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Generating microstructures with specified correlation functions
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A stochastic optimization technique has recently been developed that can reconstruct or construct
random heterogeneous materials with specified statistical correlation functions. We demonstrate
how this technique can be used to reconstruct a digitized image of an interpenetrating, isotropic
ceramic-metal composite. In this case, the two-point probability function displays no short-range
order and the image is reconstructed by optimizing in two orthogonal directions only. However, this
technique results in artificial anisotropy in the unoptimized directions whenrej@nstructs an

image in which the isotropic two-point probability function exhibits appreciable short-range order.
We show that by optimizing in more than two directions, one can effectively eliminate the artificial
anisotropic effects for a system possessing significant short-range order. This is done by optimizing
in three directions on a hexagonal grid and by optimizing in four directions on a square grid. Finally,
an aspect of the nonuniqueness of the resulting structures is quantitatively examin@®01©
American Institute of Physics[DOI: 10.1063/1.1327609

I. INTRODUCTION changing black and white pixels, the energy is minimized via
the simulated annealing method.

The challenge of reconstructing microstructural images  |n this article, we explore better ways to sample for the
of heterogeneous materials from limited microstructural in-gatistical correlation functions of interest using the Yeong—
formation IS an mtere;tmg_ ar_ld |m_portant problérﬁ.Such Torquato method for digitized media. Various sampling
re.const.ructlor!s can give mgght into the mformaﬂon CON" methods have been employed. One approach utilizes an ef-
tained in a microstructural image by determining the mini-_. . : ! le for the standard two-
mum set of correlation functions necessary to reconstruct a]p]CI_ent fast Fo_gner tran_sfor o_samp e_o .
image. Another interesting question concerns how to quanQo'm_ prqbablhty fupctpn. This techmgue samples for this
tify the nonuniqueness of the reconstructed images. A Ver{pnctlon in evgry_ d|r_ect|on on the lattice and_hgnce, at the
practical benefit of the reconstruction procedure could be th&nd of the optimization process, matches optimizes the
identification of the classes of three-dimensional microstruccorrelation function in every direction. The disadvantage of
tures that can be reconstructed from only two-dimensionalhis technique is that it is limited only to the two-point prob-
(2D) planar cuts through the material. A different but inter- ability function, which is insufficient to reconstruct certain
esting exercise involves constructing images with a given sétmages. The Yeong—Torquato method is a general technique,
of hypothetical correlation functions. This study can lead to aas it allows any number and type of microstructural descrip-
more thorough understanding of the properties of physicallfors to be incorporated into the optimization routine. To
realizable correlation functions and limitations of the recon-minimize computational cost, they sampled the microstruc-
struction technique. . _ tural descriptors only along the orthogonal lattice

There are two basic techniques available for thesgjirections®s Cule and Torquafoshowed that this technique
(re-Jconstructions. One commonly used method is based Oy gccessful, provided that the system size is much larger

the Lljste dOf Gau|§5|ar: rznplom f|e|"d§._ ll/lo;e re(;:et:ltlyé_at }han the correlation length of the functish being opti-
simuated-annealing technique was introduced by RINOUL;, oy However, they also showed that if this condition is

and Torquatdto reconstruct molecular systems. Yeong and . e

6 . . ~.__‘not met, then orthogonal sampling can lead to artificial an-
Torquatd'® extended this method to reconstruct digitized. . o . . .
heterogeneous media. To implement this technique, onisotropy in the unoptimized directions. This last point was
starts with a given, arbitrarily chosen, initial configuration of 2SO observed by Manwart and Hilfer.
“black” and “white” pixels and a set ofreferenceor target The rest of the article is laid out as follows. In Sec. lll,
correlation functions. The “energy” is defined as a func- the microstructural descriptors used in the reconstruction al-
tional of the squared difference between the simulated angorithm are described. The simulated annealing algorithm is
target correlation functions at any instant of time. By inter-then described in Sec. V. In Sec. V, we reconstruct an actual

image of a ceramic-metal composite from its two-point prob-

dAuthor to whom correspondence should be addressed; electronic maiﬁlb”'ty function 'tO demonls'[rate the effectiveness of the or-
torquato@princeton.edu thogonal sampling technique when no short-range order ex-
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ists. In Sec. VI, a construction is presented for a two-point
probability function displaying appreciable short-range or-
der. The construction shows how the orthogonal sampling
technique, in this case, results in an image which displays
artificial anisotropy in the unoptimized directions. We then
introduce an improvement on this algorithm by optimizing in
more than two directions and demonstrate how this improved
technique significantly reduces the anisotropy. In Sec. VII,
the issue of nonuniqueness of reconstructed images is further
explored.

Il. DESCRIPTORS OF RANDOM MEDIA

The indicator functior )(x) for phasei in a two-phase

random medium is defined by 04 ' ' '
0 1 if x lies in phasei, 03 $,=03196
' (x)= . 1 - ]
) 0 otherwise. @
'I_'he n-point correlation(or probability function Sy’ is de- o2} il
fined as w
S (X1 Xz X)) = (D)D) 1D (%)), (2) o1l
where angular brackets denote an ensemble average. The
quantityS"(xq,X,,... X,) gives the probability than points 0 , , ,
located at positiong, X;,... X, all lie in the same phase 0 50 100 150 200
If the medium is statistically homogeneous tk@ﬁ‘? is r
translationally invariant, depending on the relative displace-
ments X,— X1, Xz—Xq,...,X,—Xq. For example, the one- (b)

point function is simply given by the constant volume frac- ) ) _ . _
tion of phasd. i.e FIG. 1. (a) Microstructural image of a ceramic-metal composite. The white
P o areagphase lare aluminum and the black areg@hase 2are mainly a the
S(i): <| (i)(x)> _ ¢ (3) ceramic phase composed of boron carbit¢ Autocorrelation function for
1 i

the white phase of the ceramic-metal composite. The function displays no
The two-point probability function. also known as the auto-apprreciable short-range order, so it is suitable for reconstruction using or-
. . . . ' thogonal sampling techniques.
correlation function, is given by

S (N=(1"0x)1" (%)), @
wherer =x,—Xx; and, at it extreme values is given by jm
(rrdo(kr)dr=0 VK,
0=S,(N)=¢1, (5 o O

assuming no long-range order. Under the ergodic hypothesigynerey(r)=S,(r) - $? andJo(x) is the zeroth-order Bessel
the ensemble average earlier can be replaced by a volumgnction of the first kind.

average in the limit that the volume tends to infinity, i.e., There are many other statistical correlation functions

_ 1 _ _ that one can employ. Indeed, the lineal-path function,

Sy(r)= lim vj\/'(')(y)'(')(y“)d)ﬂ 6  LO(ry,r,) has been used to reconstruct model and actual
V—o©

material images=®° This function is defined as the prob-
For Statistica”y isotropic med|§(2')(r) depends 0n|y on the ablllty that the entire line Segment jOining randomly chosen
distancer =|r|. Hereafter, we will drop the superscripand ~ Pointsry andr lies in the same phase Thus, it contains
refer toS,(r) as the autocorrelation function of phase 1. In connectedness information along a Ilneal path If the medium
general,S, obeys the elementary bounds=®,=< ¢, . is statistically homogeneous, then” depends only on
Integral positivity conditions for the autocorrelation ' =r1—r,. Moreover, if the medium is statistically isotropic,
function have recently been studi®dhe positivity condi- then L®)(r) depends on the distance=|r|. Hereafter, we
tions allow one to check if the autocorrelation function is Will drop the superscript and refer to(r) as the lineal-path
physically realizable. For isotropic media thdimensions, ~function of phase 1. At its extreme value<(r) is given by
there are actuallg positivity conditions. The conditions that

apply for isotropic two-dimensional systems are ,“E:) L(r)= s, r'L”l L(r)=0. ®
fmy(r)cos{kr)drzo vk, Recently, the pore-size distribution function was also used to
0 reconstruct sandston&s.

()

Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japol/japcr.jsp



J. Appl. Phys., Vol. 89, No. 1, 1 January 2001 N. Sheehan and S. Torquato 55

(C) ¢1 =06 (d) ¢1 =0.8
04 j ! ! FIG. 3. Construction of structures having the autocorrelation function given
— target by Eq. (11), at different values ofp,, in which r,=16 anday,=8. Con-
- reconstruction struction is implemented on a square grid by optimizing in two orthogonal
0.3 1 directions. The following parameters are used: system size %128 pix-
$,=0.3196 les, To=1x104, Ayc=10, and\=0.9.
So2f ]
7))
— s 2
o1 | E= X 2 [ff(rara, ) =g,
: r1.fo,...fy @
€)
4] . . : wheref? andf¢ are the simulated and targetegboint func-
0 50 100 150 200 n n geted

tions, respectively, andv denotes the type of correlation

function. At each time step, a randomly chosen white pixel is

interchanged with a randomly chosen black pixel. The accep-
(b) tance probabilityP for this interchange is given by the Bolt-

FIG. 2. (a) Reconstruction of the image shown in Figall The following zmann probability

parameters are use@l;=5X10"°, A\y,c=10,A=0.9, and the image size is 1 if AE<O,

400x400 pixels.(b) Autocorrelation functionS,(r) vs r: solid line is the
target function and circles represent the reconstructed function.

r

P(Eoig— Enew = e AET it AE=0 (10

whereAE=E,.,— EqqandT is a fictitious temperature. The
temperaturd is initially chosen so that the initial acceptance
probability for a pixel interchange withE=0 is 0.5. By
We briefly outline the stochastic optimization techniqueslowly cooling the system to absolute zero, the system
used to reconstruct or construct digitized metliais desired  equilibrates to its ground state, i.e., the energy is minimized
to reconstruct a target system of a given size with its knowr{target correlation functions are attaineth the reconstruc-
correlation functions or construct a system with some tartions that follow,a=1 andf% is eitherS, or L. For a more
geted correlation functions. The simulation begins with ancomplete description of this algorithm, we refer the reader to
initial guess for the configuration of phase(white) and  Refs. 4-7.
phase 2black) pixels for a given system size. For example,
one can sta_rt with a ra_qdom guess: white and black pixels arR/. RECONSTRUCTION OF CERAMIC-METAL
assigned with probabilityp; and ¢,, respectively. Because COMPOSITE
the system is of finite size, this process could lead to the
initial microstructure having an actuab, value different We first consider an image of an actual isotropic, inter-
from the desiredp, value. In practice, the number of black penetrating ceramic-metal composite for which the autocor-
pixelsny, is first calculated and them, of the total number of  relation functionS,(r) is essentially a decaying exponential
pixels in the system are randomly assigned to be black. Thevithout any short-range ordét.The functionS,(r) can be
remaining pixels are assigned to be white. obtained by “throwing” down line segments of lengthwith
White and black pixels are interchanged so that the sysrandom orientation and counting the fraction of times that
tem evolves toward the target correlation functions via simuboth end points fall in phase 1. To reduce computational
lated annealing. The “energy’E at any time step in the cost, one can samplg(r) only along rows and columns of
simulation is calculated By the underlying lattic&. Thus, it is only in these orthogonal

[ll. STOCHASTIC OPTIMIZATION PROCEDURE
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0.4 T T T
— target
» construction
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0.2 ]
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0.4 T T T FIG. 5. Square grid showing the four directions the autocorrelation function
—— target is simultaneously optimized in.
-+ measured
0.3 1
$,=04

reaches a value of 110 7, the essential structure of the
original image has been captured in the reconstruction.

S,(1)

V. BETTER SAMPLING PROCEDURES

) 20 20 60 80 To show that the orthogonal sampling technique on a
r square grid is insufficient to construct isotropic images with
significant short-range order, Cule and Torqdattroduced
the isotropic autocorrelation function

(b) in(k
Si(1)= 82+ dubge 0 T v

FIG. 4. (a) S,(r) vsr for the image shown in Fig.(B) with ¢,=0.4: solid

line is the target function and circles represent the constructed funéipn. h k=2m/ Th t d dt
S,(r) vsr as found by sampling the constructed image in Figp) 3 all Wherek=cm/ao. € parameterg, andrgo correspond 1o

directions. two distinct length scales. The parametgrcontrols the ex-
ponential damping, which determines the maximum correla-
tions in the system. The consteay controls the oscillations
directions thatS,(r) actually matches the target function at in the term sinkr)/(kr) which also decays with increasing
the end of the optimization process. For this reason, we calluch thata, can reduce the effective range rgf. The posi-
the sampling directions theptimizeddirections. We will  tivity conditions (7) determine the allowable range of the
demonstrate that the orthogonal sampling method results ingarametersy, andr,.°
reasonable reconstruction of the ceramic-metal composite- Figure 3 shows images at different volume fractions hav-
free of any artificial anisotropic effects. ing the autocorrelation functiofl1), which we constructed
A two-phase image of the ceramic-metal composite isusing orthogonal sampling on a square grid. For all of the
shown in Fig. 1a). The white phaséphase lis aluminum. images shown, the constructed and target autocorrelation
The black phasdphase 2 is a ceramic phase composed functions match very well. One such plot is shown in Fig.
mainly of boron carbide. The image is 64282 pixels. The 4(a). Importantly, the autocorrelation function sampled from
measured autocorrelation function of the image, shown irthe constructed image at 45° with respect to the horizontal
Fig. 1(b), displays no appreciable short-range order. (not shown does not match the targeted function. This mis-
Figure 2a) shows the reconstructed image usBgand  match is also indicated in Fig.(d), where we measure8,
the orthogonal sampling technique on a square grid. The pdrom the constructed image by sampling all directions.
rameters used in the reconstruction @e=5x10"° Ayc  Thus, the constructed image contains unwanted statistical an-
=10, A=0.9, and the system size is 40800 pixels. The isotropy, otherwise there would be no mismatch.
resulting autocorrelation function is presented in Fi¢h)2 It is important to emphasize that for a statistically isotro-
along with the target data for comparison. As can be seerpic image, it is acceptable to sample for the correlation func-
the S, function for the reconstructed image matches the tartions in two orthogonal directions only. However, when one
getS, function virtually perfectly. The initial energy of the attempts toconstructan image with an isotropic correlation
system is 0.2. The reconstruction is stopped when the enerdynction displaying appreciable short-range order, it is not
reaches a value of110" 8. Note that by the time the energy sufficient to optimize in only two directions.
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target
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0.3 H 1
6,=0.4

5,1

0.1 1 L 1
0 20 40 60 80

FIG. 7. S,(r) vsr as found by sampling the constructed image in Fig) 6
in all directions.

X104, Ayc=10, andA=0.9. The constructed and targeted
functions (not shown were found to match essentially per-
fectly.

To test for anisotropy, we measur&] from the con-
structed images by sampling in the unoptimized directions
and found that they matched the targeted autocorrelation

(C) ¢1 =04

CRGIE Wi
Q A ] [ ]
Noin

¢
é
o

7

\ Y
¢
S
‘.
3

) ?‘0 . K T I functions. This shows that by increasing the number of di-

r:.. ®e % o '."i:".' ::: rections being simultaneously optimized, we eliminate un-

. % :‘r e gonle o’ }'\ wanted anisotropy in the constructed image. Figure 7 gives a
- ® ’-'- LYY LT )

plot of S,(r) versusr at ¢;=0.4 as measured from the con-

(e) $1=106 (f) 1 =07 structed image of Fig. (6) by sampling in all directions.
Clearly, the artificial anisotropic effects have been com-

pletely removed. This is in contrast to optimizing in only two

ol R0 A SR S i orthogonal directions, which yields a mismatch, as shown for
> 20 %o 0w, ® ags..0 ® in Ei

9 fot o o a 0% - example in Fig. ).
.'.. :.. ® .0 o o *
Paey 2N L N S ]
l'".o.o. °. e :: Oo'..- % o B. Hexagonal grid

[ [ ae

'.:\o:.:.. g%.' 0 8e % %% 0 Let us now consider a regular hexagonal tessellation of
Pots e L.l e e 2D space, henceforth referred to as a hexagonal grid. This

choice enables the autocorrelation function to be simulta-
(g) $1=08 (h) ¢1=109 neously optimized in the three symmetry directions, which
FIG. 6. Construction of structures having the autocorrelation function givenShould also lessen the ‘_”“’tlfICIal anISOtI’OpIC effeCt_S' Figure 8
by Eq. (11), at different values of,, in which r,=16 anda,=8. Con-  Shows the hexagonal grid and the sampling directions. It also
struction is implemented on the square grid by optimizing in four directionsshows how the unit cell repeats in the vertical direction and
as shOV\_/n in Fig. 5. Th_e4f0||owing parameters are used: system size is 12§.|SO in the horizontal direction. Such a unit cell is chosen
*128 pixels,To=110"", Ayc=10, andA=0.9. because it is a convenient way to implement the periodic
boundary conditions. It should be noted that different bound-
ary conditions will result if an odd system size is chosen.
Therefore, we have restricted the system size to be even.
A. Square grid sampling in four directions We construct the image by optimizing in the three sym-
In where there i reciable short-ran d metry directions on the hexagonal grid. Here the system size
cases where nere 1s appreciable short-range ordely 456,12 pixels,To=1X10*, A\ yc=10, and\=0.9. The
one needs to increase the number of sampling directions OVeL \structions are shown in Fig. 9. By sampling the con-
which the system is optimized. A natural improvement ONgy,cted image for the autocorrelation function in the unop-
the orthogonal sampling on a square grid is to optimize injmized directions(not shown, it is again found that the
more than two directions. Here we simultaneously optimizémeasured function matches the targeted function. Thus, arti-
in four directions. The square grid and the sampling direcicial anisotropic effects have been removed by sampling in
tions for the autocorrelation function are shown in Fig. 5.three directions on a hexagonal grid.
Images are constructed using Efjl) as the target function At small values of¢,, the constructed system is a dis-
and optimized in four directions. The constructed images argersion of phase 1 particles in a black matrix. At intermedi-
shown in Fig. 6. The parameters used in this construction arate values of¢, the microstructure is labyrinthine like. At
as follows: the system size is 12828 pixels, To=1 high values of¢,, the constructed system is a dispersion of
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(b) FIG. 9. Construction of structures having the autocorrelation function given

. ) . ) ) by Eqg. (11), at different values ofp,, in which r,=16 anda,=8. Con-
FIG. 8. Hexagonal grid used in the reconstruction technig@eSampling  gtryction is implemented on the hexagonal grid shown in Fig. 8 by optimiz-

directions.(b) The unit cell is shown in bold and the surrounding cells are j,q in three directions. The following parameters are used: the system size is
included to explain the implementation of the periodic boundary conditions.; 5g.( 1 og pixels,To=1x 104, Ayc=10, and\=0.9.

The pixel labeling is explained as follows: the first index indicates the col-
umn number and the second index indicates the row number of the pixel.

timizing in four directions on a square grid is inefficient. For
_ _ ) ) _ the square grid, when the sampling radius increases by one
phase 2 particles in a white matrix. Figure(d0shows a iyl we are guaranteed to move to another pixel in the hori-
typical plot of the target and system autocorrelation funcqnia| and vertical direction. However, in the diagonal direc-
tions, which are in excellent agreement with each other. tions, where a distance of? pixels is required to move to
. ] . another pixel, it is common to increase the sampling radius
C. Comparison of improved sampling procedures by one pixel and still sample the same pixel. At any rate,
Let us now compare the construction results for the hexsampling on a hexagonal grid in three directions is preferred
agonal grid and the square grid where we optimize in fouover sampling on a square grid in four directions. However,
directions. Both methods give very similar images and insampling on the square grid is easier to implement.
terms of the agreement between the autocorrelation functions
of the target and constructed images. VI. NONUNIQUENESS
Of course, optimizing on the hexagonal grid is faster  We will now address an issue concerning the nonunique-
since one only has to optimize in three directions. Also, opnhess of the reconstructed images. It has been shown that
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target
» construction
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= —— target
w o4l |- reconstruction|
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0'2 fl L 1 ;)& 0.2 I~ T
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r 0.1 k
FIG. 10. A plot ofS, vsr for the image shown in Fig. 9 witth, = 0.5: solid
line is the target function and circles represent the constructed function. 0 0 80
r
higher-order correlation functions are typically not sufficient (b)

to (re)construct an image perfectly. This was demonstrated
by reconstructing an image using the autocorrelation funceig. 12. (a) Reconstruction of the overlapping rod system using the auto-
tion only and then showing that the lineal-path function of correlation function as the target function, for a system size of 1000 pixels.

the resulting image differs from the expected Iineal-path(b) S_z(r) vsr for a s_ystem size of 1000 pixels: solid_line is the te_lrget
function function and dashed line represents the reconstructed image. Both lines are

. . . indistinguishable from each othdr(r) vsr measured for the three recon-
We examine the variability in the untargeted correlationsgructions is also shown: the solid line is the analytical function and the

functions by choosing different initial conditions. To do this, dashed line represents the measured function.

we will reconstruct a one-dimensional “overlapping-rod”

system. Figure 11 shows one such realization of arg, function. It also shows how the lineal-path function of the

overlapping-rod system which is generated by randomlyteconstructed image differs from the theoretical function: an

placing rods of length 10 pixels on a line of 1000 pixels untiljndication of the nonuniqueness of the reconstruction. In-

the black phase area fractidgarea fraction of the rodsis  geed, there is variability in the lineal-path function from one

¢,=0.5. The analytical autocorrelation function for this sys-reconstruction to another.

tem i The process is then conducted in reverse, i.e., the recon-
vz(r;R)> struction uses the analytical lineal-path function as the target

Sz(r)zeXF<_77vl(R) (12)

where WIN 1 i

vo(r;R) r
————=20(r—-2R)+| 1+ == |O(2R~-r). (13 (a)
v1(R) 2R 05
2R is the rod lengthy= —In(¢,), and® (x) is the Heaviside — target
step function®(x)=1 if x>0 and®(x)=0 if x<0]. The 04V - reconstruction|
analytical relation foil for this system is given by W 0,205
RS 1=
L(r):¢i+r/(2R), (14) § 0.3 N
whereR is the rod length as given earlier. i"“ 02 f
First, the system is reconstructed using only the autocor-
relation function as the target. The lineal-path function of the 041t
reconstructed image is then measured. Three different recon-
structed images are generated using three different initial o0

guessesgseed values for the random number genejatmre
of which is shown in Fig. 1@). Figure 12b) shows how the
analytical autocorrelation function agrees with the measured

FIG. 13. (a) Reconstruction of the overlapping-rod system using the lineal-
’I I I III I I I II IlII I.I ‘ path function as the target function, for a system size of 1000 pike)s.
L(r) vsr for a system size of 1000 pixels: solid line is the target function
and the dashed line represents the reconstructed image. Both lines are indis-
FIG. 11. Realization of an overlapping-rod system: The system size is 100@nguishable from each othe®,(r) vs r measured for the three reconstruc-

pixels. The rod length is 10 pixels and the area fraction of phas¢;1, tions is also shown: the solid line is the analytical function and the dashed
=0.5. line represents the measured function.
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0.5 T T T VII. CONCLUSIONS

—— target We have investigated further the recently developed sto-

e N reconstruction | ] chastic optimization technique for reconstructing digitized

\ random heterogeneous materiafd/Ve have shown how the

§ 03 =05 7 orthogonal sampling technique can successfully reconstruct
= images that have autocorrelation functions that display no
@ 02 - appreciable short-range order. However, it is known that this
time-saving technique displays artificial anisotropic effects

0.1 r ] when the autocorrelation function reflects significant short-
range order. To minimize such artifacts, we introduced im-
00 o proved sampling procedures that increase the number of

sampling directions being simultaneously optimized. By
sampling in three directions on a hexagonal grid or in four
FIG. 14.S,(r) vsr for a system size of 10 000 pixels: solid line is the target directions on a square grid, unwanted anisotropic effects
funcFiodn e;nd the;]dtejllsh(fad line rerr:refsgrts the reconstructeddfimigr]]e. ﬁ]oth linggere effectively eliminated. Among the two improved sam-
T reasuredfor e ree ing procedures, sampling on a hexagonal grid is preferred.
dashed line represents the measured function. We also addressed the following nonuniqueness question:
How much of the variability in untargeted correlation func-
tions between reconstructions generated from different initial
and the resultingS, function is then measured. Figure 13 guesses is attributable to finite-size effects? We showed that
shows the results of the reconstructions. Again, there is exthe variability is due entirely to finite-size effects, and thus if
cellent agreement between the analytical lineal-path functiomonuniqueness is to be investigated, then one should mini-
and the measured function. There is, however, significanmize finite-size effects.
variability in autocorrelation functions between the different
reconstructions. Moreover, they do not reach their long rangé CKNOWLEDGMENT
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