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We present a numerical method to find specific composite microstructures with
targeted effective properties. The effective properties that may be prescribed are quite
diverse and include transport, mechanical, and electromagnetic properties, as well as
properties associated with coupled phenomena, such as piezoelectric and thermoelectric
coefficients. We formulated the target problem as an optimization problem. To
illustrate our general target optimization technique, we have successfully found
two-phase composite microstructures having specified effective electrical or thermal
conductivities at fixed volume fractions. The method can also be used to design
microstructures with multifunctional characteristics.

I. INTRODUCTION

An important goal of materials science is to have
exquisite knowledge of structure/property relations in or-
der to design material microstructures with desired prop-
erties and performance characteristics. Although this
objective has been achieved in certain cases through trial
and error, a systematic means of doing so is currently
lacking. For certain physical phenomena at specific
length scales, the governing equations are known and the
only barrier to achieving the aforementioned goal is the
development of an appropriate method to attack the prob-
lem.

The purpose of this article is to introduce a method-
ology to design at will composite microstructures with
targeted effective properties under required constraints.
In general terms, this is accomplished by formulating the
task as an optimization problem that we call target opti-
mization. Target optimization is an adaptation of tradi-
tional structural optimization techniques.1,2 Specifically,
an initial microstructure is allowed to evolve to the tar-
geted state by extremizing an appropriately defined ob-
jective function. The types of effective properties that we
can address are quite general and include transport, me-
chanical, and electromagnetic properties, as well as prop-
erties associated with coupled phenomena, such as
piezoelectric and thermoelectric coefficients.

To illustrate our general target optimization technique,
we find two-phase composite microstructures in two di-
mensions having specified effective electrical or thermal
conductivities at fixed volume fractions. In the first ex-
ample, we use the geometric-mean formula for the tar-
geted effective conductivity. In the second example, we

use the target optimization technique to find the struc-
tures that lie between the optimal Hashin–Shtrikman
(HS) bounds for the effective conductivity.

In Sec. II, we summarize the basic local and homog-
enized equations. Section III introduces the target opti-
mization method to identify microstructures with
prescribed effective properties. The formulations for the
objective function and constraints are provided. Sec-
tion IV reviews pertinent theoretical results for the effec-
tive conductivity. In Sec. V, we apply the technique to
find microstructures having specified effective conduc-
tivities. We make concluding remarks in Sec. VI.

II. LOCAL AND HOMOGENIZED EQUATIONS

Consider a two-phase composite material consisting of
a phase with a property K1 and volume fraction f1 and
another phase with a property K2 and volume fraction f2

(41 − f1). The property Ki is perfectly general: It may
represent a transport, mechanical, or electromagnetic
property, or properties associated with coupled phenom-
ena, such as piezoelectricity or thermoelectricity. For
steady-state situations, the generalized flux F(r) at some
local position r in the composite obeys the following
conservation law in the phases:

= ? F(r) 4 0 . (1)

In the case of electrical conduction and elasticity, F rep-
resents the current density and stress tensor, respectively.

The local constitutive law relates F to a generalized
gradient G, which in the special case of a linear relation-
ship is given by

F(r) 4 K(r)G(r) , (2)

where K(r) is the local property. In the case of electrical
conduction, Eq. (2) is just Ohm’s law, and K and G are
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the conductivity and electric field, respectively. For elas-
tic solids, Eq. (2) is Hooke’s law, and K and G are the
stiffness tensor and strain field, respectively. For piezo-
electricity, F is the stress tensor, K embodies the com-
pliance and piezoelectric coefficients, and G embodies
both the electric field and strain tensor. The generalized
gradient G must also satisfy a governing differential
equation. For example, in the case of electrical conduc-
tion, G must be curl free.

One must also specify the appropriate boundary con-
ditions at the two-phase interface. For nonideal interfaces,
interfacial properties are associated with the interface. In the
case of ideal interfaces, certain components of the local
fields are continuous across the interface. For example, for
pure conduction across an ideal interface, the tangential
component of the electric field and normal component of
the current vector remain continuous.

One can show that the effective properties are found
by homogenizing (averaging) the aforementioned local
fields. In the case of linear material, we have that the
effective property Ke is given by

〈F(r)〉 4 Ke〈G(r)〉 , (3)

where angular brackets denote a volume average. Our
interest is in determining composite microstructures that
have specified effective properties.

III. TARGET OPTIMIZATION

To find composite microstructures that have targeted
properties, we introduce the target optimization tech-
nique. This numerical technique is adapted from the con-
ventional structural optimization methods.1,2 However,
the target optimization technique is different from the
latter in an important way. While the conventional opti-
mization methods determine microstructures possessing
optimal properties, the target optimization technique de-
termines microstructures for targeted properties that may
or may not be optimal. Thus, the objective functions are
different. Target optimization uses a modified objective

function that consists of the effective properties of the
composite as well as the targeted properties. The optimi-
zation portion of the algorithms can be performed in a
variety of ways. For example, one can use the topology
optimization method1,2 when the topology is not speci-
fied or the shape optimization method1 when the topol-
ogy is fixed. In this article, we will adapt the topology
optimization technique to perform the target optimiza-
tion. Moreover, an additional penalty function in the ob-
jective function is needed to achieve the final two-phase
microstructures. Finally, as opposed to previous work,
we introduce the interior-point method to carry out the
linear programming, as described below.

The design domain (cubic unit cell) is discretized into
a number of finite elements and periodic boundary con-
ditions are employed (see Fig. 1). One could begin by
making an initial guess for the distribution of the two
phases among the elements, solve for the local fields
using finite elements, and then evolve the microstructure
to the targeted properties. However, even for a small
number of elements, this integer-type optimization prob-
lem becomes a huge and intractable combinatorial
problem. Following the idea of standard topology opti-
mization procedures, the problem is therefore relaxed by
allowing the material at a given point to be a gray-scale
mixture of the two phases. This makes it possible to find
sensitivities with respect to design changes, which in turn
allows us to use mathematical programming methods to
solve the optimization problem. At the end of the opti-
mization procedure, however, we desire to have a design
where each element is either phase-1 or phase-2 material.

Therefore, let xi ∈ [0, 1] be the local density of the ith
element, so that when xi 4 0, the element corresponds
to phase 1 and when xi 4 1, the element corresponds to
phase 2. Let x (xi, i 4 1, . . . , n) be the vector of design
variables. For any x, the local fields are computed using
finite elements and the effective property Ke(K1, K2; x),
which is a function of K1, K2, and x, is computed from
Eq. (3).

FIG. 1. (a) The design domain is the unit cell of a periodic material which is discretized into finite elements, white representing phase 1 and black
representing phase 2. (b) 3 × 3 repeating unit cells.
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We take the objective function F for the target opti-
mization problem to be given by a least-square form
involving the effective property Ke(x) and a target prop-
erty K0. The target optimization problem for the target
property Ke(K1, K2; x) is defined by

Minimize: F = @Ke~x! − K0#
2 , (4)

subject to:
1

n (
i=1

n

xi = f1 ,

0 ø xi ø 1, i = 1, . . . , n
and prescribed symmetries.

Typically, the volume fraction f1 is fixed in the simula-
tion. We also impose geometrical constraints (e.g., re-
flection symmetry) to obtain simple microstructures that
achieve the targeted properties.

The objective function F is nonlinear but we linearize
it to take advantage of sequential linear programming, a
well-established optimization technique. The effective
property Ke(x) in the objective function F is expanded in
Taylor series for a given microstructure x0:

F . @Ke~x0! + =Ke ? Dx − K0#
2 , (5)

. @Ke~x0! − K0#
2

+ 2@Ke~x0! − K0#=Ke ? Dx , (6)
where Dx 4 x − x0. An initial microstructure is deter-
mined by randomly assigning the design variables xi to
take values between 0 and 1. In each iteration, the mi-
crostructure evolves to the targeted state by determining
the design variables xi. Linear programming finds the
optimum solution of the design variables x for the given
linearized objective function Eq. (6). Following usual
sensitivity analysis,2 the required derivatives =Ke of the
objective function with respect to the design variables are
determined by the local fields of each element obtained
by one finite element calculation.

To carry out the linear programming of the target op-
timization problem, we introduce the interior-point
method,3 which becomes especially efficient as the num-
ber of design variables becomes large. The reason for this
is that it is not necessary to define the move limits of all
the design variables. Previous topology optimization
techniques have used the simplex methods for the linear
programming.

The penalization factor scheme1 is used for the artifi-
cial material phase in the relaxation process, which is
required to resolve the ill-posedness of the general “0–1”
optimization problem. In a design problem for the con-
ductance, the penalization factor p is defined by

K(xi) 4 K1xi
p + K2(1 − xi)

p , (7)

where K(xi) is the conductivity of ith element. Note that
K(xi) 4 K1 when xi 4 1 and K(xi) 4 K2 when xi 4 0.
During the optimization procedure, each element is gen-
erally in a “composite” state because the relaxed density

xi lies between 0 and 1. By using a high value for the
penalization factor p, the density xi tends to move toward
0 or 1 because it is more economical in the optimization.

In the conventional topology optimization, assigning
the penalization factor (p >3) normally works to achieve
the final two-phase composite. However, this alone does
not work well for target optimization because gray (in-
termediate) phases tend to remain after many iterations.
The reason for this is that target optimization is not a true
optimization problem in the sense that it does not neces-
sarily maximize or minimize the properties. Instead, the
target optimization method determines a microstructure
that achieves targeted properties that generally lie be-
tween the optimal properties. Therefore, in addition
to Eq. (7), it is necessary to use another constraint to
achieve the final two-phase composite. Specifically, in
the final stage of the optimization procedure, we add a
simple penalty function

Fp = −wp
î=1

n

xi~xi − 1! . (8)

to the original objective function Eq. (6), where wp is a
weighting factor.

Finally, a conventional filtering scheme2 is adapted to
avoid microscale structures. Normally, the filtering range
is initially set up to be similar to the size of the unit cell
to achieve a single-scale structure in the design domain.
The filtering range is gradually decreased during the
course of the simulation.

IV. BACKGROUND ON
CONDUCTIVITY PROBLEM

To illustrate the target optimization technique, we will
carry out specific calculations for the effective conduc-
tivity problem. However, before presenting our calcula-
tions, it is necessary to review some important basic
work in the theory of composites that is particularly per-
tinent to the optimization problem at hand.

Consider isotropic two-phase composites with phase
conductivities K1 ≡ s1 and K2 ≡ s2 and phase volume
fractions f1 and f2. For simplicity, we assume ideal
interfaces. A very fundamental question in the theory of
composites is the following: What are the microstruc-
tures that either maximize or minimize the effective con-
ductivity se for a prescribed volume fraction? This
question was answered in three dimensions by Hashin
and Shtrikman4 who found the best possible bounds on
se (given volume fraction information) and microstruc-
tures that realize them. Analogous two-dimensional
bounds were found by Hashin.5 In any dimension, we
refer to these as the Hashin–Shtrikman (HS) bounds. In
two dimensions and for s2 ù s1, they are given by
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sL ø se ø sU , (9)

where

sL = ^s& −
f1f2~s1 − s2!

2

^s̃& + s1
, (10)

sU = ^s& −
f1f2~s1 − s2!

2

^s̃& + s2
. (11)

Here

^s& = s1f1 + s2f2 , (12)

^s̃& = s1f2 + s2f1 . (13)

The reason why the HS bounds Eq. (9) are the best
possible (optimal) bounds given volume fraction infor-
mation is that they are realizable by a special dispersion
of circular inclusions.5 Specifically, the lower bound is
realized by a dispersion consisting of composite circular
inclusions that are composed of a circular core, of con-
ductivity s2 and radius a, which is surrounded by a
concentric shell of conductivity s1 with an outer radius b.
The ratio (a/b)2 is fixed and equal to the inclusion vol-
ume fraction f2. The composite inclusions fill all space,
implying that there is a distribution in their sizes ranging
to the infinitesimally small. Thus, the more conducting
phase always disconnected (except at the trivial point
f2 4 1). Indeed, as far as the effective conductivity se is
concerned, the HS lower bound construction may be re-
garded as the most “disconnected” arrangement of the
conducting material since phase-2 elements are well
separated from each other. The upper bound is realized
by the same microstructure but with the phases inter-
changed. Here the conducting phase is always a con-
nected phase (except at the trivial point f2 4 0) and
hence may be regarded as the most “connected” arrange-
ment of the conducting material.

However, these multisized coated inclusions are not
the only structures that realize the bounds Eq. (9). For
example, the single-scale Vigdergauz7,8 constructions
that realize the HS bounds on the effective planar bulk
modulus also realizes the bounds Eq. (9). In so far as the
effective conductivity is concerned, the connectivities of
the Vigdergauz constructions are identical to those of the
HS constructions.

Importantly, since the HS bounds are optimal, all iso-
tropic composites must have effective conductivities that
lie between them. Although certain classes of optimal
structures are known (as discussed above), the structures
that lie between the extreme values of the effective con-
ductivity are not known. As one application of the target
optimization technique, we will find the intermediate
structures.

V. ILLUSTRATIVE EXAMPLES

A. Geometric-mean effective conductivity

To begin, we choose the target effective conductivity
se at the volume fraction f1 4 f2 4

1⁄2 to be the geo-
metric average of the phase conductivities, i.e.,

se 4 √s1s2 . (14)

We make this choice because it is one of the rare in-
stances in the theory of composites in which we have
exact results. Specifically, Eq. (14) is exact for any two-
phase, two-dimensional composite whose phase topolo-
gies are statistically equivalent to one another.6 This
class encompasses a variety of different composites, in-
cluding the regular checkerboard as well as the random
checkerboard. Therefore, it will be of interest to see what
microstructure our target optimization algorithm yields
when Eq. (14) is employed.

Starting from a random initial guess, we have carried
out the simulation for a target effective conductivity
s0 given by Eq. (14) in which s1 4 1 and s2 4 10;
i.e., s0 4 √10 ≈ 3.1623. We imposed reflection symme-
try about the horizontal and vertical axes. Figure 2 shows
the resulting microstructure for 2 × 2 repeated unit cells.
Interestingly, we see that our algorithm finds the regular
checkerboard. This particular geometry is found because
of the symmetries that we impose and the size of the
“filter” that we use to avoid local minima.2 Note that
conduction is dominated by transport through the
“necks” (corner points) connecting the conducting phase,
especially for high phase contrast ratio. The effective
conductivity of the composite structure shown in Fig. 2 is

FIG. 2. Regular checkerboard (2 × 2 unit cells) found by target opti-
mization for f2 4

1⁄2, s1 4 1, and s2 4 10.
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given by se = 3.12. Most of the error of about 1% from
the targeted value is due to discretization error in resolv-
ing the corner connections in the checkerboard, not the
optimization part of the routine.

This example clearly shows that our target optimiza-
tion procedure can yield microstructures with targeted
properties with minimal error. Therefore, it is an impor-
tant benchmark.



B. Structures lying between HS bounds

Here our aim is to generate the possible structures that
lie between the HS bounds (9) at a fixed volume fraction,
including the known optimal Vigdergauz structures7,8

that lie at the extremes. Obtaining the extremal structures
will be another test of the target optimization method
since it must also be able to yield these optimal structures
when the target is specified as such.

Finding the structures that lie between them will en-
able us to study how the degree of connectivity of the
conducting phase changes from the extreme values. Re-
call that the structures corresponding to the HS lower and
upper bounds may be regarded to be the most discon-
nected and connected arrangements of the conducting
phase, respectively.

Accordingly, let the target effective conductivity be
given by

s0 4 sL + a(sU − sL) , (15)

where sL and sU are the lower and upper bounds given
by Eqs. (10) and (11) and sU − sL is the bound width.
Thus, by varying the parameter a between 0 and 1, one
can continuously span between the lower bound value
and the upper bound value, respectively.

As in the previous example, we have carried out simu-
lations for f2 4

1⁄2 with s1 4 1 and s2 4 10 and have
imposed reflection symmetry about the horizontal and
vertical axes. Here we use the target conductivity
Eq. (15) and consider the cases a 4 0, 0.2, 0.4, 0.6, 0.8
and 1. Figure 3 depicts the resulting microstructures for
2 × 2 repeated unit cells. Table I shows that associated
effective conductivities are in very good agreement with
the targeted effective conductivities.

First, we observe that our program correctly finds the
optimal Vigdergauz constructions at the extremes; i.e.,
a 4 0 and a 4 1. This provides further evidence that
our optimization algorithm accurately yields targeted mi-
crostructures. We see that as a increases from 0 to 0.4,
the conducting phase remains disconnected but changes
to squarelike inclusions. At a 4 0.4, the structure is very
close to the regular checkerboard but the corners of ad-

jacent squarelike conducting inclusions do not touch; i.e.,
the system does not percolate. At a 4 0.43 (not shown in
Fig. 3), we know from our previous calculation that the
structure is indeed the regular checkerboard, which per-
colates due to touching conducting corners. At a 4 0.6,
the conducting phase consists of squarelike inclusions on
a checkerboard but with small “bridges” between the
corners. At a 4 0.8, the bridges are more pronounced.

VI. CONCLUDING REMARKS

In this article, we have introduced a numerical method
to identify specific microstructures of composite materi-
als that have targeted properties that we call target opti-
mization. The conventional topology optimization is
adapted to perform this target optimization with a revised
objective function. Moreover, unlike previous work, we
use the interior-point method to perform the linear pro-
gramming. The method is quite general and can treat
transport, mechanical, and electromagnetic properties, as
well as properties associated with coupled phenomena,
such as piezoelectric and thermoelectric coefficients. To
illustrate the technique, we have successfully found two-
phase composite microstructures in two dimensions
having specified effective electrical or thermal conduc-
tivities at fixed volume fractions. Although we have fo-
cused on a single targeted property, the method can also
treat several properties by simply adding quadratic terms
to the objective function as follows:

F 4 k1[Ke
(1) − K0

(1)]2 + k2[Ke
(2) − K0

(2)]2

+ k3[Ke
(3) − K0

(3)]2 + ? ? ? , (16)

where Ke
(1), Ke

(2), Ke
(3), ? ? ? are the effective properties of

interest, K0
(1), K0

(2), K0
(3), ? ? ? are the associated target

properties and k1, k2, k3, ? ? ? are scalar weights. There-
fore, the method can also be used to design microstruc-
tures with multifunctional characteristics.
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TABLE I. Comparison of the effective conductivities se to be targeted
conductivities so for points between the HS bounds for f2 4 0.5,
s1 4 1, and s2 4 10.

a × 100% s0 se

100% 4.194 4.188
80% 3.832 3.852
60% 3.470 3.487
40% 3.109 3.042
20% 2.747 2.760
0% 2.385 2.393
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