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Generating microstructures with specified correlation functions
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A stochastic optimization technique has recently been developed that can reconstruct or construct
random heterogeneous materials with specified statistical correlation functions. We demonstrate
how this technique can be used to reconstruct a digitized image of an interpenetrating, isotropic
ceramic-metal composite. In this case, the two-point probability function displays no short-range
order and the image is reconstructed by optimizing in two orthogonal directions only. However, this
technique results in artificial anisotropy in the unoptimized directions when one~re!constructs an
image in which the isotropic two-point probability function exhibits appreciable short-range order.
We show that by optimizing in more than two directions, one can effectively eliminate the artificial
anisotropic effects for a system possessing significant short-range order. This is done by optimizing
in three directions on a hexagonal grid and by optimizing in four directions on a square grid. Finally,
an aspect of the nonuniqueness of the resulting structures is quantitatively examined. ©2001
American Institute of Physics.@DOI: 10.1063/1.1327609#
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I. INTRODUCTION

The challenge of reconstructing microstructural imag
of heterogeneous materials from limited microstructural
formation is an interesting and important problem.1–8 Such
reconstructions can give insight into the information co
tained in a microstructural image by determining the mi
mum set of correlation functions necessary to reconstruc
image. Another interesting question concerns how to qu
tify the nonuniqueness of the reconstructed images. A v
practical benefit of the reconstruction procedure could be
identification of the classes of three-dimensional microstr
tures that can be reconstructed from only two-dimensio
~2D! planar cuts through the material. A different but inte
esting exercise involves constructing images with a given
of hypothetical correlation functions. This study can lead t
more thorough understanding of the properties of physic
realizable correlation functions and limitations of the reco
struction technique.

There are two basic techniques available for th
~re-!constructions. One commonly used method is based
the use of Gaussian random fields.1–3 More recently, a
simulated-annealing technique was introduced by Rint
and Torquato4 to reconstruct molecular systems. Yeong a
Torquato5,6 extended this method to reconstruct digitiz
heterogeneous media. To implement this technique,
starts with a given, arbitrarily chosen, initial configuration
‘‘black’’ and ‘‘white’’ pixels and a set ofreferenceor target
correlation functions. The ‘‘energy’’ is defined as a fun
tional of the squared difference between the simulated
target correlation functions at any instant of time. By inte

a!Author to whom correspondence should be addressed; electronic
torquato@princeton.edu
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changing black and white pixels, the energy is minimized
the simulated annealing method.

In this article, we explore better ways to sample for t
statistical correlation functions of interest using the Yeon
Torquato method for digitized media. Various sampli
methods have been employed. One approach utilizes an
ficient fast Fourier transform7 to sample for the standard two
point probability function. This technique samples for th
function in every direction on the lattice and hence, at
end of the optimization process, matches~or optimizes! the
correlation function in every direction. The disadvantage
this technique is that it is limited only to the two-point pro
ability function, which is insufficient to reconstruct certa
images. The Yeong–Torquato method is a general techni
as it allows any number and type of microstructural desc
tors to be incorporated into the optimization routine. T
minimize computational cost, they sampled the microstr
tural descriptors only along the orthogonal latti
directions.5,6 Cule and Torquato7 showed that this techniqu
is successful, provided that the system size is much la
than the correlation length of the function~s! being opti-
mized. However, they also showed that if this condition
not met, then orthogonal sampling can lead to artificial a
isotropy in the unoptimized directions. This last point w
also observed by Manwart and Hilfer.8

The rest of the article is laid out as follows. In Sec. I
the microstructural descriptors used in the reconstruction
gorithm are described. The simulated annealing algorithm
then described in Sec. IV. In Sec. V, we reconstruct an ac
image of a ceramic-metal composite from its two-point pro
ability function to demonstrate the effectiveness of the
thogonal sampling technique when no short-range order
il:
© 2001 American Institute of Physics
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ists. In Sec. VI, a construction is presented for a two-po
probability function displaying appreciable short-range
der. The construction shows how the orthogonal samp
technique, in this case, results in an image which displ
artificial anisotropy in the unoptimized directions. We th
introduce an improvement on this algorithm by optimizing
more than two directions and demonstrate how this impro
technique significantly reduces the anisotropy. In Sec. V
the issue of nonuniqueness of reconstructed images is fu
explored.

II. DESCRIPTORS OF RANDOM MEDIA

The indicator functionI ( i )(x) for phasei in a two-phase
random medium is defined by

I ~ i !~x!5H 1 if x lies in phasei ,

0 otherwise.
~1!

The n-point correlation~or probability! function Sn
( i ) is de-

fined as

Sn
~ i !~x1 ,x2 ,...,xn!5^I ~ i !~x1!I ~ i !~x2!...I ~ i !~xn!&, ~2!

where angular brackets denote an ensemble average.
quantitySn

( i )(x1 ,x2 ,...,xn) gives the probability thatn points
located at positionsx1 , x2 ,...,xn all lie in the same phasei.

If the medium is statistically homogeneous thenSn
( i ) is

translationally invariant, depending on the relative displa
ments x22x1 , x32x1 ,...,xn2x1 . For example, the one
point function is simply given by the constant volume fra
tion of phasei, i.e.,

S1
~ i !5^I ~ i !~x!&5f i . ~3!

The two-point probability function, also known as the au
correlation function, is given by

S2
~ i !~r !5^I ~ i !~x1!I ~ i !~x2!&, ~4!

wherer5x22x1 and, at it extreme values is given by

0<S2~r !<f1 , ~5!

assuming no long-range order. Under the ergodic hypothe
the ensemble average earlier can be replaced by a vo
average in the limit that the volume tends to infinity, i.e.,

S2
~ i !~r !5 lim

V→`

1

V E
V
I ~ i !~y!I ~ i !~y1r !dy. ~6!

For statistically isotropic media,S2
( i )(r ) depends only on the

distancer 5ur u. Hereafter, we will drop the superscripti and
refer toS2(r ) as the autocorrelation function of phase 1.
general,S2 obeys the elementary bounds 0<S2<f1 .

Integral positivity conditions for the autocorrelatio
function have recently been studied.9 The positivity condi-
tions allow one to check if the autocorrelation function
physically realizable. For isotropic media ind dimensions,
there are actuallyd positivity conditions. The conditions tha
apply for isotropic two-dimensional systems are

E
0

`

g~r !cos~kr !dr>0 ;k,
~7!
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g~r !rJ0~kr !dr>0 ;k,

whereg(r )5S2(r )2f1
2 andJ0(x) is the zeroth-order Besse

function of the first kind.
There are many other statistical correlation functio

that one can employ. Indeed, the lineal-path functio
L ( i )(r1 ,r2) has been used to reconstruct model and ac
material images.5–8,10 This function is defined as the prob
ability that the entire line segment joining randomly chos
points r1 and r2 lies in the same phasei. Thus, it contains
connectedness information along a lineal path. If the med
is statistically homogeneous, thenL ( i ) depends only on
r5r12r2 . Moreover, if the medium is statistically isotropic
then L ( i )(r ) depends on the distancer 5ur u. Hereafter, we
will drop the superscript and refer toL(r ) as the lineal-path
function of phase 1. At its extreme values,L(r ) is given by

lim
r→0

L~r !5f1 , lim
r→`

L~r !50. ~8!

Recently, the pore-size distribution function was also used
reconstruct sandstones.10

FIG. 1. ~a! Microstructural image of a ceramic-metal composite. The wh
areas~phase 1! are aluminum and the black areas~phase 2! are mainly a the
ceramic phase composed of boron carbide.~b! Autocorrelation function for
the white phase of the ceramic-metal composite. The function display
appreciable short-range order, so it is suitable for reconstruction using
thogonal sampling techniques.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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III. STOCHASTIC OPTIMIZATION PROCEDURE

We briefly outline the stochastic optimization techniq
used to reconstruct or construct digitized media.5 It is desired
to reconstruct a target system of a given size with its kno
correlation functions or construct a system with some
geted correlation functions. The simulation begins with
initial guess for the configuration of phase 1~white! and
phase 2~black! pixels for a given system size. For examp
one can start with a random guess: white and black pixels
assigned with probabilityf1 andf2 , respectively. Becaus
the system is of finite size, this process could lead to
initial microstructure having an actualf2 value different
from the desiredf2 value. In practice, the number of blac
pixelsnb is first calculated and thennb of the total number of
pixels in the system are randomly assigned to be black.
remaining pixels are assigned to be white.

White and black pixels are interchanged so that the s
tem evolves toward the target correlation functions via sim
lated annealing. The ‘‘energy’’E at any time step in the
simulation is calculated by5

FIG. 2. ~a! Reconstruction of the image shown in Fig. 1~a!. The following
parameters are used:T05531025, lMC510, l50.9, and the image size is
4003400 pixels.~b! Autocorrelation functionS2(r ) vs r: solid line is the
target function and circles represent the reconstructed function.
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a~r1 ,r2 ,...,rn!2 f̃ n

a~r1 ,r2 ,...,rn!#2,

~9!

wheref n
a and f̃ n

a are the simulated and targetedn-point func-
tions, respectively, anda denotes the type of correlatio
function. At each time step, a randomly chosen white pixe
interchanged with a randomly chosen black pixel. The acc
tance probabilityP for this interchange is given by the Bolt
zmann probability

P~Eold→Enew!5H 1 if DE,0,

e2DE/T if DE>0,
~10!

whereDE5Enew2Eold andT is a fictitious temperature. The
temperatureT is initially chosen so that the initial acceptanc
probability for a pixel interchange withDE>0 is 0.5. By
slowly cooling the system to absolute zero, the syst
equilibrates to its ground state, i.e., the energy is minimiz
~target correlation functions are attained!. In the reconstruc-
tions that follow,a51 and f 2

1 is eitherS2 or L. For a more
complete description of this algorithm, we refer the reade
Refs. 4–7.

IV. RECONSTRUCTION OF CERAMIC-METAL
COMPOSITE

We first consider an image of an actual isotropic, int
penetrating ceramic-metal composite for which the autoc
relation functionS2(r ) is essentially a decaying exponenti
without any short-range order.11 The functionS2(r ) can be
obtained by ‘‘throwing’’ down line segments of lengthr with
random orientation and counting the fraction of times th
both end points fall in phase 1. To reduce computatio
cost, one can sampleS2(r ) only along rows and columns o
the underlying lattice.5 Thus, it is only in these orthogona

FIG. 3. Construction of structures having the autocorrelation function gi
by Eq. ~11!, at different values off1 , in which r 0516 anda058. Con-
struction is implemented on a square grid by optimizing in two orthogo
directions. The following parameters are used: system size is 1283128 pix-
les,T05131024, lMC510, andl50.9.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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directions thatS2(r ) actually matches the target function
the end of the optimization process. For this reason, we
the sampling directions theoptimizeddirections. We will
demonstrate that the orthogonal sampling method results
reasonable reconstruction of the ceramic-metal compo
free of any artificial anisotropic effects.

A two-phase image of the ceramic-metal composite
shown in Fig. 1~a!. The white phase~phase 1! is aluminum.
The black phase~phase 2! is a ceramic phase compose
mainly of boron carbide. The image is 6123482 pixels. The
measured autocorrelation function of the image, shown
Fig. 1~b!, displays no appreciable short-range order.

Figure 2~a! shows the reconstructed image usingS2 and
the orthogonal sampling technique on a square grid. The
rameters used in the reconstruction areT05531025, lMC

510, l50.9, and the system size is 4003400 pixels. The
resulting autocorrelation function is presented in Fig. 2~b!
along with the target data for comparison. As can be se
the S2 function for the reconstructed image matches the
get S2 function virtually perfectly. The initial energy of the
system is 0.2. The reconstruction is stopped when the en
reaches a value of 131028. Note that by the time the energ

FIG. 4. ~a! S2(r ) vs r for the image shown in Fig. 3~b! with f150.4: solid
line is the target function and circles represent the constructed function~b!
S2(r ) vs r as found by sampling the constructed image in Fig. 3~b! in all
directions.
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reaches a value of 131027, the essential structure of th
original image has been captured in the reconstruction.

V. BETTER SAMPLING PROCEDURES

To show that the orthogonal sampling technique on
square grid is insufficient to construct isotropic images w
significant short-range order, Cule and Torquato7 introduced
the isotropic autocorrelation function

S2~r !5f1
21f1f2e2r /r 0

sin~kr !

kr
, ~11!

wherek52p/a0 . The parametersa0 and r 0 correspond to
two distinct length scales. The parameterr 0 controls the ex-
ponential damping, which determines the maximum corre
tions in the system. The constanta0 controls the oscillations
in the term sin(kr)/(kr) which also decays with increasingr
such thata0 can reduce the effective range ofr 0 . The posi-
tivity conditions ~7! determine the allowable range of th
parametersa0 and r 0 .9

Figure 3 shows images at different volume fractions h
ing the autocorrelation function~11!, which we constructed
using orthogonal sampling on a square grid. For all of
images shown, the constructed and target autocorrela
functions match very well. One such plot is shown in F
4~a!. Importantly, the autocorrelation function sampled fro
the constructed image at 45° with respect to the horizo
~not shown! does not match the targeted function. This m
match is also indicated in Fig. 4~b!, where we measuredS2

from the constructed image by sampling inall directions.
Thus, the constructed image contains unwanted statistica
isotropy, otherwise there would be no mismatch.

It is important to emphasize that for a statistically isotr
pic image, it is acceptable to sample for the correlation fu
tions in two orthogonal directions only. However, when o
attempts toconstructan image with an isotropic correlatio
function displaying appreciable short-range order, it is n
sufficient to optimize in only two directions.

FIG. 5. Square grid showing the four directions the autocorrelation func
is simultaneously optimized in.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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A. Square grid sampling in four directions

In cases where there is appreciable short-range or
one needs to increase the number of sampling directions
which the system is optimized. A natural improvement
the orthogonal sampling on a square grid is to optimize
more than two directions. Here we simultaneously optim
in four directions. The square grid and the sampling dir
tions for the autocorrelation function are shown in Fig.
Images are constructed using Eq.~11! as the target function
and optimized in four directions. The constructed images
shown in Fig. 6. The parameters used in this construction
as follows: the system size is 1283128 pixels, T051

FIG. 6. Construction of structures having the autocorrelation function gi
by Eq. ~11!, at different values off1 , in which r 0516 anda058. Con-
struction is implemented on the square grid by optimizing in four directi
as shown in Fig. 5. The following parameters are used: system size is
3128 pixels,T05131024, lMC510, andl50.9.
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31024, lMC510, andl50.9. The constructed and targete
functions~not shown! were found to match essentially pe
fectly.

To test for anisotropy, we measuredS2 from the con-
structed images by sampling in the unoptimized directio
and found that they matched the targeted autocorrela
functions. This shows that by increasing the number of
rections being simultaneously optimized, we eliminate u
wanted anisotropy in the constructed image. Figure 7 give
plot of S2(r ) versusr at f150.4 as measured from the con
structed image of Fig. 6~c! by sampling in all directions.
Clearly, the artificial anisotropic effects have been co
pletely removed. This is in contrast to optimizing in only tw
orthogonal directions, which yields a mismatch, as shown
example in Fig. 4~b!.

B. Hexagonal grid

Let us now consider a regular hexagonal tessellation
2D space, henceforth referred to as a hexagonal grid. T
choice enables the autocorrelation function to be simu
neously optimized in the three symmetry directions, wh
should also lessen the artificial anisotropic effects. Figur
shows the hexagonal grid and the sampling directions. It a
shows how the unit cell repeats in the vertical direction a
also in the horizontal direction. Such a unit cell is chos
because it is a convenient way to implement the perio
boundary conditions. It should be noted that different bou
ary conditions will result if an odd system size is chose
Therefore, we have restricted the system size to be even

We construct the image by optimizing in the three sy
metry directions on the hexagonal grid. Here the system
is 1283128 pixels,T05131024, lMC510, andl50.9. The
constructions are shown in Fig. 9. By sampling the co
structed image for the autocorrelation function in the uno
timized directions~not shown!, it is again found that the
measured function matches the targeted function. Thus,
ficial anisotropic effects have been removed by sampling
three directions on a hexagonal grid.

At small values off1 , the constructed system is a di
persion of phase 1 particles in a black matrix. At interme
ate values off1 the microstructure is labyrinthine like. A
high values off1 , the constructed system is a dispersion

n

s
28

FIG. 7. S2(r ) vs r as found by sampling the constructed image in Fig. 6~c!
in all directions.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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phase 2 particles in a white matrix. Figure 10~a! shows a
typical plot of the target and system autocorrelation fu
tions, which are in excellent agreement with each other.

C. Comparison of improved sampling procedures

Let us now compare the construction results for the h
agonal grid and the square grid where we optimize in f
directions. Both methods give very similar images and
terms of the agreement between the autocorrelation funct
of the target and constructed images.

Of course, optimizing on the hexagonal grid is fas
since one only has to optimize in three directions. Also,

FIG. 8. Hexagonal grid used in the reconstruction technique.~a! Sampling
directions.~b! The unit cell is shown in bold and the surrounding cells a
included to explain the implementation of the periodic boundary conditio
The pixel labeling is explained as follows: the first index indicates the c
umn number and the second index indicates the row number of the pix
Downloaded 02 Jul 2001 to 128.112.129.181. Redistribution subject to A
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timizing in four directions on a square grid is inefficient. F
the square grid, when the sampling radius increases by
pixel we are guaranteed to move to another pixel in the h
zontal and vertical direction. However, in the diagonal dire
tions, where a distance of& pixels is required to move to
another pixel, it is common to increase the sampling rad
by one pixel and still sample the same pixel. At any ra
sampling on a hexagonal grid in three directions is prefer
over sampling on a square grid in four directions. Howev
sampling on the square grid is easier to implement.

VI. NONUNIQUENESS

We will now address an issue concerning the nonuniq
ness of the reconstructed images. It has been shown

.
l-
l.

FIG. 9. Construction of structures having the autocorrelation function gi
by Eq. ~11!, at different values off1 , in which r 0516 anda058. Con-
struction is implemented on the hexagonal grid shown in Fig. 8 by optim
ing in three directions. The following parameters are used: the system si
1283128 pixels,T05131024, lMC510, andl50.9.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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higher-order correlation functions are typically not sufficie
to ~re!construct an image perfectly.5,7 This was demonstrate
by reconstructing an image using the autocorrelation fu
tion only and then showing that the lineal-path function
the resulting image differs from the expected lineal-p
function.

We examine the variability in the untargeted correlati
functions by choosing different initial conditions. To do th
we will reconstruct a one-dimensional ‘‘overlapping-rod
system. Figure 11 shows one such realization of
overlapping-rod system which is generated by random
placing rods of length 10 pixels on a line of 1000 pixels un
the black phase area fraction~area fraction of the rods! is
f250.5. The analytical autocorrelation function for this sy
tem is12

S2~r !5expS 2h
v2~r ;R!

v1~R! D , ~12!

where

v2~r ;R!

v1~R!
52Q~r 22R!1S 11

r

2RDQ~2R2r !. ~13!

2R is the rod length,h52 ln(f1), andQ(x) is the Heaviside
step function@Q(x)51 if x.0 andQ(x)50 if x,0#. The
analytical relation forL for this system is given by13

L~r !5f1
11r /~2R! , ~14!

whereR is the rod length as given earlier.
First, the system is reconstructed using only the autoc

relation function as the target. The lineal-path function of
reconstructed image is then measured. Three different re
structed images are generated using three different in
guesses~seed values for the random number generator!, one
of which is shown in Fig. 12~a!. Figure 12~b! shows how the
analytical autocorrelation function agrees with the measu

FIG. 10. A plot ofS2 vs r for the image shown in Fig. 9 withf150.5: solid
line is the target function and circles represent the constructed function

FIG. 11. Realization of an overlapping-rod system: The system size is 1
pixels. The rod length is 10 pixels and the area fraction of phase 1,f1

50.5.
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S2 function. It also shows how the lineal-path function of th
reconstructed image differs from the theoretical function:
indication of the nonuniqueness of the reconstruction.
deed, there is variability in the lineal-path function from o
reconstruction to another.

The process is then conducted in reverse, i.e., the re
struction uses the analytical lineal-path function as the ta

00

FIG. 12. ~a! Reconstruction of the overlapping rod system using the au
correlation function as the target function, for a system size of 1000 pix
~b! S2(r ) vs r for a system size of 1000 pixels: solid line is the targ
function and dashed line represents the reconstructed image. Both line
indistinguishable from each other.L(r ) vs r measured for the three recon
structions is also shown: the solid line is the analytical function and
dashed line represents the measured function.

FIG. 13. ~a! Reconstruction of the overlapping-rod system using the line
path function as the target function, for a system size of 1000 pixels.~b!
L(r ) vs r for a system size of 1000 pixels: solid line is the target functi
and the dashed line represents the reconstructed image. Both lines are
tinguishable from each other.S2(r ) vs r measured for the three reconstru
tions is also shown: the solid line is the analytical function and the das
line represents the measured function.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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and the resultingS2 function is then measured. Figure 1
shows the results of the reconstructions. Again, there is
cellent agreement between the analytical lineal-path func
and the measured function. There is, however, signific
variability in autocorrelation functions between the differe
reconstructions. Moreover, they do not reach their long ra
value off1

2.
An important question is the following: How much o

this variability is simply due to finite-size effects? To answ
this question, we increase the system size by a factor of 1
10 000 pixels, and then we reconstruct the overlapping
system again using three different initial guesses and u
S2 as the target function. The lineal-path functionL, is then
measured for the resulting reconstructed images. The re
are shown in Fig. 14. One can see that the lineal-path fu
tions sampled from the reconstructed image are conver
to one curve and, thus, the variations are attributable
finite-size effects. Therefore, when probing for nonuniqu
ness by the measurement of untargeted correlation functi
one should minimize finite-size effects.

It should be noted that Yeong and Torquato6 showed that
by using bothS2 and L as the target functions, the reco
structions are improved significantly.

FIG. 14. S2(r ) vs r for a system size of 10 000 pixels: solid line is the targ
function and the dashed line represents the reconstructed image. Both
are indistinguishable from each other.L(r ) vs r measured for the three
reconstructions is also shown: the solid line is the analytical function and
dashed line represents the measured function.
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VII. CONCLUSIONS

We have investigated further the recently developed s
chastic optimization technique for reconstructing digitiz
random heterogeneous materials.5,6 We have shown how the
orthogonal sampling technique can successfully reconst
images that have autocorrelation functions that display
appreciable short-range order. However, it is known that
time-saving technique displays artificial anisotropic effe
when the autocorrelation function reflects significant sho
range order. To minimize such artifacts, we introduced i
proved sampling procedures that increase the numbe
sampling directions being simultaneously optimized.
sampling in three directions on a hexagonal grid or in fo
directions on a square grid, unwanted anisotropic effe
were effectively eliminated. Among the two improved sam
pling procedures, sampling on a hexagonal grid is prefer
We also addressed the following nonuniqueness ques
How much of the variability in untargeted correlation fun
tions between reconstructions generated from different in
guesses is attributable to finite-size effects? We showed
the variability is due entirely to finite-size effects, and thus
nonuniqueness is to be investigated, then one should m
mize finite-size effects.
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