdf w'67 nm. Also shown is the separation
which the fluid reaches a limit of mechanical stability, i.e
where (]Pi /]r)T,L50. Consistent with previous theoretica
treatments,63,67 this ‘‘spinodal’’ is predicted to occur a
nanoscale separations (zdf w'1 nm). We note that hydrogen
bonding is not required for the confinement-induced eva
ration of a fluid,63,100 so long as the fluid–fluid interaction
are more favorable than the fluid–wall interactions. In fa
the mean-field theory presented here predicts a scen
qualitatively similar to Fig. 8 for the confined vdW fluid~not
shown!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e
e
th
ia
ed

t

A
fo

c-
ar
b
-
al
e
an

al

hi

the

e-

the
d
e

shed

id

2412 J. Chem. Phys., Vol. 114, No. 5, 1 February 2001 Truskett, Debenedetti, and Torquato
To examine the effect of fluid–wall interactions on th
thermodynamic stability of the associating fluid film, w
have mapped the locus of vapor–liquid coexistence in
zdf w–e f w plane. Specifically, Fig. 9 illustrates the phase d
gram for the confined fluid film for the conditions present
in Fig. 8 ~T5298 K andm52183.56 kJ/mol!. As expected,
the liquid film is destabilized with respect to evaporation a
given separation by reducinge f w ~turning down the favor-
able fluid–wall interactions!. Likewise, at a givene f w , de-
stabilization occurs by bringing the substrates together.
can be seen, the thermodynamic driving force
confinement-induced evaporation atT5298 K vanishes for
fluid–wall interactions that are sufficiently favorable (e f w

'2.75 kJ/mol).

B. Level 2: Inhomogeneous reference fluid

In the second level of approximation, we explicitly a
count for the inhomogeneous structure of the confined h
sphere reference fluid. Specifically, for a given mean num
densityrp and pore widthz5L/ddw , we determine the den
sity profiler(z) via the simple free energy density-function
theory ~DFT! outlined in Appendix B. The details of th
density profile are then utilized to determine two basic qu
tities in the theory: the pore probability functionpj

pore(rp ,z)
and the excluded-volume parameterbp(z). For pj

pore(rp ,z),
we assume that the bulk hard-sphere statistics@as described
by Eq. ~4.1!# apply locally, i.e., when evaluated at the loc
packing fractionh(z) ~see Appendix C!. Hence,pj

pore(rp ,z)
can be written as an average over the infinitesimally t
z-directed ‘‘layers’’ in the pore,

pj
pore~rp ,z!'

*df w

sz2df wdzr~z!pj
bulk~h~z!!

~sz22df w!rp
, ~4.10!

where rp5(sz22df w)21*df w

sz2df wdzr(z). As discussed in

Sec. III, the excluded volume parameterbp(z) can be evalu-

FIG. 8. The excess grand potential per unit areaDVs /A vs dimensional
pore width zdf w for the liquid ~diamonds! and the vapor~circles! in the
mean-field associating fluid film atT5298 K andm52183.56 kJ/mol. For
this case, the walls are purely repulsive (e f w50). The vapor is the stable
thermodynamic phase for separations smaller thanzdf w'67 nm. The me-
chanical limit of stability ~spinodal! for the liquid phase occurs atzdf w

'1 nm.
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ated explicitly usingr(z), Eq. ~3.34!, and Eq.~3.33!. The
global phase behavior for the fluid film, as described by
theory at this second of level of approximation@i.e., with the
modifiedpj

pore(rp ,z) andbp(z)#, is examined below.
Figure 10 illustrates thePi –T andT–rp projections of

the fluid film phase diagram for varying degrees of confin

FIG. 9. The locus of liquid-vapor phase coexistence~circles! in the
zdf w–e f w plane forT5298 K andm52183.56 kJ/mol. The liquid phase is
destabilized by reducing the pore widthz or the magnitude of the fluid–wall
attractione f w .

FIG. 10. Phase diagrams for the associating fluid film as determined by
second level of approximation~i.e., with the inhomogeneous reference flui!
in the Pi –T ~left! andT–rp ~right! planes. From bottom to top, the phas
behaviors correspond to pores of dimensionless widthz54, 10, 20, and̀ ,
respectively. Solid lines represent loci of phase coexistence and the da
lines are TMDs~states witha i50!. The liquid–vapor~C! and the liquid–
liquid (C8) critical points are also shown. Notice that a third fluid-flu
phase transition that terminates in a critical point (C9) appears for dimen-
sionless pore widthz510.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ment. Specifically, phase diagrams for dimensionless p
widths z54, 10, 20, and̀ are included~corresponding to
dimensional pore widthszdf w'1.2 nm, 3.1 nm, 6.2 nm, an
`, respectively!. The black solid lines represent loci of pha
coexistence, while the dashed lines are the loci of state po
with a i50 ~i.e., TMDs!. Notice that the explicit incorpora
tion of r(z) for the reference fluid does very little to alter th
predicted effects of confinement on the liquid–vapor (L –V)
transition relative to the predictions of the simple mean-fi
theory shown in Fig. 5. That is to say, in agreement w
experimental data on a number of pore fluids,13,15 the L –V
critical point is shifted to lower temperatureT, lower trans-
verse pressurePi , and higher pore densityrp .

On the other hand, the incorporation ofr(z) for the ref-
erence system dramatically affects the predictions for
low-temperature thermodynamic behavior of the stron
confined fluid. Most notably, we see the appearance o
third liquid–liquid phase transition that terminates in a cr
cal point (C9). At a dimensionless separationz510, this
new critical point is located atT586 K, Pi50.125 GPa, and
rp50.886 g/cm3. Interestingly, as the degree of confineme
increases,C9 shifts to higher temperatureT, lower density
rp , and lower transverse pressurePi . In fact, at a reduced
separation ofz54, the third fluid–fluid transition has inter
sected the liquid–vapor transition, giving rise to a fluid
fluid–fluid triple point at T5219 K and Pi54.1
31024 GPa.

The confinement-induced shifts in the bulkL –V and
L –L critical points~C andC8! are illustrated in Fig. 11@the
shift in the third critical point (C9) is not shown because it i
absent in the bulk phase diagram#. First, we note that con
finement shifts both theL –V and theL –L critical points to
lower temperatureT and higher pore densityrp . Moreover,
as predicted by the mean-field theory, we see that the shi
the L –V critical point for the associating fluid tracks ver
closely the shift for the vdW fluid film. However, in contra
to the mean-field predictions, the dependence of the crit
transverse pressurePi ,C for the L –L transition is apprecia-
bly nonmonotonic, exhibiting a maximum atz'10.

The predictions of the theory at this level are especia
interesting in light of two recent computer simulation stud
on the behavior of supercooled ‘‘waterlike’’ models confin
between hydrophobic walls. In the first, Kogaet al.56

searched for signatures of the a low-temperature liqu
liquid phase transition in a film of TIP4P water101 confined
between walls that interact with the fluid via a 9-3 potenti
The TIP4P model for water was chosen because, under
tain pressure conditions~e.g.,Pbulk5131024 GPa!, the bulk
fluid is reported to exhibit pronounced discontinuities in de
sity and energy47,102 at low temperature, indicative of
polyamorphic phase transition. However, in their molecu
dynamics simulations~at fixed N, Pzz, andT! of a film of
thicknesszdf w'2 nm, no signatures of the transition we
detected at eitherPzz5131024 GPa orPzz50.5 GPa. The
plausible conclusion drawn by the authors was that confi
ment had dramatically shifted the location liquid–liquid im
miscibility to lower temperature.

In the second study of interest, Meyer and Stanley68 in-
vestigated the behavior of a film of ST2 water103 confined
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between hydrophobic walls that similarly interacted with t
fluid via a 9-3 Lennard-Jones potential. However, unlike
the investigation of Kogaet al.,56 their Monte Carlo simula-
tions~at fixedN, rp , andT! revealed strong signatures of th

FIG. 11. Relative shifts for the liquid–vapor (L –V) and the liquid–liquid
(L –L) critical points in the fluid film versus inverse pore widthz21 as
determined by the second level of approximation~i.e., with the inhomoge-
neous reference fluid!: ~a! (Tc2Tc

bulk)/Tc
bulk , ~b! (Pi ,c2Pc

bulk)/Pc
bulk , and~c!

(rp,c2rc
bulk)/rc

bulk . Shown are results for theL –V transition in the confined
vdW fluid ~dashed line! and the mean-field associating fluid~black circles!.
The relative shift for theL –L transition in the associating fluid film~black
squares! is also illustrated. The third fluid–fluid critical point discussed
the text is not shown since it does not appear in the bulk.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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second phase transition for a film thickness ofzdf w'1 nm.
These signatures, however, were detected at much lo
pore density and transverse pressure~rp'0.8 g/cm3 and Pi

'0.05 GPa! than those estimated forC8 in the bulk ST2
fluid ~rp'0.98 g/cm3 and Pi'0.2 GPa!.104 This indicates
one of two possible conclusions: either~1! the liquid–liquid
critical point (C8) is shifted dramatically by confinemen
and/or~2! the observed signatures indicate the presence
different phase transition.

Both of these simulation results seem to be consis
with the qualitative evolution of the phase diagram und
confinement shown in Fig. 10. Namely, as concluded
Kogaet al.,56 the temperature of the second critical pointC8
is predicted to be dramatically reduced as the fluid beco
strongly confined. Moreover, we see that the theory d
predict the emergence of a new phase transition at lowerp

andPi that could~at least in principle! give rise to signatures
similar to those observed by Meyer and Stanley.68 Thus, al-
though the approximate theory presented here is extrem
simple, it provides some interesting explanations for the
havior of two water models as observed in simulations un
conditions of confinement and supercooling.

V. CONCLUSIONS

A basic perturbation theory has been introduced for
vestigating the thermodynamics and global phase behavio
a ‘‘waterlike’’ fluid film confined between hydrophobi
walls. The theory has been solved using two different lev
of approximation for the confined hard-sphere refere
fluid. The first level amounts to a mean-field theory that
sumes the reference pore phase to be homogeneous. I
second level of the theory, a free energy density functio
theory is employed to account for the inhomogeneous st
ture of the reference fluid.

The two levels of approximation address two physical
intuitive confinement effects. The first effect can be summ
rized as follows: the introduction of hydrophobic confinin
walls reduces the average number of favorable fluid–fl
interactions per molecule, i.e., it disrupts the hydrog
bonding pattern in the fluid. The energetic penalty associa
with this disruption, which is captured qualitatively by th
theory at the mean-field level, causes the liquid–liquid cr
cal point to shift to lower temperature, higher density, a
higher pressure as the degree of confinement is increase
is well known,62–67 the reduction of favorable fluid–fluid
interactions can also promote strong hydrophobic inter
tions between the confining walls at nanometer length sca
induced by the evaporation of the intervening fluid film. T
mean-field theory offers a simple means for investigating
thermodynamic stability of a ‘‘waterlike’’ fluid film as a
function of wall separation and the strength of the fluid–w
interaction.

The second confinement effect is the introduction
density modulations~structural inhomogeneity! into the fluid
film. These density modulations~accounted for in an ap
proximate way in the second level of the theory! can pro-
mote or disrupt hydrogen bonding in distinct ‘‘layers,
modifying the dependence of the hydrogen-bonding ene
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on the average pore density. When the density modulat
are incorporated into the perturbation theory, a third flui
fluid transition emerges in the strongly confined fluid. T
appearance of this third phase transition is intriguing, es
cially when considered in light of recent computer simu
tion results of waterlike fluids confined between hydropho
walls.56,68
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APPENDIX A: THE THERMODYNAMIC CRITERIA
FOR EQUILIBRIUM OF COEXISTING PHASES IN
THIN-FILM CONFINEMENT

Diestler and Schoen69 have presented a lucid discussio
of the thermodynamic criteria for equilibrium of a sing
fluid phase confined to a thin film between parallel wal
Here, we develop the analogous equilibrium criteria
single-component coexisting fluid phases$~1!, ~2!% in thin-
film confinement.

From a thermodynamic perspective, it is convenient69 to
focus on a composite system that containsboth the confined
film ~n! @with coexisting phases~1! and ~2!# and the bulk
fluid ~see Fig. 12!. We let this composite system be in co
tact with three reservoirs. One of them, a thermal reserv
~t! with temperatureT0, performs no work, and interact
with the composite system through a rigid and impermea
boundary. A second reservoir~p! with pressureP0 is purely
mechanical; i.e., it can undergo only adiabatic work inter
tions with the composite system through an adiabatic
impermeable boundary. The final reservoir~x! is also me-
chanical in nature, providing uniform load per unit areaf x to
the confining walls which can be used to manipulate th
separationL. Note that the system depicted in Fig. 12 pr
vides no mechanical coupling to the surroundings by me
of which the total areaA5A(1)1A(2) of the fluid film in

FIG. 12. Isolated composite system used in the derivation of the equilibr
criteria.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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contact with a confining wall can be varied. However, t
individual contributions to the fluid–wall area from coexis
ing phases@A(1) andA(2)# can clearly be simultaneously va
ied within this ‘‘fixed area’’ constraint.

We take the confined film, the bulk fluid, and the res
voirs to constitute an isolated composite system. At equi
rium, the energy of this isolated system is a minimum co
sistent with its entropy. In other words, virtual tran
formations that would remove the system from the equi
rium state must satisfy

d~Ubulk1Un,~1!1Un,~2!1Ut1Up1Ux!>0 ~A1!

subject to the constraint

d~Sbulk1Sn,~1!1Sn,~2!1St!50. ~A2!

Note that since the mechanical reservoirs~p andx! interact
adiabatically with the composite system, we have

dSp5dSx50. ~A3!

The fundamental equation relating changes in the in
nal energy of the bulk fluid to infinitesimal and reversib
variations in the corresponding independent variables is

dUbulk5TbulkdSbulk2PbulkdVbulk1mbulkdNbulk. ~A4!

A similar relationship applies in the confined phases,69

dUn,~k!5Tn,~k!dSn,~k!2Pi
n,~k!LdA~k!2Pzz

n,~k!A~k!dL

1mn,~k!dNn,~k!. ~A5!

Here, k identifies the phase (k51,2), Un,(k) represents the
internal energy,Tn,(k) is the temperature,Sn,(k) is the en-
tropy,mn,(k) is the chemical potential,Nn,(k) is the number of
molecules, andPi

n,(k) andPzz
n,(k) represent the transverse an

normal components of the pressure tensor, respectively.
the reservoirs, we have

dUx5 f xAdL, ~A6!

dUt5T0dSt, ~A7!

and

dUp52P0dVp. ~A8!

Moreover, since the composite system is isolated, we h
the following additional constraints,

dVp1dVn,~1!1dVn,~2!1dVbulk50 ~A9!

and

dNn,~1!1dNn,~2!1dNbulk50. ~A10!

Combining Eqs.~A1!–~A10!, we obtain

~Tbulk2T0!dSbulk1~Tn,~1!2T0!dSn,~1!

1~Tn,~2!2T0!dSn,~2!2~Pbulk2P0!dVbulk2~Pzz
n,~1!A~1!

1Pzz
n,~2!A~2!2 f xA2P0A!dL2~Pi

n,~1!2Pi
n,~2!!LdA~1!

1~mn,~1!2mbulk!dNn,~1!1~mn,~2!2mbulk!dNn,~2!>0.

~A11!
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Because we require the equality in Eq.~A11! to hold at equi-
librium for independent variations inSbulk, Sn,(1), Sn,(2),
Vbulk, L, A(1), Nn,(1), andNn,(2), the equilibrium conditions
are as follows:

Tbulk5Tn,~1!5Tn,~2!5T0,

mbulk5mn,~1!5mn,~2!,

Pbulk5P0,
~A12!

Pzz
n,~1!5Pzz

n,~2! ,

Pzz
n,~1!5 f x1P0,

Pi
n,~1!5Pi

n,~2! .

Note that the equalityPzz
n,(1)5Pzz

n,(2) is required for mechani-
cal equilibrium of the parallel plates. If we do not allow fo
the possibility of variations in the film thickness~i.e., dL
50!, then the equilibrium conditions reduce to the follow
ing:

Tbulk5Tn,~1!5Tn,~2!5T0,

mbulk5mn,~1!5mn,~2!,
~A13!

Pbulk5P0,

Pi
n,~1!5Pi

n,~2! ,

indicating that coexistence requires equality of temperatu
chemical potential, and transverse pressure between
phases.

APPENDIX B: DENSITY FUNCTIONAL THEORY
FOR THE INHOMOGENEOUS REFERENCE FLUID

The inhomogeneous reference fluid discussed in Secs
and IV is simply a collection of identical hard spheres w
diameterdf whose centers are confined by parallel hard wa
to a slit of widthL5zdf w . A natural and well-known strat-
egy for determining the density profile of this system is
employ a free energy density functional theory~DFT!.105–107

In short, a free energy DFT involves the construction of
expression that relates the Helmholtz free energy of the
tem F to the density profiler(r ). The equilibrium density
profile, consistent with the proposed free energy function
is that profile which minimizes the free energyF subject to
conservation of the particles. Equivalently, the density p
file is an unconstrained minimum of the grand potentialV,
where

V5F2mE r~r !dr . ~B1!

Hence, the equilibrium density profile is a solution to t
following Euler–Lagrange equation for the minimization
V,

m5
dF

dr~r !
. ~B2!

For a system of hard spheres,F can be decomposed int
three contributions,

F5Fext1F ideal1Fexcess, ~B3!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which represent the external field~e.g., confining walls!, the
ideal gas, and the excess due to the hard-sphere interac
respectively. The contributions from the external fieldFext

and the ideal gasF ideal are given by

Fext5E r~r !uext~r !dr ~B4!

and

F ideal5Nm* ~T!1kBTE r~r !@ ln r~r !21#dr , ~B5!

whereuext(r ) is the external potential acting on the spher
kB is Boltzmann’s constant, andm* (T) accounts for the in-
ternal degrees of freedom of the ideal gas molecules.

Percus has developed108 the following generic free en
ergy functional for the excess contributionFexcessbased on
exact one-dimensional results,109

Fexcess5E r̄Z~r !F0@ r̄Y~r !#dr , ~B6!

whereF0(r) is the excess free energy per particle for t
uniform fluid with number densityr and the pairr̄Z(r ) and
r̄Y(r ) represent the following weighted coarse-grained d
sities:

r̄Z~r !5E Z~r2r 8!r~r 8!dr 8,

~B7!

r̄Y~r !5E Y~r2r 8!r~r 8!dr 8.

The kernelsZ and Y are local weighting functions to b
prescribed. The chemical potential, according to Eq.~B2!, is
related to the density profile through

R@r~z!,z#5052m1uext~r !1kBT ln r~r !

1E dr̄Z~r 8!

dr~r !
F0@ r̄Y~r 8!#dr 8

1E dr̄Y~r 8!

dr~r !
r̄Z~r 8!F08@ r̄Y~r 8!#dr 8, ~B8!

whereF08(r) is the derivative ofF0(r) with respect to den-
sity. The right-hand side of Eq.~B8! defines a functiona
residualR@r(z);z# which, for the equilibrium density pro
file, must satisfyR@r(z);z#50 for all z.

To complete the theory, a precise form must be p
scribed for the weighting functions~Z andY! and the excess
free energy per particle for the uniform hard-sphere fl
F0(r). Then, for a given external potentialuext(r ) and
chemical potentialm, the equilibrium density profile is ob
tained by solving Eq.~B8!.

For a system of hard spheres of diameterdf whose cen-
ters are confined toz-coordinates2zdf w/2,z,zdf w/2, the
total external potential is given by

uext~z!5uwallS zdf w

2
2zD1uwallS zdw

2
1zD , ~B9!

where
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uwall~r !5H 0 r .0

` r<0
. ~B10!

In this study we employ the generalized hard-r
model110,111for Fexcess, which requires

Z~z!5df
21QS df

2
2uzu D ~B11!

and

Y~z!5
6

df
3 QS df

2
2uzu D F S df

2 D 2

2z2G , ~B12!

whereQ is the Heaviside step function. For the uniform fre
energy per particle F0 , we use the familiar
Carnahan–Starling112 expression,

F0S h5
pdf

3r

6 D 5kBT
h~423h!

~12h!2 . ~B13!

To obtain the equilibrium density profile, the integr
relation ~B8! was solved numerically subject to Eqs.~B7!,
~B9!, ~B10!, ~B11!, ~B12!, and~B13!. In this study, Eq.~B8!
was discretized uniformly with mesh size 0.02df over the
domain of interest2zdf w/2,z,zdf w/2, and all integrals
were evaluated via the trapezoidal rule. This generates a
of nonlinear coupled algebraic equations for the nodal d
sities that is conveniently solved by Newton iteration.107 The
details of this numerical technique are outlined els
where.107,113

Although the natural input variables to the density fun
tional calculation are the chemical potentialm of the con-
fined hard-sphere fluid and the pore widthzdf w , it is more
convenient for our purposes to input the mean pore den
rp and the pore widthzdf w . This change of input variable
is easily accommodated113 by augmenting the set of nonlin
ear equations for the nodal densities with a residual equa
for the specified pore densityrp . The corresponding addi
tional ‘‘unknown’’ is the chemical potentialm.

APPENDIX C: PACKING IN THE SLIT-PORE
GEOMETRY

Consider a collection of hard spheres of diameterdf

whose centers are confined by hard walls to a slit of wi
L5sz22df w5zdf w . The spatial distribution of particle cen
ters inside of this slit-pore geometry will generally be no
uniform in thez-direction ~i.e., the direction normal to the
walls!. In particular, the number of particle centersdN(z)
that are contained in the infinitesimally thin rectangular
gion of volumeAdzcentered atz is determined by the num
ber density profiler(z),

dN~z!5r~z!Adz. ~C1!

It follows that the average number densityrp in the pore is
given by

rp5~sz22df w!21E
df w

sz2df w
dzr~z!5N/@A~sz22df w!#.

~C2!
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In a similar fashion, the nonuniform spatial distributio
of the local packing fraction in the slit-pore geometry can
described by a packing profileh(z). The quantityh(z) is
simply the probability that a randomly chosen point on t
plane of areaA centered atz lies within a distancedf /2 of a
sphere center. Note that because the sphere centers ca
cess the regiondf w,z,sz2df w , the sphere volumes ca
intersectx–y planes centered atz in the rangedw/2,z,sz

2dw/2.
The local packing fractionh(z) can be determined by

integrating over the area of intersectionAint(z,z8) between
each sphere centered atz8 and the plane atz,

h~z!5E
z2df /2

z1df /2

dz8r~z8!Aint~z,z8!

5E
z2df /2

z1df /2

dz8r~z8!pF S df

2 D 2

2~z2z8!2G . ~C3!

Furthermore, integrating Eq.~C3! from ‘‘wall to wall’’ must
yield, as a normalization condition, the total volume of t
spheres divided by the cross-sectional areaA,

E
dw/2

sz2dw/2

dz8h~z8!5
pdf

3N

6A
5

pdf
3rp

6
~sz22df w!, ~C4!

where the last equality follows from Eq.~C2!. We are inter-
ested in calculating the average packing fractionhp for the
thermodynamic system, i.e., for the volumeA(sz22df w) ac-
cessible to the sphere centers,

hp5~sz22df w!21E
df w

sz2df w
dzh~z!

5
pdf

3rp

6
2

2

sz22df w
E

dw/2

df w
dzh~z!. ~C5!

Figure 13 illustratesr(z), h(z), andhp for a confined hard-
sphere fluid atrp50.70 as calculated by the density fun
tional theory outlined in Appendix B. Note thatr(z)50 for
z,df w andz.sz2df w , while h(z)Þ0 in this region.

FIG. 13. Density profiler(z) ~solid!, packing fraction profileh(z) ~long-
dashed!, and mean packing fractionhp ~dotted! for a confined hard-sphere
fluid at rp50.70 as calculated by the density functional theory outlined
Appendix B.
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Substituting Eq.~C3! into Eq. ~C5! and using the fact
that r(z)50 for z,df w yields the following exact relation-
ship between the density profiler(z) and the average pack
ing fractionhp :

hp5
pdf

3rp

6
2

2

sz22df w
E

dw/2

df w
dzE

df w

z1df /2

dz8r~z8!p

3F S df

2 D 2

2~z2z8!2G . ~C6!

Of course, in the limitsz→`, we recover the bulk rela-
tionship between the packing fractionh and the number den
sity r,

h5
pdf

3r

6
. ~C7!

Moreover, for a uniform density profile in the slit pore@i.e.,
r(z)5rp for df w,z,sz2df w#, we have

hp5
pdf

3rp

6 F12
3

16zG . ~C8!

This relationship is employed in the mean-field theory o
lined in Sec. IV.
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